1
|
Sönmez Ö, Holstein E, Puschmann S, Schmitt T, Witt K, Thiel CM. The impact of transcutaneous vagus nerve stimulation on anterior cingulate cortex activity in a cognitive control task. Psychophysiology 2025; 62:e14739. [PMID: 39780300 PMCID: PMC11711293 DOI: 10.1111/psyp.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner. The tasks were executed using a randomized within-subject design, with participants undergoing auricular tVNS and sham stimulation in separate sessions. tVNS significantly changed performance in the simple control task reflected in a greater propensity to respond. Furthermore, we observed a significant increase in neural activity in the anterior cingulate cortex during the simple cognitive control task under tVNS. Functional connectivity analyses revealed positive coupling between neural activity in the locus coeruleus and anterior cingulate cortex, however, this was not modulated by tVNS. The findings suggest that non-invasive stimulation of the vagus nerve can modulate neural activity in the anterior cingulate cortex. While these neural effects suggest an impact of tVNS in a key region involved in conflict monitoring and cognitive control, the behavioral effects are more indicative of a shift in response bias rather than enhanced cognitive control.
Collapse
Affiliation(s)
- Özde Sönmez
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Department of PsychiatryUniversity Medical Center GroningenGroningenThe Netherlands
| | - Elfriede Holstein
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- DIPF | Leibniz Institute for Research and Information in EducationFrankfurt am MainGermany
| | - Sebastian Puschmann
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Tina Schmitt
- Neuroimaging Unit, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| | - Christiane M. Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
2
|
Luckey AM, McLeod LS, Huang Y, Mohan A, Vanneste S. Making memories last using the peripheral effect of direct current stimulation. eLife 2023; 12:e75586. [PMID: 37204308 PMCID: PMC10241520 DOI: 10.7554/elife.75586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Most memories that are formed are forgotten, while others are retained longer and are subject to memory stabilization. We show that non-invasive transcutaneous electrical stimulation of the greater occipital nerve (NITESGON) using direct current during learning elicited a long-term memory effect. However, it did not trigger an immediate effect on learning. A neurobiological model of long-term memory proposes a mechanism by which memories that are initially unstable can be strengthened through subsequent novel experiences. In a series of studies, we demonstrate NITESGON's capability to boost the retention of memories when applied shortly before, during, or shortly after the time of learning by enhancing memory consolidation via activation and communication in and between the locus coeruleus pathway and hippocampus by plausibly modulating dopaminergic input. These findings may have a significant impact for neurocognitive disorders that inhibit memory consolidation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Alison M Luckey
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Lauren S McLeod
- School of Medicine, Texas Tech School of MedicineLubbockUnited States
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Mohan
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Sven Vanneste
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| |
Collapse
|
3
|
Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci 2022; 26:38-52. [PMID: 34799252 PMCID: PMC8678372 DOI: 10.1016/j.tics.2021.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
During moments involving selective attention, the thalamus orchestrates the preferential processing of prioritized information by coordinating rhythmic neural activity within a distributed frontoparietal network. The timed release of neuromodulators from subcortical structures dynamically sculpts neural synchronization in thalamocortical networks to meet current attentional demands. In particular, noradrenaline modulates the balance of cortical excitation and inhibition, as reflected by thalamocortical alpha synchronization (~8-12 Hz). These neuromodulatory adjustments facilitate the selective processing of prioritized information. Thus, by disrupting effective rhythmic coordination in attention networks, age-related locus coeruleus (LC) degeneration can impair higher levels of neural processing. In sum, findings across different levels of analysis and modalities shed light on how the noradrenergic modulation of neural synchronization helps to shape selective attention.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
4
|
Noradrenergic Responsiveness Supports Selective Attention across the Adult Lifespan. J Neurosci 2020; 40:4372-4390. [PMID: 32317388 DOI: 10.1523/jneurosci.0398-19.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Selectively attending to relevant information while blocking out distractors is crucial for goal-directed behavior, yet with advancing age, deficits emerge in attentional selectivity. Decrements in attention have been associated with altered noradrenergic activity in animals. However, research linking noradrenergic functioning to attention in aging humans is scarce, likely reflecting long-standing methodological challenges in noninvasive assessments. We studied whether age-related differences in the noradrenergic system predict differences in attention. We measured pupil dilation, a noninvasive marker of arousal-related norepinephrine (NE) release, while concurrently recording the EEG of male younger (N = 39; 25.2 ± 3.2 years) and older adults (N = 38; 70.6 ± 2.7 years). Arousal was modulated on a trial-by-trial basis using fear-conditioned (CS+) stimuli. During conditioning, pupil and EEG markers related to heightened arousal were identified. Afterward, in a dichotic listening task, participants were cued to direct attention to either the left or right ear while highly similar syllable pairs were presented simultaneously to both ears. During the dichotic listening task, presentation of fear-conditioned stimuli reinstated the acquired arousal response, as reflected in pupil and EEG α-β band responses. Critically, pupil dilation to CS+ was correlated with stronger EEG α-β desynchronization, suggesting a common dependence on NE release. On a behavioral level, stronger arousal reactions were associated with better attention. In particular, structural equation modeling revealed that the responsiveness of the NE system is associated with attention on a latent construct level, measured by several indicator tasks. Overall, our results suggest that the responsiveness of the NE system supports attention across the lifespan.SIGNIFICANCE STATEMENT In old age, the ability to selectively process relevant aspects of the environment fades. Animal research suggests that the neuromodulator norepinephrine helps to maintain selective attention. We tested younger and older adults across a variety of attention tasks. In addition, we used arousing stimuli to experimentally activate participants' noradrenergic system while recording pupillometry and EEG to infer its functional capacity. Older adults showed compromised attention and reduced noradrenergic responsiveness as indicated by interrelated pupil and EEG markers. Crucially, in both age groups, a more responsive noradrenergic system was strongly associated with attention. Our findings link animal and human studies on the neural underpinning of attention in aging and underscore the importance of the noradrenergic system in late-life cognition.
Collapse
|
5
|
Tummeltshammer K, Feldman ECH, Amso D. Using pupil dilation, eye-blink rate, and the value of mother to investigate reward learning mechanisms in infancy. Dev Cogn Neurosci 2018; 36:100608. [PMID: 30581124 PMCID: PMC6698145 DOI: 10.1016/j.dcn.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
The brain is adapted to learn from interactions with the environment that predict or enable the procurement of rewards (Schultz, 2010). For infants, the main caregiver (often the mother) is most associated with primary biological rewards such as food and warmth, as well as the most likely provider of emotional and social rewards such as comfort and responsiveness. In this study we capitalize on the reward value of mother to examine reward learning mechanisms in infancy using multiple eye-tracking measures. Converging lines of research have demonstrated links between reward-related striatal dopamine activity and measurable changes in spontaneous eye-blink rate (EBR) and pupil dilation (Eckstein et al., 2017). We presented 7-month-old infants with video stimuli that parametrically increased in social-emotional value (male stranger, female stranger, mother) or in visual attention value (static image, slowed silent cartoon, dynamic cartoon). After establishing infants’ baseline responses to these stimuli, we paired the videos with arbitrary shape cues in an associative learning task. Infants showed superior learning from their own mother’s video and a heightened anticipatory arousal response to the mother-associated cue following learning. Both learning measures were predicted by infants’ baseline EBR to their mother’s video, providing the first evidence of reward learning and transfer in human infants.
Collapse
Affiliation(s)
- Kristen Tummeltshammer
- Department of Cognitive, Linguistic & Psychological, Brown University Sciences, Box 1821, 02912, Providence, RI, United States.
| | - Estée C H Feldman
- Department of Cognitive, Linguistic & Psychological, Brown University Sciences, Box 1821, 02912, Providence, RI, United States
| | - Dima Amso
- Department of Cognitive, Linguistic & Psychological, Brown University Sciences, Box 1821, 02912, Providence, RI, United States
| |
Collapse
|
6
|
Locus Coeruleus Activity Strengthens Prioritized Memories Under Arousal. J Neurosci 2018; 38:1558-1574. [PMID: 29301874 DOI: 10.1523/jneurosci.2097-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023] Open
Abstract
Recent models posit that bursts of locus ceruleus (LC) activity amplify neural gain such that limited attention and encoding resources focus even more on prioritized mental representations under arousal. Here, we tested this hypothesis in human males and females using fMRI, neuromelanin MRI, and pupil dilation, a biomarker of arousal and LC activity. During scanning, participants performed a monetary incentive encoding task in which threat of punishment motivated them to prioritize encoding of scene images over superimposed objects. Threat of punishment elicited arousal and selectively enhanced memory for goal-relevant scenes. Furthermore, trial-level pupil dilations predicted better scene memory under threat, but were not related to object memory outcomes. fMRI analyses revealed that greater threat-evoked pupil dilations were positively associated with greater scene encoding activity in LC and parahippocampal cortex, a region specialized to process scene information. Across participants, this pattern of LC engagement for goal-relevant encoding was correlated with neuromelanin signal intensity, providing the first evidence that LC structure relates to its activation pattern during cognitive processing. Threat also reduced dynamic functional connectivity between high-priority (parahippocampal place area) and lower-priority (lateral occipital cortex) category-selective visual cortex in ways that predicted increased memory selectivity. Together, these findings support the idea that, under arousal, LC activity selectively strengthens prioritized memory representations by modulating local and functional network-level patterns of information processing.SIGNIFICANCE STATEMENT Adaptive behavior relies on the ability to select and store important information amid distraction. Prioritizing encoding of task-relevant inputs is especially critical in threatening or arousing situations, when forming these memories is essential for avoiding danger in the future. However, little is known about the arousal mechanisms that support such memory selectivity. Using fMRI, neuromelanin MRI, and pupil measures, we demonstrate that locus ceruleus (LC) activity amplifies neural gain such that limited encoding resources focus even more on prioritized mental representations under arousal. For the first time, we also show that LC structure relates to its involvement in threat-related encoding processes. These results shed new light on the brain mechanisms by which we process important information when it is most needed.
Collapse
|
7
|
Gilam G, Lin T, Fruchter E, Hendler T. Neural indicators of interpersonal anger as cause and consequence of combat training stress symptoms. Psychol Med 2017; 47:1561-1572. [PMID: 28052779 DOI: 10.1017/s0033291716003354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Angry outbursts are an important feature of various stress-related disorders, and commonly lead to aggression towards other people. Findings regarding interpersonal anger have linked the ventromedial prefrontal cortex (vmPFC) to anger regulation and the locus coeruleus (LC) to aggression. Both regions were previously associated with traumatic and chronic stress symptoms, yet it is unclear if their functionality represents a consequence of, or possibly also a cause for, stress symptoms. Here we investigated the relationship between the neural trajectory of these indicators of anger and the development and manifestation of stress symptoms. METHOD A total of 46 males (29 soldiers, 17 civilians) participated in a prospective functional magnetic resonance imaging experiment in which they played a modified interpersonal anger-provoking Ultimatum Game (UG) at two-points. Soldiers were tested at the beginning and end of combat training, while civilians were tested at the beginning and end of civil service. We assumed that combat training would induce chronic stress and result in increased stress symptoms. RESULTS Soldiers showed an increase in stress symptoms following combat training while civilians showed no such change following civil service. All participants were angered by the modified UG irrespective of time point. Higher post-combat training stress symptoms were associated with lower pre-combat training vmPFC activation and with higher activation increase in the LC between pre- and post-combat training. CONCLUSIONS Results suggest that during anger-provoking social interactions, flawed vmPFC functionality may serve as a causal risk factor for the development of stress symptoms, and heightened reactivity of the LC possibly reflects a consequence of stress-inducing combat training. These findings provide potential neural targets for therapeutic intervention and inoculation for stress-related psychopathological manifestations of anger.
Collapse
Affiliation(s)
- G Gilam
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| | - T Lin
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| | - E Fruchter
- Division of Mental Health,Israeli Defense Force Medical Corp,Tel Hashomer,Military Mail 02149,Israel
| | - T Hendler
- Tel Aviv Center for Brain Function,Wohl Institute for Advanced Imaging,Tel Aviv Sourasky Medical Center,Weizmann 6,Tel Aviv,64239,Israel
| |
Collapse
|
8
|
Tona KD, Keuken MC, de Rover M, Lakke E, Forstmann BU, Nieuwenhuis S, van Osch MJP. In vivo visualization of the locus coeruleus in humans: quantifying the test-retest reliability. Brain Struct Funct 2017. [PMID: 28647901 PMCID: PMC5686260 DOI: 10.1007/s00429-017-1464-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC) is a brainstem nucleus involved in important cognitive functions. Recent developments in neuroimaging methods and scanning protocols have made it possible to visualize the human LC in vivo by utilizing a T1-weighted turbo spin echo (TSE) scan. Despite its frequent use and its application as a biomarker for tracking the progress of monoaminergic-related neurodegenerative diseases, no study to date has investigated the reproducibility and inter-observer variability of LC identification using this TSE scan sequence. In this paper, we aim to quantify the test-retest reliability of LC imaging by assessing stability of the TSE contrast of the LC across two independent scan sessions and by quantifying the intra- and inter-rater reliability of the TSE scan. Additionally, we created a probabilistic LC atlas which can facilitate the spatial localization of the LC in standardized (MNI) space. Seventeen healthy volunteers participated in two scanning sessions with a mean intersession interval of 2.8 months. We found that for intra-rater reliability the mean Dice coefficient ranged between 0.65 and 0.74, and inter-rater reliability ranged between 0.54 and 0.64, showing moderate reproducibility. The mean LC contrast was 13.9% (SD 3.8) and showed scan-rescan stability (ROI approach: ICC = 0.63; maximum intensity approach: ICC = 0.53). We conclude that localization and segmentation of the LC in vivo are a challenging but reliable enterprise although clinical or longitudinal studies should be carried out carefully.
Collapse
Affiliation(s)
- Klodiana-Daphne Tona
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, FSW, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
| | - Max C Keuken
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, FSW, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Integrative model-based Cognitive neuroscience research unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Mischa de Rover
- Clinical Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Egbert Lakke
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Birte U Forstmann
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, FSW, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Integrative model-based Cognitive neuroscience research unit, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Sander Nieuwenhuis
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, FSW, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Matthias J P van Osch
- Department of Radiology, Leiden University Medical Center, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH. Dynamic modulation of decision biases by brainstem arousal systems. eLife 2017; 6. [PMID: 28383284 PMCID: PMC5409827 DOI: 10.7554/elife.23232] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Decision-makers often arrive at different choices when faced with repeated presentations of the same evidence. Variability of behavior is commonly attributed to noise in the brain's decision-making machinery. We hypothesized that phasic responses of brainstem arousal systems are a significant source of this variability. We tracked pupil responses (a proxy of phasic arousal) during sensory-motor decisions in humans, across different sensory modalities and task protocols. Large pupil responses generally predicted a reduction in decision bias. Using fMRI, we showed that the pupil-linked bias reduction was (i) accompanied by a modulation of choice-encoding pattern signals in parietal and prefrontal cortex and (ii) predicted by phasic, pupil-linked responses of a number of neuromodulatory brainstem centers involved in the control of cortical arousal state, including the noradrenergic locus coeruleus. We conclude that phasic arousal suppresses decision bias on a trial-by-trial basis, thus accounting for a significant component of the variability of choice behavior.
Collapse
Affiliation(s)
- Jan Willem de Gee
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Olympia Colizoli
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels A Kloosterman
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| | - Tomas Knapen
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Tobias H Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Linking Indices of Tonic Alertness: Resting-State Pupil Dilation and Cingulo-Opercular Neural Activity. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-39955-3_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions. Neuroimage 2015; 120:400-11. [DOI: 10.1016/j.neuroimage.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/24/2022] Open
|
12
|
Ex vivo magnetic resonance imaging in South African manganese mine workers. Neurotoxicology 2015; 49:8-14. [PMID: 25912463 DOI: 10.1016/j.neuro.2015.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/14/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Manganese (Mn) exposure is associated with increased T1-weighted magnetic resonance imaging (MRI) signal in the basal ganglia. T1 signal intensity has been correlated with occupational Mn exposure but not with clinical symptomatology or neuropathology. OBJECTIVES This study investigated predictors of ex vivo T1 MRI basal ganglia signal intensity in neuropathologic tissue obtained from deceased South African mine workers. METHODS A 3.0 T MRI was performed on ex vivo brain tissue obtained from 19 Mn mine workers and 10 race- and sex-matched mine workers of other commodities. Basal ganglia regions of interest were identified for each subject with T1-weighted intensity indices generated for each region. In a pathology subset, regional T1 indices were compared to neuronal and glial cell density and tissue metal concentrations. RESULTS Intensity indices were higher in Mn mine workers than non-Mn mine workers for the globus pallidus, caudate, anterior putamen, and posterior putamen with the highest values in subjects with the longest cumulative Mn exposure. Intensity indices were inversely correlated with the neuronal cell density in the caudate (p=0.040) and putamen (p=0.050). Tissue Mn concentrations were similar in Mn and non-Mn mine workers. Tissue iron (Fe) concentration trended lower across all regions in Mn mine workers. CONCLUSIONS Mn mine workers demonstrated elevated basal ganglia T1 indices when compared to non-Mn mine workers. Predictors of ex vivo T1 MRI signal intensity in Mn mine workers include duration of Mn exposure and neuronal density.
Collapse
|
13
|
Murphy PR, O'Connell RG, O'Sullivan M, Robertson IH, Balsters JH. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp 2014; 35:4140-54. [PMID: 24510607 DOI: 10.1002/hbm.22466] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 11/08/2022] Open
Abstract
The locus coeruleus-noradrenergic (LC-NA) neuromodulatory system has been implicated in a broad array of cognitive processes, yet scope for investigating this system's function in humans is currently limited by an absence of reliable non-invasive measures of LC activity. Although pupil diameter has been employed as a proxy measure of LC activity in numerous studies, empirical evidence for a relationship between the two is lacking. In the present study, we sought to rigorously probe the relationship between pupil diameter and BOLD activity localized to the human LC. Simultaneous pupillometry and fMRI revealed a relationship between continuous pupil diameter and BOLD activity in a dorsal pontine cluster overlapping with the LC, as localized via neuromelanin-sensitive structural imaging and an LC atlas. This relationship was present both at rest and during performance of a two-stimulus oddball task, with and without spatial smoothing of the fMRI data, and survived retrospective image correction for physiological noise. Furthermore, the spatial extent of this pupil/LC relationship guided a volume-of-interest analysis in which we provide the first demonstration in humans of a fundamental characteristic of animal LC activity: phasic modulation by oddball stimulus relevance. Taken together, these findings highlight the potential for utilizing pupil diameter to achieve a more comprehensive understanding of the role of the LC-NA system in human cognition.
Collapse
Affiliation(s)
- Peter R Murphy
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
14
|
Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. J Neurosci 2014; 33:19212-22. [PMID: 24305817 DOI: 10.1523/jneurosci.2649-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.
Collapse
|
15
|
Laureiro-Martínez D, Canessa N, Brusoni S, Zollo M, Hare T, Alemanno F, Cappa SF. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task. Front Hum Neurosci 2014; 7:927. [PMID: 24478664 PMCID: PMC3897871 DOI: 10.3389/fnhum.2013.00927] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/19/2013] [Indexed: 11/24/2022] Open
Abstract
An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making.
Collapse
Affiliation(s)
- Daniella Laureiro-Martínez
- Department of Management, Technology, and Economics ETH Zurich, Zurich, Switzerland ; Department of Management and Technology, Bocconi University Milan, Italy
| | - Nicola Canessa
- Center for Cognitive Neuroscience & CERMAC, Vita-Salute San Raffaele University Milan, Italy ; Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Stefano Brusoni
- Department of Management, Technology, and Economics ETH Zurich, Zurich, Switzerland ; KITeS, Department of Management and Technology, Bocconi University Milan, Italy
| | - Maurizio Zollo
- Center for Research in Innovation, Organization and Strategy (CRIOS), Department of Management and Technology, Bocconi University Milan, Italy
| | - Todd Hare
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich Zurich, Switzerland
| | - Federica Alemanno
- Center for Cognitive Neuroscience & CERMAC, Vita-Salute San Raffaele University Milan, Italy ; Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Stefano F Cappa
- Center for Cognitive Neuroscience & CERMAC, Vita-Salute San Raffaele University Milan, Italy ; Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
16
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 2011; 59:2733-42. [PMID: 22037418 DOI: 10.1016/j.neuroimage.2011.10.036] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022] Open
Abstract
Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably, reactivation did not only occur in temporal synchrony with spindle events but was tuned by ongoing variations in spindle amplitude. These learning-related increases in spindle-coupled neocortical activity were topographically specific because reactivation was restricted to the face- and scene-selective visual cortical areas previously activated during pre-sleep learning. Spindle-coupled hippocampal activation was stronger the better the participant had performed at prior learning. These results are in agreement with the notion that sleep spindles orchestrate the reactivation of new hippocampal-neocortical memories during sleep.
Collapse
|