1
|
Kim G, Carroll CL, Wakefield ZP, Tuncay M, Fiszbein A. U1 snRNP regulates alternative promoter activity by inhibiting premature polyadenylation. Mol Cell 2025; 85:1968-1981.e7. [PMID: 40378830 DOI: 10.1016/j.molcel.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/21/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Emerging evidence indicates that splicing factors mediate the close link between transcription and splicing. However, the mechanisms underlying this coupling remain unclear. U1 small nuclear ribonucleoprotein particle (U1 snRNP) not only initiates splicing but also plays a crucial role in preventing premature cleavage and polyadenylation, facilitating long-distance transcriptional elongation. Here, we show that U1 snRNP regulates alternative promoter activity in human cells by inhibiting premature polyadenylation. In genes carrying premature polyadenylation sites between two promoters, U1 snRNP inhibition with antisense oligonucleotides leads to a significant decrease in downstream promoter activity. Conversely, restoring U1 snRNP activity or inhibiting premature polyadenylation rescues downstream promoter activity. Mechanistically, U1 snRNP inhibition correlates with reduced chromatin accessibility, decreased RNA polymerase II serine 5 phosphorylation, and increased promoter-proximal pause at downstream promoters. Our findings support a model in which U1 snRNP favors productive elongation from upstream promoters, triggering downstream promoter activation by destabilizing nucleosomes and promoting promoter escape.
Collapse
Affiliation(s)
- GyeungYun Kim
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston 02215, USA
| | - Christine L Carroll
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA
| | - Zachary Peters Wakefield
- Biology Department, Boston University, Boston 02215, USA; Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston 02215, USA
| | - Mustafa Tuncay
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA
| | - Ana Fiszbein
- Biology Department, Boston University, Boston 02215, USA; Graduate Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston 02215, USA; Graduate Program in Cell and Molecular Biology, Boston University, Boston 02215, USA; Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston 02215, USA; Center for Computing & Data Sciences, Boston University, Boston 02215, USA.
| |
Collapse
|
2
|
Burgos-Bravo F, Tong AB, Li C, Díaz-Celis C, Kaplan CD, LeRoy G, Reinberg D, Bustamante C. FACT weakens the nucleosomal barrier to transcription and preserves its integrity by forming a hexasome-like intermediate. Mol Cell 2025:S1097-2765(25)00407-1. [PMID: 40412388 DOI: 10.1016/j.molcel.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/13/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Transcription of yeast RNA polymerase II through nucleosomes requires the assistance of the histone chaperone FACT (facilitates chromatin transcription). Yet, how FACT modulates the nucleosomal mechanical barrier to affect the polymerase's elongation dynamics is poorly understood. Using high-resolution single-molecule optical tweezers, we show that FACT greatly decreases the magnitude of the barrier by favoring the unwrapping of DNA from the distal H2A-H2B dimer, which, in turn, weakens the contacts near the dyad, significantly reducing the enzyme's crossing time. We show that barrier crossing depends on the asymmetric flexibility of the nucleosome arms, an asymmetry we find across the genome. Mechanical unwrapping of Cy3-H2A nucleosomes reveals that FACT reduces their unwrapping force and stabilizes a hexasome-like intermediate that retains both labeled dimers during successive unwrapping cycles. This intermediate is also observed after transcription. In conclusion, FACT facilitates nucleosomal transcription by weakening the barrier and actively assisting the maintenance of nucleosomal integrity after enzyme passage.
Collapse
Affiliation(s)
- Francesca Burgos-Bravo
- Jason Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94704, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94704, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexander B Tong
- Jason Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94704, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chen Li
- Jason Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94704, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - César Díaz-Celis
- Jason Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94704, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, CA 15260, USA
| | - Gary LeRoy
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos Bustamante
- Jason Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94704, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94704, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Shi X, Fedulova A, Kotova E, Maluchenko N, Armeev G, Chen Q, Prasanna C, Sivkina A, Feofanov A, Kirpichnikov M, Nordensköld L, Shaytan A, Studitsky V. Histone tetrasome dynamics affects chromatin transcription. Nucleic Acids Res 2025; 53:gkaf356. [PMID: 40304183 PMCID: PMC12041859 DOI: 10.1093/nar/gkaf356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer microscopy, and nuclear magnetic resonance spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU–BIT University, No. 1, International University Park Road, Longgang District, Shenzhen, Guangdong Province 518172, China
| | | | - Elena Y Kotova
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| | | | - Grigoriy A Armeev
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Alexey V Feofanov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Lars Nordensköld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexey K Shaytan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Computer Science, HSE University, 109028 Moscow, Russia
| | - Vasily M Studitsky
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States
| |
Collapse
|
4
|
Stopa V, Dafou D, Karagianni K, Nossent AY, Farrugia R, Devaux Y, Sopic M. Epitranscriptomics in atherosclerosis: Unraveling RNA modifications, editing and splicing and their implications in vascular disease. Vascul Pharmacol 2025; 159:107496. [PMID: 40239855 DOI: 10.1016/j.vph.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Atherosclerosis remains a leading cause of morbidity and mortality worldwide, driven by complex molecular mechanisms involving gene regulation and post-transcriptional processes. Emerging evidence highlights the critical role of epitranscriptomics, the study of chemical modifications occurring on RNA molecules, in atherosclerosis development. Epitranscriptomics provides a new layer of regulation in vascular health, influencing cellular functions in endothelial cells, smooth muscle cells, and macrophages, thereby shedding light on the pathogenesis of atherosclerosis and presenting new opportunities for novel therapeutic targets. This review provides a comprehensive overview of the epitranscriptomic landscape, focusing on key RNA modifications such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), RNA editing mechanisms including A-to-I and C-to-U editing and RNA isoforms. The functional implications of these modifications in RNA stability, alternative splicing, and microRNA biology are discussed, with a focus on their roles in inflammatory signaling, lipid metabolism, and vascular cell adaptation within atherosclerotic plaques. We also highlight how these modifications influence the generation of RNA isoforms, potentially altering cellular phenotypes and contributing to disease progression. Despite the promise of epitranscriptomics, significant challenges remain, including the technical limitations in detecting RNA modifications in complex tissues and the need for deeper mechanistic insights into their causal roles in atherosclerotic pathogenesis. Integrating epitranscriptomics with other omics approaches, such as genomics, proteomics, and metabolomics, holds the potential to provide a more holistic understanding of the disease.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Lu C, Guo L, Fang B, Shi J, Zhou M. DNA Sequence Changes Resulting from Codon Optimization Affect Gene Expression in Pichia pastoris by Altering Chromatin Accessibility. J Fungi (Basel) 2025; 11:282. [PMID: 40278103 PMCID: PMC12029099 DOI: 10.3390/jof11040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Codon optimization is a widely employed strategy to enhance protein expression. However, it occasionally leads to unexpected transcriptional repression despite preserving amino acid sequences. This study investigates the mechanistic basis of such transcriptional attenuation by analyzing two gene candidates (0432 and Fluc) in the common expression chassis P. pastoris. Both genes experienced severe mRNA reduction following codon optimization. Evidenced by histone H3 chromatin immunoprecipitation (ChIP) and a DNase I hypersensitivity assay, gene sequences with transcriptional repression displayed elevated nucleosome occupancy and reduced chromatin accessibility. The above change was caused by an ORF sequence change independent of the promoter, since transcriptional attenuation and compromised chromatin accessibility were still observed after replacing the strong promoter PGAP with Ppor1 or Prps8b. Our findings challenge the conventional view of codon optimization as solely translation-centric, revealing its capacity to preemptively modulate transcription through chromatin accessibility. This work underscores the necessity of integrating chromatin-level considerations into synthetic gene design to avoid unintended transcriptional silencing and optimize expression outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (C.L.); (B.F.); (J.S.)
| |
Collapse
|
6
|
Farnung L. Chromatin Transcription Elongation - A Structural Perspective. J Mol Biol 2025; 437:168845. [PMID: 39476950 DOI: 10.1016/j.jmb.2024.168845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/10/2024]
Abstract
In eukaryotic cells, transcription by RNA polymerase II occurs in the context of chromatin, requiring the transcription machinery to navigate through nucleosomes as it traverses gene bodies. Recent advances in structural biology have provided unprecedented insights into the mechanisms underlying transcription elongation. This review presents a structural perspective on transcription through chromatin, focusing on the latest findings from high-resolution structures of transcribing RNA polymerase II-nucleosome complexes. I discuss how RNA polymerase II, in concert with elongation factors such as SPT4/5, SPT6, ELOF1, and the PAF1 complex, engages with and transcribes through nucleosomes. The review examines the stepwise unwrapping of nucleosomal DNA as polymerase advances, the roles of elongation factors in facilitating this process, and the mechanisms of nucleosome retention and transfer during transcription. This structural perspective provides a foundation for understanding the intricate interplay between the transcription machinery and chromatin, offering insights into how cells balance the need for genetic accessibility with the maintenance of genome stability and epigenetic regulation.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Chua GNL, Watters JW, Olinares PDB, Begum M, Vostal LE, Luo JA, Chait BT, Liu S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat Struct Mol Biol 2024; 31:1789-1797. [PMID: 39164525 PMCID: PMC11564119 DOI: 10.1038/s41594-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/16/2024] [Indexed: 08/22/2024]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a severe neurological disorder that primarily affects young females. The canonical view of MeCP2 as a DNA methylation-dependent transcriptional repressor has proven insufficient to describe its dynamic interaction with chromatin and multifaceted roles in genome organization and gene expression. Here we used single-molecule correlative force and fluorescence microscopy to directly visualize the dynamics of wild-type and RTT-causing mutant MeCP2 on DNA. We discovered that MeCP2 exhibits distinct one-dimensional diffusion kinetics when bound to unmethylated versus CpG methylated DNA, enabling methylation-specific activities such as co-repressor recruitment. We further found that, on chromatinized DNA, MeCP2 preferentially localizes to nucleosomes and stabilizes them from mechanical perturbation. Our results reveal the multimodal behavior of MeCP2 on chromatin that underlies its DNA methylation- and nucleosome-dependent functions and provide a biophysical framework for dissecting the molecular pathology of RTT mutations.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Masuda Begum
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Lauren E Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Joshua A Luo
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
9
|
Wu M, Beck C, Lee JH, Fulbright RM, Jeong J, Inman JT, Woodhouse MV, Berger JM, Wang MD. Human Topoisomerase IIα Promotes Chromatin Condensation Via a Phase Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618281. [PMID: 39464128 PMCID: PMC11507700 DOI: 10.1101/2024.10.15.618281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation. However, how topo IIα enables this function is poorly understood. Here, we discovered a new and functionally distinct role for human topo IIα - it condenses DNA and chromatin at a low topo IIα concentration (100 pM or less) during a polymer-collapse phase transition. The removal of the topo IIα CTDs effectively abolishes its condensation ability, indicating that the condensation is mediated by the CTDs. Although topo IIβ can also perform condensation, it is about 4-fold less effective. During the condensation, topo IIα-DNA condensates form along DNA, working against a DNA tension of up to 1.5 pN, greater than that previously reported for yeast condensin. In addition, this condensation does not require ATP and thus is independent of topo IIα's catalytic activity. We also found that condensation and catalysis can concurrently proceed with minimal mutual interference. Our findings suggest topo IIα may directly participate in chromosome condensation during mitosis.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Curtis Beck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joyce H. Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | | | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Qian J, Lubkowska L, Zhang S, Tan C, Hong Y, Fulbright RM, Inman JT, Kay TM, Jeong J, Gotte D, Berger JM, Kashlev M, Wang MD. Chromatin Buffers Torsional Stress During Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618270. [PMID: 39464147 PMCID: PMC11507789 DOI: 10.1101/2024.10.15.618270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Transcription through chromatin under torsion represents a fundamental problem in biology. Pol II must overcome nucleosome obstacles and, because of the DNA helical structure, must also rotate relative to the DNA, generating torsional stress. However, there is a limited understanding of how Pol II transcribes through nucleosomes while supercoiling DNA. In this work, we developed methods to visualize Pol II rotation of DNA during transcription and determine how torsion slows down the transcription rate. We found that Pol II stalls at ± 9 pN·nm torque, nearly sufficient to melt DNA. The stalling is due to extensive backtracking, and the presence of TFIIS increases the stall torque to + 13 pN·nm, making Pol II a powerful rotary motor. This increased torsional capacity greatly enhances Pol II's ability to transcribe through a nucleosome. Intriguingly, when Pol II encounters a nucleosome, nucleosome passage becomes more efficient on a chromatin substrate than on a single-nucleosome substrate, demonstrating that chromatin efficiently buffers torsional stress via its torsional mechanical properties. Furthermore, topoisomerase II relaxation of torsional stress significantly enhances transcription, allowing Pol II to elongate through multiple nucleosomes. Our results demonstrate that chromatin greatly reduces torsional stress on transcription, revealing a novel role of chromatin beyond the more conventional view of it being just a roadblock to transcription.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuming Zhang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Taryn M. Kay
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deanna Gotte
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Tullius TW, Isaac RS, Dubocanin D, Ranchalis J, Churchman LS, Stergachis AB. RNA polymerases reshape chromatin architecture and couple transcription on individual fibers. Mol Cell 2024; 84:3209-3222.e5. [PMID: 39191261 PMCID: PMC11500009 DOI: 10.1016/j.molcel.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/02/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.
Collapse
Affiliation(s)
- Thomas W Tullius
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - R Stefan Isaac
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Lin YY, Müller P, Karagianni E, Hepp N, Mueller-Planitz F, Vanderlinden W, Lipfert J. Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms. J Mol Biol 2024; 436:168671. [PMID: 38908785 DOI: 10.1016/j.jmb.2024.168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions. Direct visualization by AFM imaging reveals that H3K36me3 and H4K5/8/12/16ac nucleosomes adopt significantly more open and loose conformations than unmodified nucleosomes. Similarly, magnetic tweezers force spectroscopy shows a reduction in DNA outer turn wrapping and nucleosome-nucleosome interactions for the modified nucleosomes. The results suggest that for H3K36me3 the increased breathing and outer DNA turn unwrapping seen in mononucleosomes propagates to more open conformations in nucleosome arrays. In contrast, the even more open structures of H4K5/8/12/16ac nucleosome arrays do not appear to derive from the dynamics of the constituent mononucleosomes, but are driven by reduced nucleosome-nucleosome interactions, suggesting that stacking interactions can overrule DNA breathing of individual nucleosomes. We anticipate that our methodology will be broadly applicable to reveal the influence of other post-translational modifications and to observe the activity of nucleosome remodelers.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Peter Müller
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Evdoxia Karagianni
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands; School of Physics and Astronomy, University of Edinburg, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
13
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
14
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Kaur U, Muñoz EN, Narlikar GJ. Hexasomal particles: consequence or also consequential? Curr Opin Genet Dev 2024; 85:102163. [PMID: 38412564 PMCID: PMC11893180 DOI: 10.1016/j.gde.2024.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
It is long known that an RNA polymerase transcribing through a nucleosome can generate subnucleosomal particles called hexasomes. These particles lack an H2A-H2B dimer, breaking the symmetry of a nucleosome and revealing new interfaces. Whether hexasomes are simply a consequence of RNA polymerase action or they also have a regulatory impact remains an open question. Recent biochemical and structural studies of RNA polymerases and chromatin remodelers with hexasomes motivated us to revisit this question. Here, we build on previous models to discuss how formation of hexasomes can allow sophisticated regulation of transcription and also significantly impact chromatin folding. We anticipate that further cellular and biochemical analysis of these subnucleosomal particles will uncover additional regulatory roles.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Elise N Muñoz
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Chen Y, Ni P, Fu R, Murphy KJ, Wyeth RC, Bishop CD, Huang X, Li S, Zhan A. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2772. [PMID: 36316814 DOI: 10.1002/eap.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kieran J Murphy
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Cory D Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Tullius TW, Isaac RS, Ranchalis J, Dubocanin D, Churchman LS, Stergachis AB. RNA polymerases reshape chromatin and coordinate transcription on individual fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573133. [PMID: 38187631 PMCID: PMC10769320 DOI: 10.1101/2023.12.22.573133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
During eukaryotic transcription, RNA polymerases must initiate and pause within a crowded, complex environment, surrounded by nucleosomes and other transcriptional activity. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address these limitations, we employed long-read chromatin fiber sequencing (Fiber-seq) to visualize RNA polymerases within their native chromatin context at single-molecule and near single-nucleotide resolution along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of single-molecule RNA Polymerase (Pol) II and III transcription associated footprints, which, in aggregate, mirror bulk short-read sequencing-based measurements of transcription. We show that Pol II pausing destabilizes downstream nucleosomes, with frequently paused genes maintaining a short-term memory of these destabilized nucleosomes. Furthermore, we demonstrate pervasive direct coordination and anti-coordination between nearby Pol II genes, Pol III genes, transcribed enhancers, and insulator elements. This coordination is largely limited to spatially organized elements within 5 kb of each other, implicating short-range chromatin environments as a predominant determinant of coordinated polymerase initiation. Overall, transcription initiation reshapes surrounding nucleosome architecture and coordinates nearby transcriptional machinery along individual chromatin fibers.
Collapse
Affiliation(s)
- Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Akatsu M, Ehara H, Kujirai T, Fujita R, Ito T, Osumi K, Ogasawara M, Takizawa Y, Sekine SI, Kurumizaka H. Cryo-EM structures of RNA polymerase II-nucleosome complexes rewrapping transcribed DNA. J Biol Chem 2023; 299:105477. [PMID: 37981206 PMCID: PMC10703601 DOI: 10.1016/j.jbc.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023] Open
Abstract
RNA polymerase II (RNAPII) transcribes DNA wrapped in the nucleosome by stepwise pausing, especially at nucleosomal superhelical locations -5 and -1 [SHL(-5) and SHL(-1), respectively]. In the present study, we performed cryo-electron microscopy analyses of RNAPII-nucleosome complexes paused at a major nucleosomal pausing site, SHL(-1). We determined two previously undetected structures, in which the transcribed DNA behind RNAPII is sharply kinked at the RNAPII exit tunnel and rewrapped around the nucleosomal histones in front of RNAPII by DNA looping. This DNA kink shifts the DNA orientation toward the nucleosome, and the transcribed DNA region interacts with basic amino acid residues of histones H2A, H2B, and H3 exposed by the RNAPII-mediated nucleosomal DNA peeling. The DNA loop structure was not observed in the presence of the transcription elongation factors Spt4/5 and Elf1. These RNAPII-nucleosome structures provide important information for understanding the functional relevance of DNA looping during transcription elongation in the nucleosome.
Collapse
Affiliation(s)
- Munetaka Akatsu
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan; Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomoko Ito
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ken Osumi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
| |
Collapse
|
19
|
Robert F, Jeronimo C. Transcription-coupled nucleosome assembly. Trends Biochem Sci 2023; 48:978-992. [PMID: 37657993 DOI: 10.1016/j.tibs.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Eukaryotic transcription occurs on chromatin, where RNA polymerase II encounters nucleosomes during elongation. These nucleosomes must unravel for the DNA to enter the active site. However, in most transcribed genes, nucleosomes remain intact due to transcription-coupled chromatin assembly mechanisms. These mechanisms primarily involve the local reassembly of displaced nucleosomes to prevent (epi)genomic instability and the emergence of cryptic transcription. As a fail-safe mechanism, cells can assemble nucleosomes de novo, particularly in highly transcribed genes, but this may result in the loss of epigenetic information. This review examines transcription-coupled chromatin assembly, with an emphasis on studies in yeast and recent structural studies. These studies shed light on how elongation factors and histone chaperones coordinate to enable nucleosome recycling during transcription.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
20
|
Mondal A, Kolomeisky AB. Role of Nucleosome Sliding in the Protein Target Search for Covered DNA Sites. J Phys Chem Lett 2023; 14:7073-7082. [PMID: 37527481 DOI: 10.1021/acs.jpclett.3c01704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Associations of transcription factors (TFs) with specific sites on DNA initiate major cellular processes. But DNA in eukaryotic cells is covered by nucleosomes which prevent TFs from binding. However, nucleosome structures on DNA are not static and exhibit breathing and sliding. We develop a theoretical framework to investigate the effect of nucleosome sliding on a protein target search. By analysis of a discrete-state stochastic model of nucleosome sliding, search dynamics are explicitly evaluated. It is found that for long sliding lengths the target search dynamics are faster for normal TFs that cannot enter the nucleosomal DNA. But for more realistic short sliding lengths, the so-called pioneer TFs, which can invade nucleosomal DNA, locate specific sites faster. It is also suggested that nucleosome breathing, which is a faster process, has a stronger effect on protein search dynamics than that of nucleosome sliding. Theoretical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway elemental pause state as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542125. [PMID: 37333075 PMCID: PMC10274647 DOI: 10.1101/2023.06.05.542125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | |
Collapse
|
22
|
Kujirai T, Ehara H, Sekine SI, Kurumizaka H. Structural Transition of the Nucleosome during Transcription Elongation. Cells 2023; 12:1388. [PMID: 37408222 DOI: 10.3390/cells12101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
In eukaryotes, genomic DNA is tightly wrapped in chromatin. The nucleosome is a basic unit of chromatin, but acts as a barrier to transcription. To overcome this impediment, the RNA polymerase II elongation complex disassembles the nucleosome during transcription elongation. After the RNA polymerase II passage, the nucleosome is rebuilt by transcription-coupled nucleosome reassembly. Nucleosome disassembly-reassembly processes play a central role in preserving epigenetic information, thus ensuring transcriptional fidelity. The histone chaperone FACT performs key functions in nucleosome disassembly, maintenance, and reassembly during transcription in chromatin. Recent structural studies of transcribing RNA polymerase II complexed with nucleosomes have provided structural insights into transcription elongation on chromatin. Here, we review the structural transitions of the nucleosome during transcription.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
23
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. Effects of Histone H2B Ubiquitylations and H3K79me 3 on Transcription Elongation. ACS Chem Biol 2023; 18:537-548. [PMID: 36857155 PMCID: PMC10023449 DOI: 10.1021/acschembio.2c00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semisynthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
Affiliation(s)
- Mai T. Huynh
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Bhaswati Sengupta
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Wladyslaw A. Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
24
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. The Effects of Histone H2B ubiquitylations and H3K79me 3 on Transcription Elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522859. [PMID: 36712011 PMCID: PMC9881898 DOI: 10.1101/2023.01.05.522859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semi-synthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3 K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA Polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
|
25
|
Zhao XC, Dong HL, Li XL, Yang HY, Chen XF, Dai L, Wu WQ, Tan ZJ, Zhang XH. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res 2022; 50:12344-12354. [PMID: 36477372 PMCID: PMC9757033 DOI: 10.1093/nar/gkac1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
5-Methyl-cytosine (5mC) is one of the most important DNA modifications and plays versatile biological roles. It is well known that 5mC stabilizes DNA duplexes. However, it remains unclear how 5mC affects the kinetics of DNA melting and hybridization. Here, we studied the kinetics of unzipping and rezipping using a 502-bp DNA hairpin by single-molecule magnetic tweezers. Under constant loading rates, 5mC increases the unzipping force but counterintuitively decreases the rezipping force at various salt and temperature conditions. Under constant forces, the non-methylated DNA hops between metastable states during unzipping and rezipping, which implies low energy barriers. Surprisingly, the 5mC DNA can't rezip after fully unzipping unless much lower forces are applied, where it rezips stochastically in a one-step manner, which implies 5mC kinetically hinders DNA hybridization and high energy barriers in DNA hybridization. All-atom molecular dynamics simulations reveal that the 5mC kinetically hinders DNA hybridization due to steric effects rather than electrostatic effects caused by the additional methyl groups of cytosines. Considering the possible high speed of DNA unzipping and zipping during replication and transcription, our findings provide new insights into the biological roles of 5mC.
Collapse
Affiliation(s)
| | | | - Xiao-Lu Li
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hong-Yu Yang
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhi-Jie Tan
- Correspondence may also be addressed to Zhi-Jie Tan. Tel: +86 15827627809; Fax: +86 02768752569;
| | - Xing-Hua Zhang
- To whom correspondence should be addressed. Tel: +86 15827632615; Fax: +86 02768753780;
| |
Collapse
|
26
|
Zuiddam M, Shakiba B, Schiessel H. Multiplexing mechanical and translational cues on genes. Biophys J 2022; 121:4311-4324. [PMID: 36230003 PMCID: PMC9703045 DOI: 10.1016/j.bpj.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
The genetic code gives precise instructions on how to translate codons into amino acids. Due to the degeneracy of the genetic code-18 out of 20 amino acids are encoded for by more than one codon-more information can be stored in a basepair sequence. Indeed, various types of additional information have been discussed in the literature, e.g., the positioning of nucleosomes along eukaryotic genomes and the modulation of the translating efficiency in ribosomes to influence cotranslational protein folding. The purpose of this study is to show that it is indeed possible to carry more than one additional layer of information on top of a gene. In particular, we show how much translation efficiency and nucleosome positioning can be adjusted simultaneously without changing the encoded protein. We achieve this by mapping genes on weighted graphs that contain all synonymous genes, and then finding shortest paths through these graphs. This enables us, for example, to readjust the disrupted translational efficiency profile after a gene has been introduced from one organism (e.g., human) into another (e.g., yeast) without greatly changing the nucleosome landscape intrinsically encoded by the DNA molecule.
Collapse
Affiliation(s)
- Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Bahareh Shakiba
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
27
|
Kor R, Mohammad-Rafiee F. Theoretical study of RNA-polymerase behavior considering the backtracking state. SOFT MATTER 2022; 18:5979-5988. [PMID: 35920142 DOI: 10.1039/d2sm00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dynamical behavior of the RNA polymerase in the transcription process is vital to gene expression. During the transcription process, the 3' end of the transcribed RNA can be dislocated from the active site of the enzyme and as a result, the RNA polymerase goes to the backtracked state. Here, we develop a theoretical model to study the transcription process considering the backtracking state. We aim at describing the behavior of the enzyme in the backtracking state in the presence of an external force, which leads to two possibilities: (i) rescuing from the backtracking state and, (ii) the arresting of the enzyme. We study the probability and the rate of the mentioned processes. In addition, we find that entering the backtracking state behaves like the Brownian ratchet mechanism. This model could shed some light on the modeling of the transcription process and further studies on the energy landscape of the backtracking channel and the gene regulation.
Collapse
Affiliation(s)
- Razieh Kor
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
28
|
Assignment of structural transitions during mechanical unwrapping of nucleosomes and their disassembly products. Proc Natl Acad Sci U S A 2022; 119:e2206513119. [PMID: 35939666 PMCID: PMC9388122 DOI: 10.1073/pnas.2206513119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes, the fundamental structural unit of chromatin, consists of ∼147 DNA base pairs wrapped around a histone protein octamer. To characterize the strength of the nucleosomal barrier and its contribution as a mechanism of control of gene expression, it is essential to determine the forces required to unwrap the DNA from the core particle and the stepwise transitions involved. In this study, we performed combined optical tweezers and single-molecule fluorescence measurements to identify the specific DNA segments unwrapped during the force transitions observed in mechanical stretching of nucleosomes. Furthermore, we characterize the mechanical signatures of subnucleosomal hexasomes and tetrasomes. The characterization performed in this work is essential for the interpretation of ongoing studies of chromatin remodelers, polymerases, and histone chaperones. Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.
Collapse
|
29
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Lu Y, Voros Z, Borjas G, Hendrickson C, Shearwin K, Dunlap D, Finzi L. RNA polymerase efficiently transcribes DNA-scaffolded, cooperative bacteriophage repressor complexes. FEBS Lett 2022; 596:1994-2006. [PMID: 35819073 PMCID: PMC9491066 DOI: 10.1002/1873-3468.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/07/2022]
Abstract
DNA can act as a scaffold for the cooperative binding of protein oligomers. For example, the phage 186 CI repressor forms a wheel of seven dimers wrapped in DNA with specific binding sites, while phage λ CI repressor dimers bind to two well-separated sets of operators, forming a DNA loop. Atomic force microscopy was used to measure transcription elongation by E. coli RNA polymerase through these protein complexes. 186 CI, or λ CI, bound along unlooped DNA negligibly interfered with transcription by RNAP. Wrapped and looped topologies induced by these scaffolded, cooperatively bound repressor oligomers did not form significantly better roadblocks to transcription. Thus, despite binding with high affinity, these repressors are not effective roadblocks to transcription.
Collapse
Affiliation(s)
- Yue Lu
- Physics Department, Emory University, Atlanta, GA, USA
| | | | | | | | - Keith Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Filipovski M, Soffers JHM, Vos SM, Farnung L. Structural basis of nucleosome retention during transcription elongation. Science 2022; 376:1313-1316. [PMID: 35709268 DOI: 10.1126/science.abo3851] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In eukaryotes, RNA polymerase (Pol) II transcribes chromatin and must move past nucleosomes, often resulting in nucleosome displacement. How Pol II unwraps the DNA from nucleosomes to allow transcription and how DNA rewraps to retain nucleosomes has been unclear. Here, we report the 3.0-angstrom cryo-electron microscopy structure of a mammalian Pol II-DSIF-SPT6-PAF1c-TFIIS-nucleosome complex stalled 54 base pairs within the nucleosome. The structure provides a mechanistic basis for nucleosome retention during transcription elongation where upstream DNA emerging from the Pol II cleft has rewrapped the proximal side of the nucleosome. The structure uncovers a direct role for Pol II and transcription elongation factors in nucleosome retention and explains how nucleosomes are retained to prevent the disruption of chromatin structure across actively transcribed genes.
Collapse
Affiliation(s)
- Martin Filipovski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jelly H M Soffers
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
34
|
Couvillion M, Harlen KM, Lachance KC, Trotta KL, Smith E, Brion C, Smalec BM, Churchman LS. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 2022; 11:e78944. [PMID: 35575476 PMCID: PMC9154744 DOI: 10.7554/elife.78944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.
Collapse
Affiliation(s)
- Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kevin M Harlen
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kate C Lachance
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kristine L Trotta
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Erin Smith
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christian Brion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Brendan M Smalec
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
35
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
36
|
Lu VM, Luther EM, Eichberg DG, Morell AA, Shah AH, Komotar RJ, Ivan ME. The emerging relevance of H3K27 trimethylation loss in meningioma: A systematic review of recurrence and overall survival with meta-analysis. World Neurosurg 2022; 163:87-95.e1. [DOI: 10.1016/j.wneu.2022.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
|
37
|
Huertas J, Woods EJ, Collepardo-Guevara R. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 2022; 75:102067. [DOI: 10.1016/j.ceb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
38
|
Scherr MJ, Wahab SA, Remus D, Duderstadt KE. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep 2022; 38:110531. [PMID: 35320708 PMCID: PMC8961423 DOI: 10.1016/j.celrep.2022.110531] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fundamental to our understanding of chromosome duplication is the idea that replication origins function both as sites where MCM helicases are loaded during the G1 phase and where synthesis begins in S phase. However, the temporal delay between phases exposes the replisome assembly pathway to potential disruption prior to replication. Using multicolor, single-molecule imaging, we systematically study the consequences of encounters between actively transcribing RNA polymerases (RNAPs) and replication initiation intermediates in the context of chromatin. We demonstrate that RNAP can push multiple licensed MCM helicases over long distances with nucleosomes ejected or displaced. Unexpectedly, we observe that MCM helicase loading intermediates also can be repositioned by RNAP and continue origin licensing after encounters with RNAP, providing a web of alternative origin specification pathways. Taken together, our observations reveal a surprising mobility in origin-licensing factors that confers resistance to the complex challenges posed by diverse obstacles encountered on chromosomes.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Syafiq Abd Wahab
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Dirk Remus
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
39
|
Konrad SF, Vanderlinden W, Lipfert J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. Biophys J 2022; 121:841-851. [PMID: 35065917 PMCID: PMC8943691 DOI: 10.1016/j.bpj.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F. Konrad
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany.
| |
Collapse
|
40
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
41
|
Mines RC, Lipniacki T, Shen X. Slow nucleosome dynamics set the transcriptional speed limit and induce RNA polymerase II traffic jams and bursts. PLoS Comput Biol 2022; 18:e1009811. [PMID: 35143483 PMCID: PMC8865691 DOI: 10.1371/journal.pcbi.1009811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/23/2022] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
Nucleosomes are recognized as key regulators of transcription. However, the relationship between slow nucleosome unwrapping dynamics and bulk transcriptional properties has not been thoroughly explored. Here, an agent-based model that we call the dynamic defect Totally Asymmetric Simple Exclusion Process (ddTASEP) was constructed to investigate the effects of nucleosome-induced pausing on transcriptional dynamics. Pausing due to slow nucleosome dynamics induced RNAPII convoy formation, which would cooperatively prevent nucleosome rebinding leading to bursts of transcription. The mean first passage time (MFPT) and the variance of first passage time (VFPT) were analytically expressed in terms of the nucleosome rate constants, allowing for the direct quantification of the effects of nucleosome-induced pausing on pioneering polymerase dynamics. The mean first passage elongation rate γ(hc, ho) is inversely proportional to the MFPT and can be considered to be a new axis of the ddTASEP phase diagram, orthogonal to the classical αβ-plane (where α and β are the initiation and termination rates). Subsequently, we showed that, for β = 1, there is a novel jamming transition in the αγ-plane that separates the ddTASEP dynamics into initiation-limited and nucleosome pausing-limited regions. We propose analytical estimates for the RNAPII density ρ, average elongation rate v, and transcription flux J and verified them numerically. We demonstrate that the intra-burst RNAPII waiting times tin follow the time-headway distribution of a max flux TASEP and that the average inter-burst interval tIBI¯ correlates with the index of dispersion De. In the limit γ→0, the average burst size reaches a maximum set by the closing rate hc. When α≪1, the burst sizes are geometrically distributed, allowing large bursts even while the average burst size NB¯ is small. Last, preliminary results on the relative effects of static and dynamic defects are presented to show that dynamic defects can induce equal or greater pausing than static bottle necks. To perform specific functions, cells must express specific genes by copying the information in DNA into RNA via transcription. Structural proteins called nucleosomes are spaced every 200 base pairs along the length of a strand of DNA and play a crucial function in the regulation of gene activity by tightly binding DNA strands and condensing them into heterochromatin, preventing transcription by RNA polymerase II (RNAPII). Even on active genes where nucleosomes are loosely attached to DNA strands, the wrapping and unwrapping of nucleosomes pause transcription as RNAPII passes by. Previous mathematical models of transcription have compared this biological process to traffic on a one lane highway without obstructions. In contrast, our proposed model simulates transcription like traffic in a grid system where nucleosomes can be thought of as pedestrians or other vehicles crossing the road at regularly spaced intersections. Just as side street traffic and pedestrian crossings can cause cars to form convoys and cause jams limiting the max speed in an area, nucleosomes can cause RNAPII to form convoys that lead to bursts of mRNA production and limit the average polymerase flux through the gene.
Collapse
Affiliation(s)
- Robert C. Mines
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (TL); (XS)
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Woo Center for Big Data and Precision Health, Duke University, Durham, North Carolina, United States of America
- * E-mail: (TL); (XS)
| |
Collapse
|
42
|
Zuo X, Chou T. Density- and elongation speed-dependent error correction in RNA polymerization. Phys Biol 2021; 19. [PMID: 34937012 DOI: 10.1088/1478-3975/ac45e2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNA polymerase, which usually happens when the polymerase tries to incorporate a noncognate or "mismatched" nucleotide triphosphate. Previous models have made simplifying assumptions such as neglecting the trailing polymerase behind the backtracking polymerase or assuming that the trailing polymerase is stationary. We derive exact analytic solutions of a stochastic model that includes locally interacting RNAPs by explicitly showing how a trailing RNAP influences the probability that an error is corrected or incorporated by the leading backtracking RNAP. We also provide two related methods for computing the mean times for error correction and incorporation given an initial local RNAP configuration. Using these results, we propose an effective interacting-RNAP lattice that can be readily simulated.
Collapse
Affiliation(s)
- Xinzhe Zuo
- Department of Mathematics, University of California - Los Angeles, Los Angeles, CA 90095-1555, USA, Los Angeles, California, 90095, UNITED STATES
| | - Tom Chou
- Department of Mathematics, University of California - Los Angeles, Los Angeles, CA 90095-1555, USA, Los Angeles, California, 90095, UNITED STATES
| |
Collapse
|
43
|
Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, Horejsi M, De Rijck J, Debyser Z, Adelman K, Hodges HC, Veverka V. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 2021; 374:1113-1121. [PMID: 34822292 PMCID: PMC8943916 DOI: 10.1126/science.abe2913] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.
Collapse
Affiliation(s)
- Katerina Cermakova
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric A. Smith
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fabry
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Marcela Madlikova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Horejsi
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Karen Adelman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - H. Courtney Hodges
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX,
USA
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles
University, Prague, Czech Republic
| |
Collapse
|
44
|
Sahin I, George A, Seyhan AA. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers. Int J Mol Sci 2021; 22:11790. [PMID: 34769221 PMCID: PMC8583749 DOI: 10.3390/ijms222111790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Recent comprehensive genomic studies including single-cell RNA sequencing and characterization have revealed multiple processes by which protein-coding and noncoding RNA processing are dysregulated in many cancers. More specifically, the abnormal regulation of mRNA and precursor mRNA (pre-mRNA) processing, which includes the removal of introns by splicing, is frequently altered in tumors, producing multiple different isoforms and diversifying protein expression. These alterations in RNA processing result in numerous cancer-specific mRNAs and pathogenically spliced events that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumor suppressor genes. Abnormally spliced pre-mRNAs are also associated with resistance to cancer treatment, and certain cancers are highly sensitive to the pharmacological inhibition of splicing. The discovery of these alterations in RNA processing has not only provided new insights into cancer pathogenesis but identified novel therapeutic vulnerabilities and therapeutic opportunities in targeting these aberrations in various ways (e.g., small molecules, splice-switching oligonucleotides (SSOs), and protein therapies) to modulate alternative RNA splicing or other RNA processing and modification mechanisms. Some of these strategies are currently progressing toward clinical development or are already in clinical trials. Additionally, tumor-specific neoantigens produced from these pathogenically spliced events and other abnormal RNA processes provide a potentially extensive source of tumor-specific therapeutic antigens (TAs) for targeted cancer immunotherapy. Moreover, a better understanding of the molecular mechanisms associated with aberrant RNA processes and the biological impact they play might provide insights into cancer initiation, progression, and metastasis. Our goal is to highlight key alternative RNA splicing and processing mechanisms and their roles in cancer pathophysiology as well as emerging therapeutic alternative splicing targets in cancer, particularly in gastrointestinal (GI) malignancies.
Collapse
Affiliation(s)
- Ilyas Sahin
- Division of Hematology Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL 32610, USA;
| | - Andrew George
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
45
|
Zhang J, Cavallaro M, Hebenstreit D. Timing RNA polymerase pausing with TV-PRO-seq. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723238 PMCID: PMC8547241 DOI: 10.1016/j.crmeth.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Transcription of many genes in metazoans is subject to polymerase pausing, which is the transient stop of transcriptionally engaged polymerases. This is known to mainly occur in promoter-proximal regions but it is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking. We present here the time-variant precision nuclear run-on and sequencing (TV-PRO-seq) assay, an extension of the standard PRO-seq that allows us to estimate genome-wide pausing times at single-base resolution. Its application to human cells demonstrates that, proximal to promoters, polymerases pause more frequently but for shorter times than in other genomic regions. Comparison with single-cell gene expression data reveals that the polymerase pausing times are longer in highly expressed genes, while transcriptionally noisier genes have higher pausing frequencies and slightly longer pausing times. Analyses of histone modifications suggest that the marker H3K36me3 is related to the polymerase pausing.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
| | - Massimo Cavallaro
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, the University of Warwick, CV4 7AL Coventry, UK
| | - Daniel Hebenstreit
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
| |
Collapse
|
46
|
Abstract
This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins - illustrating the unique versatility and potential of the NEOtrap.
Collapse
Affiliation(s)
- Sonja Schmid
- Nanodynamics Lab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
47
|
Yan H, Surovtsev I, Williams JF, Bailey MLP, King MC, Mochrie SGJ. Extrusion of chromatin loops by a composite loop extrusion factor. Phys Rev E 2021; 104:024414. [PMID: 34525654 DOI: 10.1103/physreve.104.024414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Chromatin loop extrusion by structural maintenance of chromosome (SMC) complexes is thought to underlie intermediate-scale chromatin organization inside cells. Motivated by a number of experiments suggesting that nucleosomes may block loop extrusion by SMCs, such as cohesin and condensin complexes, we introduce and characterize theoretically a composite loop extrusion factor (composite LEF) model. In addition to an SMC complex that creates a chromatin loop by encircling two threads of DNA, this model includes a remodeling complex that relocates or removes nucleosomes as it progresses along the chromatin, and nucleosomes that block SMC translocation along the DNA. Loop extrusion is enabled by SMC motion along nucleosome-free DNA, created in the wake of the remodeling complex, while nucleosome rebinding behind the SMC acts as a ratchet, holding the SMC close to the remodeling complex. We show that, for a wide range of parameter values, this collection of factors constitutes a composite LEF that extrudes loops with a velocity, comparable to the velocity of remodeling complex translocation on chromatin in the absence of SMC, and much faster than loop extrusion by an isolated SMC that is blocked by nucleosomes.
Collapse
Affiliation(s)
- Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Mary Lou P Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, New Haven, Connecticut 06511, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
48
|
Fang K, Li T, Huang Y, Jin VX. NucHMM: a method for quantitative modeling of nucleosome organization identifying functional nucleosome states distinctly associated with splicing potentiality. Genome Biol 2021; 22:250. [PMID: 34446075 PMCID: PMC8390234 DOI: 10.1186/s13059-021-02465-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
We develop a novel computational method, NucHMM, to identify functional nucleosome states associated with cell type-specific combinatorial histone marks and nucleosome organization features such as phasing, spacing and positioning. We test it on publicly available MNase-seq and ChIP-seq data in MCF7, H1, and IMR90 cells and identify 11 distinct functional nucleosome states. We demonstrate these nucleosome states are distinctly associated with the splicing potentiality of skipping exons. This advances our understanding of the chromatin function at the nucleosome level and offers insights into the interplay between nucleosome organization and splicing processes.
Collapse
Affiliation(s)
- Kun Fang
- Department of Molecular Medicine, UTHSA-UTSA Joint Biomedical Engineering Program, San Antonio, TX, 78229, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yufei Huang
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
49
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
50
|
Nagae F, Brandani GB, Takada S, Terakawa T. The lane-switch mechanism for nucleosome repositioning by DNA translocase. Nucleic Acids Res 2021; 49:9066-9076. [PMID: 34365508 PMCID: PMC8450081 DOI: 10.1093/nar/gkab664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome. However, the molecular mechanism of the downstream repositioning remains unclear. In this study, we identified the lane-switch mechanism for downstream repositioning with molecular dynamics simulations and validated it with restriction enzyme digestion assays and deep sequencing assays. In this mechanism, after a translocase unwraps nucleosomal DNA up to the site proximal to the dyad, the remaining wrapped DNA switches its binding lane to that vacated by the unwrapping, and the downstream DNA rewraps, completing downstream repositioning. This mechanism may have broad implications for transcription through nucleosomes, histone recycling, and nucleosome remodeling.
Collapse
Affiliation(s)
- Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|