1
|
Trejo‐Meléndez VJ, Ibarra‐Rendón J, Contreras‐Garduño J. The evolution of entomopathogeny in nematodes. Ecol Evol 2024; 14:e10966. [PMID: 38352205 PMCID: PMC10862191 DOI: 10.1002/ece3.10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding how parasites evolved is crucial to understand the host and parasite interaction. The evolution of entomopathogenesis in rhabditid nematodes has traditionally been thought to have occurred twice within the phylum Nematoda: in Steinernematidae and Heterorhabditidae families, which are associated with the entomopathogenic bacteria Xenorhabdus and Photorhabdus, respectively. However, nematodes from other families that are associated with entomopathogenic bacteria have not been considered to meet the criteria for "entomopathogenic nematodes." The evolution of parasitism in nematodes suggests that ecological and evolutionary properties shared by families in the order Rhabditida favor the convergent evolution of the entomopathogenic trait in lineages with diverse lifestyles, such as saprotrophs, phoretic, and necromenic nematodes. For this reason, this paper proposes expanding the term "entomopathogenic nematode" considering the diverse modes of this attribute within Rhabditida. Despite studies are required to test the authenticity of the entomopathogenic trait in the reported species, they are valuable links that represent the early stages of specialized lineages to entomopathogenic lifestyle. An ecological and evolutionary exploration of these nematodes has the potential to deepen our comprehension of the evolution of entomopathogenesis as a convergent trait spanning across the Nematoda.
Collapse
Affiliation(s)
- V. J. Trejo‐Meléndez
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Posgrado en Ciencias Biológicas, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
| | - J. Ibarra‐Rendón
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) – IrapuatoIrapuatoGuanajuatoMexico
| | - J. Contreras‐Garduño
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
2
|
Renahan T, Sommer RJ. Multidimensional competition of nematodes affects plastic traits in a beetle ecosystem. Front Cell Dev Biol 2022; 10:985831. [PMID: 36092706 PMCID: PMC9449363 DOI: 10.3389/fcell.2022.985831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Resource competition has driven the evolution of novel polyphenisms in numerous organisms, enhancing fitness in constantly changing environmental conditions. In natural communities, the myriad interactions among diverse species are difficult to disentangle, but the multidimensional microscopic environment of a decaying insect teeming with bacteria and fighting nematodes provides pliable systems to investigate. Necromenic nematodes of the family Diplogastridae live on beetles worldwide, innocuously waiting for their hosts’ deaths to feast on the blooming bacteria. Often, more than one worm species either affiliates with the insect or joins the microbial meal; thus, competition over limited food ensues, and phenotypic plasticity provides perks for species capable of employing polyphenisms. The recently established system of cockchafer Gymnogaster bupthalma and its occasional co-infestation of Pristionchus mayeri and Acrostichus spp. has revealed that these worms will simultaneously utilize two polyphenisms to thrive in a competitive environment. While both genera maintain plastic capacities in mouth form (strictly bacterial-feeding and omnivorous predation) and developmental pathway (direct and arrested development, dauer), P. mayeri employs both when faced with competition from Acrostichus. Here, we took advantage of the malleable system and added a third competitor, model nematode Pristionchus pacificus. Intriguingly, with a third competitor, P. mayeri is quicker to exit dauer and devour available food, while Acrostichus hides in dauer, waiting for the two Pristionchus species to leave the immediate environment before resuming development. Thus, experimental manipulation of short-lived ecosystems can be used to study the roles of polyphenisms in organismal interactions and their potential significance for evolution.
Collapse
|
3
|
Yim JJ, Bose N, Meyer JM, Sommer RJ, Schroeder FC. Nematode signaling molecules derived from multimodular assembly of primary metabolic building blocks. Org Lett 2015; 17:1648-51. [PMID: 25782998 PMCID: PMC4878434 DOI: 10.1021/acs.orglett.5b00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus, a new class of natural products based on modular assembly of primary-metabolism-derived building blocks control organismal development and behavior. We report identification and biological activities of the first pentamodular metabolite, pasa#9, and the 8-oxoadenine-containing npar#3 from P. pacificus. These structures suggest co-option of nucleoside and tryptophan metabolic pathways for the biosynthesis of endogenous metabolite libraries that transcend the dichotomy between "primary" and "secondary" metabolism.
Collapse
Affiliation(s)
- Joshua J. Yim
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tubingen 72076, Germany
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jan M. Meyer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tubingen 72076, Germany
| | - Ralf J. Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tubingen 72076, Germany
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Penkov S, Ogawa A, Schmidt U, Tate D, Zagoriy V, Boland S, Gruner M, Vorkel D, Verbavatz JM, Sommer RJ, Knölker HJ, Kurzchalia TV. A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nat Chem Biol 2014; 10:281-5. [PMID: 24584102 DOI: 10.1038/nchembio.1460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/13/2014] [Indexed: 11/09/2022]
Abstract
Survival of nematode species depends on how successfully they disperse in the habitat and find a new host. As a new strategy for collective host finding in the nematode Pristionchus pacificus, dauer larvae synthesize an extremely long-chain polyunsaturated wax ester (nematoil) that covers the surface of the animal. The oily coat promotes congregation of up to one thousand individuals into stable 'dauer towers' that can reach a beetle host more easily.
Collapse
Affiliation(s)
- Sider Penkov
- 1] Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. [2]
| | - Akira Ogawa
- 1] Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany. [2] Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe, Japan. [3]
| | - Ulrike Schmidt
- Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Dhananjay Tate
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vyacheslav Zagoriy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Boland
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Margit Gruner
- Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | |
Collapse
|
5
|
microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci U S A 2011; 108:17997-8002. [PMID: 22011579 DOI: 10.1073/pnas.1105982108] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental stresses and nutrition availability critically affect animal development. Numerous animal species across multiple phyla enter developmental arrest for long-term survival in unfavorable environments and resume development upon stress removal. Here we show that compromising overall microRNA (miRNA) functions or mutating certain individual miRNAs impairs the long-term survival of nematodes during starvation-induced L1 diapause. We provide evidence that miRNA miR-71 is not required for the animals' entry into L1 diapause, but plays a critical role in long-term survival by repressing the expression of insulin receptor/PI3K pathway genes and genes acting downstream or in parallel to the pathway. Furthermore, miR-71 plays a prominent role in developmental recovery from L1 diapause partly through repressing the expression of certain heterochronic genes. The presented results indicate that interactions between multiple miRNAs and likely a large number of their mRNA targets in multiple pathways regulate the response to starvation-induced L1 diapause.
Collapse
|
6
|
|
7
|
Ogawa A, Bento G, Bartelmes G, Dieterich C, Sommer RJ. Pristionchus pacificus daf-16 is essential for dauer formation but dispensable for mouth form dimorphism. Development 2011; 138:1281-4. [PMID: 21350011 DOI: 10.1242/dev.058909] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The nematode Pristionchus pacificus shows two forms of phenotypic plasticity: dauer formation and dimorphism of mouth form morphologies. It can therefore serve as a model for studying the evolutionary mechanisms that underlie phenotypic plasticity. Formation of dauer larvae is observed in many other species and constitutes one of the most crucial survival strategies in nematodes, whereas the mouth form dimorphism is an evolutionary novelty observed only in P. pacificus and related nematodes. We have previously shown that the same environmental cues and steroid signaling control both dauer formation and mouth form dimorphism. Here, we examine by mutational analysis and whole-genome sequencing the function of P. pacificus (Ppa) daf-16, which encodes a forkhead transcription factor; in C. elegans, daf-16 is the target of insulin signaling and plays important roles in dauer formation. We found that mutations in Ppa-daf-16 cause strong dauer formation-defective phenotypes, suggesting that Ppa-daf-16 represents one of the evolutionarily conserved regulators of dauer formation. Upon strong dauer induction with lophenol, Ppa-daf-16 individuals formed arrested larvae that partially resemble wild-type dauer larvae, indicating that Ppa-daf-16 is also required for dauer morphogenesis. By contrast, regulation of mouth form dimorphism was unaffected by Ppa-daf-16 mutations and mutant animals responded normally to environmental cues. Our results suggest that mechanisms for dauer formation and mouth form regulation overlap partially, but not completely, and one of two key transcriptional regulators of the dauer regulatory network was either independently co-opted for, or subsequently lost by, the mouth form regulatory network.
Collapse
Affiliation(s)
- Akira Ogawa
- Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Mayer MG, Sommer RJ. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc Biol Sci 2011; 278:2784-90. [PMID: 21307052 DOI: 10.1098/rspb.2010.2760] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation.
Collapse
Affiliation(s)
- Melanie G Mayer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
9
|
Abstract
Bacterial chemotaxis and the signaling networks underlying it provide us with a model system for studying the molecular basis of behavior and information processing. Although chemotaxis is well characterized at both the phenotype and genotype levels in the model organism Escherichia coli, it is not yet possible to predict chemotaxis behavior in diverse bacteria on the basis of their environment or genome sequence. Moreover, we still cannot propose a plausible evolutionary trajectory from minimal systems to present-day chemotaxis networks. The analysis of all sequenced bacterial genomes provides a prediction of their chemotaxis networks and reveals substantial structural diversity. Additionally, it uncovers a set of previously unknown proteins that could be the "missing" link between complex present-day chemotaxis networks and simpler, ancestral systems composed of a few proteins. Further evaluation of these findings with experimental and modeling studies will allow us to distill evolutionary design principles in chemotaxis signaling networks.
Collapse
Affiliation(s)
- Orkun S Soyer
- Systems Biology Program, School of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK.
| |
Collapse
|