1
|
Livengood T, Chin G, Sagdeev R, Mitrofanov I, Boynton W, Evans L, Litvak M, McClanahan T, Sanin A, Starr R, Su J. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND). ICARUS 2015; 255:100-115. [PMID: 28798496 PMCID: PMC5548521 DOI: 10.1016/j.icarus.2015.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.
Collapse
Affiliation(s)
- T.A. Livengood
- CRESST/University of Maryland at Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
| | - G. Chin
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
| | - R.Z. Sagdeev
- Department of Physics, University of Maryland, College Park, MD 20742, United States
| | | | - W.V. Boynton
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, United States
| | - L.G. Evans
- Computer Sciences Corporation, Lanham-Seabrook, MD 20706, United States
| | - M.L. Litvak
- Institute for Space Research, Moscow, Russia
| | - T.P. McClanahan
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
| | - A.B. Sanin
- Institute for Space Research, Moscow, Russia
| | - R.D. Starr
- Department of Physics, Catholic University of America, Washington, DC 20064, United States
| | - J.J. Su
- Department of Physics, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
2
|
Boynton WV, Droege GF, Mitrofanov IG, McClanahan TP, Sanin AB, Litvak ML, Schaffner M, Chin G, Evans LG, Garvin JB, Harshman K, Malakhov A, Milikh G, Sagdeev R, Starr R. High spatial resolution studies of epithermal neutron emission from the lunar poles: Constraints on hydrogen mobility. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Miller RS, Nerurkar G, Lawrence DJ. Enhanced hydrogen at the lunar poles: New insights from the detection of epithermal and fast neutron signatures. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Mitrofanov I, Litvak M, Sanin A, Malakhov A, Golovin D, Boynton W, Droege G, Chin G, Evans L, Harshman K, Fedosov F, Garvin J, Kozyrev A, McClanahan T, Milikh G, Mokrousov M, Starr R, Sagdeev R, Shevchenko V, Shvetsov V, Tret'yakov V, Trombka J, Varenikov A, Vostrukhin A. Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Litvak ML, Mitrofanov IG, Sanin A, Malakhov A, Boynton WV, Chin G, Droege G, Evans LG, Garvin J, Golovin DV, Harshman K, McClanahan TP, Mokrousov MI, Mazarico E, Milikh G, Neumann G, Sagdeev R, Smith DE, Starr R, Zuber MT. Global maps of lunar neutron fluxes from the LEND instrument. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|