1
|
Chuong CM, Wu P, Yu Z, Liang YC, Widelitz RB. Organizational principles of integumentary organs: Maximizing variations for effective adaptation. Dev Biol 2025; 522:171-195. [PMID: 40113027 DOI: 10.1016/j.ydbio.2025.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The integument serves as the interface between an organism and its environment. It primarily comprises ectoderm-derived epithelium and mesenchyme derived from various embryonic sources. These integumentary organs serve as a barrier defining the physiological boundary between the internal and exterior environments and fulfill diverse functions. How does the integument generate such a large diversity? Here, we attempt to decipher the organizational principles. We focus on amniotes and use appendage follicles as the primary examples. The integument begins as a simple planar sheet of coupled epithelial and mesenchymal cells, then becomes more complex through the following patterning processes. 1) De novo Turing periodic patterning process: This process converts the integument into multiple skin appendage units. 2) Adaptive patterning process: Dermal muscle, blood vessels, adipose tissue, and other components are assembled and organized around appendage follicles when present. 3) Cyclic renewal: Skin appendage follicles contain stem cells and their niches, enabling physiological molting and regeneration in the adult animal. 4) Spatial variations: Multiple appendage units allow modulation of shape, size, keratin types, and color patterns of feathers and hairs across the animal's surface. 5) Temporal phenotypic plasticity: Cyclic renewal permits temporal transition of appendage phenotypes, i.e. regulatory patterning or integumentary metamorphosis, throughout an animal's lifetime. The diversities in (4) and (5) can be generated epigenetically within the same animal. Over the evolutionary timescale, different species can modulate the number, size, and distributions of existing ectodermal organs in the context of micro-evolution, allowing effective adaptation to new climates as seen in the variation of hair length among mammals. Novel ectodermal organs can also emerge in the context of macro-evolution, enabling animals to explore new ecological niches, as seen in the emergence of feathers on dinosaurs. These principles demonstrate how multi-scale organ adaption in the amniotes can maximize diverse and flexible integumentary organ phenotypes, producing a vast repertoire for natural selection and thereby providing effective adaptation and evolutionary advantages.
Collapse
Affiliation(s)
- Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
2
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. Curr Biol 2025:S0960-9822(25)00552-4. [PMID: 40378841 DOI: 10.1016/j.cub.2025.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/23/2025] [Indexed: 05/19/2025]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that Sex-linked orange is caused by a 5-kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 (Arhgap36) gene. Single-cell RNA sequencing (RNA-seq) studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but Mc1r and its ability to stimulate cAMP accumulation is intact. Instead, we show that expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKAC); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r. Our findings resolve a longstanding comparative genetic puzzle, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
Affiliation(s)
- Christopher B Kaelin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kelly A McGowan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Joshaya C Trotman
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Donald C Koroma
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Victor A David
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21701, USA
| | | | - Emily C Graff
- Department of Pathobiology and Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Anne Schmidt-Küntzel
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21701, USA; Cheetah Conservation Fund, Otjiwarongo, Namibia
| | - Elena Oancea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Gregory S Barsh
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
3
|
Chen Y, Wang H, Ping X, Solomon AI, Ren Z, Dong X. Two novel SNP variants at ASIP and SNAI2 genes are associated with yellow coat color in rabbits. Anim Genet 2025; 56:e70006. [PMID: 40051060 DOI: 10.1111/age.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Rabbits display a wide range of coat colors, with yellow being a particular phenotype that aids in exploring the molecular mechanisms of coat pigmentation. The Fujian yellow (FJY) rabbit, as China's only indigenous breed with a yellow coat, serves as a valuable genetic resource. Fujian yellow rabbits have predominantly yellow fur, with a diluted white hue on the distal limbs and tail. However, the genetic mechanism underlying yellow coat color remains unclear. To address this, we conducted selection signature analysis to identify candidate genes and potential casual mutations underlying the yellow phenotype in rabbits. Utilizing whole-genome resequencing, a total of 22 486 177 high-quality SNPs were identified from 30 individuals belonging to three Chinese indigenous rabbit breeds featured with yellow or non-yellow phenotype. The results revealed that the ASIP gene on chromosome 4 and the SNAI2 gene on chromosome 3 were under strong selection pressure, both of which play pivotal roles in determining coat color phenotypes. The ASIP gene is involved in melanogenesis across various livestock species, while the SNAI2 gene is linked to hypopigmentation in the distal regions such as the limbs and tail. We further identified two SNP variants, g.23870943C>T in the fourth intron of the ASIP gene, which is closely associated with the yellow phenotype, and g.73725380A>G downstream of the SNAI2 gene, probably contributing to the white shading in Fujian yellow rabbits' limb and tail regions. These variants are key determinants in the development of the yellow coat color in rabbits. These findings advance the understanding of coat color pigmentation in domestic animals.
Collapse
Affiliation(s)
- Yuan Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinxin Ping
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Lagcher E, Lensing K, Bosse M, Fischer K, Camacho G, McManus J, Tensen L. Red, gold, and green: comparative genomics of polymorphic leopards from South Africa. Evolution 2025; 79:442-456. [PMID: 39659233 DOI: 10.1093/evolut/qpae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
An important goal of comparative and functional genomics is to connect genetic polymorphisms to phenotypic variation. Leopards (Panthera pardus) from northern South Africa are particularly diverse, as here a unique color morph occurs, as well as two deeply diverged southern (SA) and central African (CA) mitochondrial clades, stemming from Pleistocene refugia. Here, we present the first whole genomes of a red leopard and a black (captive) leopard, and wildtypes belonging to the CA and SA mitochondrial clades, to evaluate genome-wide diversity, divergence, and high-impact mutations that may relate to their phenotype. In the black leopard, we found long runs of homozygosity (ROHs), low nucleotide diversity across the genome, and a large number of homozygous structural variants, likely resulting from inbreeding to maintain this color morph in captivity. In red leopards, runs of homozygosity were slightly longer compared to wildtype leopards, with potential deleterious mutations relating to its phenotype, including impaired vision. When assessing population structure, we found no divergence between CA and SA leopards and the rest of Africa, whether comparing single nucleotide or structural variants. This illustrates the homogenizing effect of introgression, and highlights that although leopards in northern South Africa may be phenotypically unique, they are not genetically different.
Collapse
Affiliation(s)
- Elina Lagcher
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
| | - Kim Lensing
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
| | - Mirte Bosse
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
- Animal Breeding and Genomics, Amsterdam Institute of Life & Environment (A-Life), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Klaus Fischer
- Department of Biology, Institute for Integrated Natural Sciences, Zoology, University of Koblenz-Landau, Koblenz, Germany
| | - Gerrie Camacho
- Mpumalanga Tourism and Parks Agency, Nelspruit, South Africa
| | - Jeannine McManus
- Research Department Landmark Foundation, Riversdale, South Africa
- Biodiversity and Conservation Biology Department, University of the Western Cape, Bellville, South Africa
| | - Laura Tensen
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Xiong S, Cui D, Yu N, He R, Zhu H, Wei J, Wang M, Duan W, Huang X, Ge L, Guo Y. Exploring the Maintaining Period and the Differentially Expressed Genes between the Yellow and Black Stripes of the Juvenile Stripe in the Offspring of Wild Boar and Duroc. Animals (Basel) 2024; 14:2109. [PMID: 39061571 PMCID: PMC11274008 DOI: 10.3390/ani14142109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coloration is a crucial trait that allows species to adapt and survive in different environments. Wild boars exhibit alternating black (dark) and yellow (light) longitudinal stripes on their back during their infancy (juvenile stripes), and as adults, they transform into uniform wild-type coat color. Aiming to record the procedure of juvenile stripes disappearing, piglets (WD) with juvenile stripes were produced by crossing a wild boar with Duroc sows, and photos of their coat color were taken from 20 d to 220 d. The pigments in the hairs from the black and yellow stripes were determined. Furthermore, the differentially expressed genes between the black and yellow stripes were investigated in 5 WD with the age of 30 d using whole-transcriptome sequencing to explore the genetic mechanism of the juvenile stripes. The juvenile stripes started to disappear at about 70 d, and stripes were not distinguished with the naked eye at about 160 d; that is, the juvenile stripe completely disappeared. A hotspot of a differentially expressing (DE) region was found on chromosome 13, containing/covering 2 of 13 DE genes and 8 of 10 DE lncRNAs in this region. A network among ZIC4, ssc-miR-532-3p, and ENSSSCG00000056225 might regulate the formation of juvenile stripes. Altogether, this study provides new insights into spatiotemporal coat color pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuanmei Guo
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Murphy WJ, Harris AJ. Toward telomere-to-telomere cat genomes for precision medicine and conservation biology. Genome Res 2024; 34:655-664. [PMID: 38849156 PMCID: PMC11216403 DOI: 10.1101/gr.278546.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Genomic data from species of the cat family Felidae promise to stimulate veterinary and human medical advances, and clarify the coherence of genome organization. We describe how interspecies hybrids have been instrumental in the genetic analysis of cats, from the first genetic maps to propelling cat genomes toward the T2T standard set by the human genome project. Genotype-to-phenotype mapping in cat models has revealed dozens of health-related genetic variants, the molecular basis for mammalian pigmentation and patterning, and species-specific adaptations. Improved genomic surveillance of natural and captive populations across the cat family tree will increase our understanding of the genetic architecture of traits, population dynamics, and guide a future of genome-enabled biodiversity conservation.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA;
- Department of Biology, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Andrew J Harris
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
7
|
Ramos R, Swedlund B, Ganesan AK, Morsut L, Maini PK, Monuki ES, Lander AD, Chuong CM, Plikus MV. Parsing patterns: Emerging roles of tissue self-organization in health and disease. Cell 2024; 187:3165-3186. [PMID: 38906093 PMCID: PMC11299420 DOI: 10.1016/j.cell.2024.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Tensen L, Fischer K. Heterozygosity is low where rare color variants in wild carnivores prevail. Ecol Evol 2024; 14:e10881. [PMID: 38327687 PMCID: PMC10847885 DOI: 10.1002/ece3.10881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024] Open
Abstract
Coat color and pattern are a distinguished feature in mammalian carnivores, shaped by climatic cycles and habitat type. It can be expressed in various ways, such as gradients, polymorphisms, and rare color variants. Although natural selection explains much of the phenotypic variation found in the wild, genetic drift and heterozygote deficiency, as prominent in small and fragmented populations, may also affect phenotypic variability through the fixation of recessive alleles. The aim of this study was to test whether rare color variants in the wild could relate to a deficiency of heterozygotes, resulting from habitat fragmentation and small population size. We present an overview of all rare color variants in the order Carnivora, and compiled demographic and genetic data of the populations where they did and did not occur, to test for significant correlations. We also tested how phylogeny and body weight influenced the presence of color variants with phylogenetic generalized linear mixed models (PGLMMs). We found 40 color-variable species and 59 rare color variants. In 17 variable phenotypic populations for which genetic diversity was available, the average A R was 4.18, H O = 0.59, and H E = 0.66, and F IS = 0.086. We found that variable populations displayed a significant reduction in heterozygosity and allelic richness compared to non-variable populations across species. We also found a significant negative correlation between population size and inbreeding coefficients. Therefore, it is possible that small effective size had phenotypic consequences on the extant populations. The high frequency of the rare color variants (averaging 20%) also implies that genetic drift is locally overruling natural selection in small effective populations. As such, rare color variants could be added to the list of phenotypic consequences of inbreeding in the wild.
Collapse
Affiliation(s)
- Laura Tensen
- Zoology, Institute for Integrated Natural SciencesKoblenz UniversityKoblenzGermany
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
| | - Klaus Fischer
- Zoology, Institute for Integrated Natural SciencesKoblenz UniversityKoblenzGermany
| |
Collapse
|
9
|
Johnson MR, Li S, Guerrero-Juarez CF, Miller P, Brack BJ, Mereby SA, Moreno JA, Feigin CY, Gaska J, Rivera-Perez JA, Nie Q, Ploss A, Shvartsman SY, Mallarino R. A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns. Nat Ecol Evol 2023; 7:2143-2159. [PMID: 37813945 PMCID: PMC10839778 DOI: 10.1038/s41559-023-02213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction-diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.
Collapse
Affiliation(s)
- Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christian F Guerrero-Juarez
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Pearson Miller
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jenna Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Abstract
Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.
Collapse
Affiliation(s)
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
11
|
Staps M, Miller PW, Tarnita CE, Mallarino R. Development shapes the evolutionary diversification of rodent stripe patterns. Proc Natl Acad Sci U S A 2023; 120:e2312077120. [PMID: 37871159 PMCID: PMC10636316 DOI: 10.1073/pnas.2312077120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Pearson W. Miller
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
12
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
13
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
14
|
Shukla H, Suryamohan K, Khan A, Mohan K, Perumal RC, Mathew OK, Menon R, Dixon MD, Muraleedharan M, Kuriakose B, Michael S, Krishnankutty SP, Zachariah A, Seshagiri S, Ramakrishnan U. Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic hallmarks of apex predation. Gigascience 2022; 12:giac112. [PMID: 36576130 PMCID: PMC9795480 DOI: 10.1093/gigascience/giac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022] Open
Abstract
The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome. Our assemblies also enabled detection of longer stretches of runs of homozygosity compared to previous assemblies, which will help improve estimates of genomic inbreeding. Comprehensive genome annotation identified 26,068 protein-coding genes, including several gene families involved in key morphological features such as the teeth, claws, vision, olfaction, taste, and body stripes. We also identified 301 microRNAs, 365 small nucleolar RNAs, 632 transfer RNAs, and other noncoding RNA elements, several of which are predicted to regulate key biological pathways that likely contribute to the tiger's apex predatory traits. We identify signatures of positive selection in the tiger genome that are consistent with the Panthera lineage. Our high-quality genome will enable use of noninvasive samples for comprehensive assessment of genetic diversity, thus supporting effective conservation and management of wild tiger populations.
Collapse
Affiliation(s)
- Harsh Shukla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Kushal Suryamohan
- MedGenome Inc., Department of Research and Development, Foster City, CA 94404, USA
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
| | - Anubhab Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Krishna Mohan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Rajadurai C Perumal
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Oommen K Mathew
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Ramesh Menon
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Mandumpala Davis Dixon
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Megha Muraleedharan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Boney Kuriakose
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Saju Michael
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Sajesh P Krishnankutty
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Arun Zachariah
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, Kerala 673592, India
| | - Somasekar Seshagiri
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
15
|
Gurao A, Vasisth R, Singh R, Dige MS, Vohra V, Mukesh M, Kumar S, Kataria RS. Identification of differential methylome signatures of white pigmented skin patches in Nili Ravi buffalo of India. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:408-417. [PMID: 36239068 DOI: 10.1002/em.22511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The DNA methylation events mark a major epigenetic change in the genome, reflecting non-genetic disease developments and varied phenotypes. The water buffalo is a dairy production animal with wide agro-climatic distribution in India. Breed-wise the coat color of water buffalo varies from ash-gray to jet black. A typical pigmentation pattern is found in one of the breeds of North India, Nili Ravi, with variedly distributed white patches. The DNA methylation pattern could potentially reveal the epigenetic factors responsible for the pigmentation patterns. To address this question, the DNA isolated from the skin tissues of Nili Ravi with varied white pigmentation and black Murrah buffaloes was subjected to reduced representation bisulfite sequencing. DNA methylation analysis revealed, 68.44%, 63.39%, and 47.94% of the promoter regions were hypermethylated in Nili Ravi over-white versus Murrah, Nili Ravi under-white versus Murrah, and Nili Ravi under-white versus Nili Ravi over-white, respectively. Major genes identified to be differentially methylated among over-white and under-white skin tissues in Nili Ravi included TBX2, SNAI2, HERC2, and CITED1. Overall the results have indicated differential methylation patterns to be potentially involved in hyper or hypopigmentation in Nili Ravi and Murrah buffaloes.
Collapse
Affiliation(s)
- Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Mahesh S Dige
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vikas Vohra
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sanjay Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
16
|
Zhang P, Cao Y, Fu Y, Zhu H, Xu S, Zhang Y, Li W, Sun G, Jiang R, Han R, Li H, Li G, Tian Y, Liu X, Kang X, Li D. Revealing the Regulatory Mechanism of lncRNA-LMEP on Melanin Deposition Based on High-Throughput Sequencing in Xichuan Chicken Skin. Genes (Basel) 2022; 13:2143. [PMID: 36421818 PMCID: PMC9690664 DOI: 10.3390/genes13112143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 08/27/2023] Open
Abstract
The therapeutic, medicinal, and nourishing properties of black-bone chickens are highly regarded by consumers in China. However, some birds may have yellow skin (YS) or light skin rather than black skin (BS), which causes economic losses every year. Long noncoding RNAs (lncRNAs) are widely present in living organisms, and they perform various biological functions. Many genes associated with BS pigmentation have been discovered, but the lncRNAs involved and their detailed mechanisms have remained untested. We detected 56 differentially expressed lncRNAs from the RNA-seq of dorsal skin (BS versus YS) and found that TCONS_00054154 plays a vital role in melanogenesis by the combined analysis of lncRNAs and mRNAs. We found that the full length of the TCONS_00054154 sequence was 3093 bp by RACE PCR, and we named it LMEP. Moreover, a subcellular localization analysis identified that LMEP is mainly present in the cytoplasm. After the overexpression and the interference with LMEP, the tyrosinase content significantly increased and decreased, respectively (p < 0.05). In summary, we identified the important lncRNAs of chicken skin pigmentation and initially determined the effect of LMEP on melanin deposition.
Collapse
Affiliation(s)
- Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanfang Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huiyuan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohui Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
17
|
Hidalgo M, Curantz C, Quenech’Du N, Neguer J, Beck S, Mohammad A, Manceau M. A conserved molecular template underlies color pattern diversity in estrildid finches. SCIENCE ADVANCES 2022; 8:eabm5800. [PMID: 36044564 PMCID: PMC9432839 DOI: 10.1126/sciadv.abm5800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
| | - Nicole Quenech’Du
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Neguer
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Samantha Beck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ammara Mohammad
- Genomic Facility, Institute of Biology of the Ecole Normale Supérieure, CNRS, INSERM Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
18
|
Blotched stripe patterns in fishing cats of Godavari delta region, India. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Tensen L, Power J, Camacho G, Godinho R, Jansen van Vuuren B, Fischer K. Molecular tracking and prevalence of the red colour morph restricted to a harvested leopard population in South Africa. Evol Appl 2022; 15:1028-1041. [PMID: 35782007 PMCID: PMC9234631 DOI: 10.1111/eva.13423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The red leopard (Panthera pardus) colour morph is a colour variant that occurs only in South Africa, where it is confined to the Central Bushveld bioregion. Red leopards have been spreading over the past 40 years, which raises the speculation that the prevalence of this phenotype is related to low dispersal of young individuals owing to high off-take in the region. Intensive selective hunting tends to remove large resident male leopards from the breeding population, which gives young male leopards the chance to mate with resident female leopards that are more likely to be their relatives, eventually increasing the frequency of rare genetic variants. To investigate the genetic mechanisms underlying the red coat colour morph in leopards, and whether its prevalence in South Africa relates to an increase in genetic relatedness in the population, we sequenced exons of six coat colour-associated genes and 20 microsatellite loci in twenty Wild-type and four red leopards. The results were combined with demographic data available from our study sites. We found that red leopards own a haplotype in homozygosity identified by two SNPs and a 1 bp deletion that causes a frameshift in the tyrosinase-related protein 1 (TYRP1), a gene known to be involved in the biosynthesis of melanin. Microsatellite analyses indicate clear signs of a population bottleneck and a relatedness of 0.11 among all pairwise relationships, eventually supporting our hypothesis that a rare colour morph in the wild has increased its local frequency due to low natal dispersal, while subject to high human-induced mortality rate.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, ZoologyUniversity of Koblenz‐LandauKoblenzGermany
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
| | - John Power
- Directorate of Biodiversity Management, Department of Economic Development, Environment, Conservation and TourismNorth West Provincial GovernmentMmabathoSouth Africa
| | - Gerrie Camacho
- Mpumalanga Tourism and Parks AgencyNelspruitSouth Africa
| | - Raquel Godinho
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoCampus de Vairão, Universidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO, Campus de VairãoVairãoPortugal
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, ZoologyUniversity of Koblenz‐LandauKoblenzGermany
| |
Collapse
|
20
|
Zheng Y, Zhou Y, Huang Y, Wang H, Guo H, Yuan B, Zhang J. Transcriptome sequencing of black and white hair follicles in the giant panda. Integr Zool 2022; 18:552-568. [PMID: 35500067 DOI: 10.1111/1749-4877.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the completion of the draft assembly of the giant panda genome sequence, RNA sequencing technology has been widely used in genetic research on giant pandas. We used RNA-seq to examine black and white hair follicle samples from adult pandas. By comparison with the giant panda genome, 75 963 SNP loci were labeled, 2 426 differentially expressed genes were identified, and 2 029 new genes were discovered, among which 631 were functionally annotated. A cluster analysis of the differentially expressed genes showed that they were mainly related to the Wnt signaling pathway, ECM-receptor interaction, the p53 signaling pathway and ribosome processing. The enrichment results showed that there were significant differences in the regulatory networks of hair follicles with different colors during the transitional stage of hair follicle resting growth, which may play a regulatory role in melanin synthesis during growth. In conclusion, our results provide new insights and more data support for research on the color formation in giant pandas. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yingmin Zhou
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China
| | - Yijie Huang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haoqi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haixiang Guo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
21
|
Demars J, Labrune Y, Iannuccelli N, Deshayes A, Leroux S, Gilbert H, Aymard P, Benitez F, Riquet J. A genome-wide epistatic network underlies the molecular architecture of continuous color variation of body extremities. Genomics 2022; 114:110361. [PMID: 35378242 DOI: 10.1016/j.ygeno.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
Deciphering the molecular architecture of coat coloration for a better understanding of the biological mechanisms underlying pigmentation still remains a challenge. We took advantage of a rabbit French experimental population in which both a pattern and a gradient of coloration from white to brown segregated within the himalayan phenotype. The whole experimental design was genotyped using the high density Affymetrix® AxiomOrcun™ SNP Array and phenotyped into 6 different groups ordered from the lighter to the darker. Genome-wide association analyses pinpointed an oligogenic determinism, under recessive and additive inheritance, involving genes already known in melanogenesis (ASIP, KIT, MC1R, TYR), and likely processed pseudogenes linked to ribosomal function, RPS20 and RPS14. We also identified (i) gene-gene interactions through ASIP:MC1R affecting light cream/beige phenotypes while KIT:RPS responsible of dark chocolate/brown colors and (ii) a genome-wide epistatic network involving several others coloration genes such as POT1 or HPS5. Finally, we determined the recessive inheritance of the English spotting phenotype likely involving a copy number variation affecting at least the end of the coding sequence of the KIT gene. Our analyses of coloration as a continuous trait allowed us to go beyond much of the established knowledge through the detection of additional genes and gene-gene interactions that may contribute to the molecular architecture of the coloration phenotype.
Collapse
Affiliation(s)
- Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Yann Labrune
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Nathalie Iannuccelli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Alice Deshayes
- UMR967, CEA, INSERM, Institut de Radiobiologie Cellulaire et Moléculaire, Télomères et réparation du chromosome, F- 92265 Fontenay-aux-Roses, France.
| | - Sophie Leroux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Patrick Aymard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Florence Benitez
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Toulouse INP, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
22
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Abstract
AbstractWe studied the relationship between the variability and contemporary distribution of pelage phenotypes in one of most widely distributed felid species and an array of environmental and demographic conditions. We collected 672 photographic georeferenced records of the Eurasian lynx throughout Eurasia. We assigned each lynx coat to one of five phenotypes. Then we fitted the coat patterns to different environmental and anthropogenic variables, as well as the effective geographic distances from inferred glacial refugia. A majority of lynx were either of the large spotted (41.5%) or unspotted (uniform, 36.2%) phenotype. The remaining patterns (rosettes, small spots and pseudo-rosettes) were represented in 11.0%, 7.4%, and 3.9% of samples, respectively. Although various environmental variables greatly affected lynx distribution and habitat suitability, it was the effect of least-cost distances from locations of the inferred refugia during the Last Glacial Maximum that explained the distribution of lynx coat patterns the best. Whereas the occurrence of lynx phenotypes with large spots was explained by the proximity to refugia located in the Caucasus/Middle East, the uniform phenotype was associated with refugia in the Far East and Central Asia. Despite the widely accepted hypothesis of adaptive functionality of coat patterns in mammals and exceptionally high phenotypic polymorphism in Eurasian lynx, we did not find well-defined signs of habitat matching in the coat pattern of this species. Instead, we showed how the global patterns of morphological variability in this large mammal and its environmental adaptations may have been shaped by past climatic change.
Collapse
|
24
|
Broad tiger stripes in a small habitat patch. Proc Natl Acad Sci U S A 2021; 118:2114685118. [PMID: 34620715 DOI: 10.1073/pnas.2114685118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
|
25
|
Sagar V, Kaelin CB, Natesh M, Reddy PA, Mohapatra RK, Chhattani H, Thatte P, Vaidyanathan S, Biswas S, Bhatt S, Paul S, Jhala YV, Verma MM, Pandav B, Mondol S, Barsh GS, Swain D, Ramakrishnan U. High frequency of an otherwise rare phenotype in a small and isolated tiger population. Proc Natl Acad Sci U S A 2021; 118:e2025273118. [PMID: 34518374 PMCID: PMC8488692 DOI: 10.1073/pnas.2025273118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.
Collapse
Affiliation(s)
- Vinay Sagar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
| | - Christopher B Kaelin
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Meghana Natesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Biology Department, Indian Institute of Science Education and Research, Tirupati 411008, India
| | - P Anuradha Reddy
- Laboratory for Conservation of Endangered Species, Center for Cellular & Molecular Biology, Hyderabad 500048, India
| | | | - Himanshu Chhattani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Prachi Thatte
- World Wide Fund for Nature - India, New Delhi 110003 India
| | - Srinivas Vaidyanathan
- Foundation for Ecological Research, Advocacy and Learning, Auroville Post, Tamil Nadu 605101 India
| | | | | | - Shashi Paul
- Odisha Forest Department, Bhubaneswar 751023, India
| | - Yadavendradev V Jhala
- Wildlife Institute of India, Dehradun 248001, India
- National Tiger Conservation Authority, Wildlife Institute of India Tiger Cell, Wildlife Institute of India, Dehradun 248001, India
| | | | | | | | - Gregory S Barsh
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Debabrata Swain
- Former Member Secretary, National Tiger Conservation Authority, New Delhi 110003, India
- Former Principal Chief Conservator of Forest and Head of Forest Force, Indian Forest Service, Bhubaneswar 751023, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- DBT - Wellcome Trust India Alliance, Hyderabad 500034, India
| |
Collapse
|
26
|
Kaelin CB, McGowan KA, Barsh GS. Developmental genetics of color pattern establishment in cats. Nat Commun 2021; 12:5127. [PMID: 34493721 PMCID: PMC8423757 DOI: 10.1038/s41467-021-25348-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Intricate color patterns are a defining aspect of morphological diversity in the Felidae. We applied morphological and single-cell gene expression analysis to fetal skin of domestic cats to identify when, where, and how, during fetal development, felid color patterns are established. Early in development, we identify stripe-like alterations in epidermal thickness preceded by a gene expression pre-pattern. The secreted Wnt inhibitor encoded by Dickkopf 4 plays a central role in this process, and is mutated in cats with the Ticked pattern type. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and identify targets for diverse pattern variation in other mammals.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
28
|
Lyons LA, Buckley RM, Harvey RJ. Mining the 99 Lives Cat Genome Sequencing Consortium database implicates genes and variants for the Ticked locus in domestic cats (Felis catus). Anim Genet 2021; 52:321-332. [PMID: 33780570 PMCID: PMC8252059 DOI: 10.1111/age.13059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Tabby patterns of fur coats are defining characteristics in wild and domestic felids. Historically, three autosomal alleles at one locus (Tabby): Abyssinian (Ta ; a.k.a. ticked), mackerel (Tm ; a.k.a. striped) and blotched (tb ; a.k.a. classic, blotched) were thought to control these patterns in domestic cats and their breeds. Currently, at least three loci influence cat tabby markings, two of which are designated Tabby and Ticked. The Tabby locus is laeverin (LVRN) and affects the mackerel and blotched patterns. The unidentified gene for the Ticked locus on cat chromosome B1 was suggested to control the presence or absence of the ticked pattern (Tabby - Abyssinian (Ta ; a.k.a. ticked). The cat reference genome (Cinnamon, the Abyssinian) has the ticked phenotype and the variant dataset and coat phenotypes from the 99 Lives Cat Genome Consortium (195 cats) were used to identify candidate genes and variants associated with the Ticked locus. Two strategies were used to find the Ticked allele(s), one considered Cinnamon with the reference allele or heterozygous (Strategy A) and the other considered Cinnamon as having the variant allele or heterozygous (Strategy B). For Strategy A, two variants in Dickkopf Wnt Signaling Pathway Inhibitor 4 (DKK4), a p.Cys63Tyr (B1:41621481, c.188G>A) and a less common p.Ala18Val (B1:42620835, c.53C>T) variant are suggested as two alleles influencing the Ticked phenotype. Bioinformatic and molecular modeling analysis suggests that these changes disrupt a key disulfide bond in the Dkk4 cysteine-rich domain 1 or Dkk4 signal peptide cleavage respectively. All coding variants were excluded as Ticked alleles using Strategy B.
Collapse
Affiliation(s)
- L. A. Lyons
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of Missouri – ColumbiaColumbiaMO65211USA
| | - R. M. Buckley
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of Missouri – ColumbiaColumbiaMO65211USA
| | - R. J. Harvey
- School of Health and Behavioural SciencesUniversity of the Sunshine CoastSippy DownsQld4558Australia
| |
Collapse
|
29
|
Trends and variation in vertebrate patterns as outcomes of self-organization. Curr Opin Genet Dev 2021; 69:147-153. [PMID: 34058514 DOI: 10.1016/j.gde.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
In extant vertebrates, natural motifs such as coat markings, spongy bone structures, neuronal arborescence or collective swarms correspond to diverse pattern types, from fractals to periodic stripes or tessellations, and so on. In this subphylum, evolution produced an apparent paradox: a given pattern may vary tremendously in its extent, periodicity or regularity, but follows general geometrical trends and is produced with meticulous precision. In this review, we discuss the role of self-organization, a patterning strategy in which spontaneous order arises through local interactions without gradient formation, in shaping both natural pattern differences and common themes. Mathematical models evidenced a wide high adaptability of self-organizing dynamics, long-advocating for their contribution to natural pattern diversity. Recent empirical and theoretical approaches taking into account network topologies and natural variation also replaced outcomes of self-organization in more constrained biological contexts, shedding light on mechanisms ensuring pattern fidelity.
Collapse
|
30
|
Beauvois H, Dufaure de Citres C, Gache V, Abitbol M. Siberian cats help in solving part of the mystery surrounding golden cats. Anim Genet 2021; 52:482-491. [PMID: 33970502 DOI: 10.1111/age.13076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/01/2022]
Abstract
Golden cats have been appreciated since the beginning of the cat fancy. Golden is a modification of the tabby coat. In the Siberian breed, a specific golden phenotype, named sunshine, has been described. Sunshine tabby cats exhibit a warm tone of tabby, a pink nose lacking the black lining and a large light cream area around the nose. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study (GWAS) and homozygosity mapping. Within that region, we identified CORIN (Corin, serine peptidase) as a strong candidate gene, since CORIN variants have been identified in mice and tigers with a golden phenotype and CORIN has been described as a modifier of the ASIP (Agouti Signaling Protein) pathway. A homozygous CORIN:c.2383C>T missense variant was identified in sunshine tabby cats. Segregation of the variant was consistent with recessive inheritance. The variant was also found in three Kurilian bobtail cats and in two ToyBob cats from the 99 Lives dataset but genotyping of 106 cats from 13 breeds failed to identify carriers in cats from other breeds. The CORIN:c.2383C>T variant was predicted to change an arginine to a cysteine at position 795 in the protein: CORIN:p.(Arg795Cys). Finally, hair observation in Siberian cats was consistent with elongated ASIP signaling as golden hair showed a large yellow band instead of the short subapical one usually observed in agouti hair. These results support an association of the Siberian sunshine modification with the CORIN:c.2383C>T variant. The Siberian cat has helped us to decipher one of the golden phenotypes observed in cats and we propose that the CORIN:c.2383C>T variant represents the wbSIB (Siberian recessive wideband) allele in the domestic cat.
Collapse
Affiliation(s)
- H Beauvois
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | | | - V Gache
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| | - M Abitbol
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France.,Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| |
Collapse
|
31
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
32
|
Miyazawa S. Pattern blending enriches the diversity of animal colorations. SCIENCE ADVANCES 2020; 6:eabb9107. [PMID: 33268371 PMCID: PMC7710386 DOI: 10.1126/sciadv.abb9107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/20/2020] [Indexed: 05/10/2023]
Abstract
Animals exhibit a fascinating variety of skin patterns, but mechanisms underlying this diversity remain largely unknown, particularly for complex and camouflaged colorations. A mathematical model predicts that intricate color patterns can be formed by "pattern blending" between simple motifs via hybridization. Here, I analyzed the skin patterns of 18,114 fish species and found strong mechanistic associations between camouflaged labyrinthine patterns and simple spot motifs, showing remarkable consistency with the pattern blending hypothesis. Genomic analyses confirmed that the coloring on multiple labyrinthine fish species has originated from pattern blending by hybridization, and phylogenetic comparative analyses have further substantiated the pattern blending hypothesis in multiple major fish lineages. These findings provide a plausible mechanistic explanation for the characteristic diversity of animal markings and suggest a novel evolutionary process of complex and camouflaged colorations by means of pattern blending.
Collapse
Affiliation(s)
- Seita Miyazawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
33
|
Abstract
The diversity of mammalian coat colors, and their potential adaptive significance, have long fascinated scientists as well as the general public. The recent decades have seen substantial improvement in our understanding of their genetic bases and evolutionary relevance, revealing novel insights into the complex interplay of forces that influence these phenotypes. At the same time, many aspects remain poorly known, hampering a comprehensive understanding of these phenomena. Here we review the current state of this field and indicate topics that should be the focus of additional research. We devote particular attention to two aspects of mammalian pigmentation, melanism and pattern formation, highlighting recent advances and outstanding challenges, and proposing novel syntheses of available information. For both specific areas, and for pigmentation in general, we attempt to lay out recommendations for establishing novel model systems and integrated research programs that target the genetics and evolution of these phenotypes throughout the Mammalia.
Collapse
Affiliation(s)
- Eduardo Eizirik
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul 90619-900, Brazil;
| | - Fernanda J Trindade
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul 90619-900, Brazil;
| |
Collapse
|
34
|
Li D, Sun G, Zhang M, Cao Y, Zhang C, Fu Y, Li F, Li G, Jiang R, Han R, Li Z, Wang Y, Tian Y, Liu X, Li W, Kang X. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics 2020; 21:511. [PMID: 32703156 PMCID: PMC7376702 DOI: 10.1186/s12864-020-06900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Domesticated chickens have a wide variety of phenotypes, in contrast with their wild progenitors. Unlike other chicken breeds, Xichuan black-bone chickens have blue-shelled eggs, and black meat, beaks, skin, bones, and legs. The breeding history and the economically important traits of this breed have not yet been explored at the genomic level. We therefore used whole genome resequencing to analyze the breeding history of the Xichuan black-bone chickens and to identify genes responsible for its unique phenotype. Results Principal component and population structure analysis showed that Xichuan black-bone chicken is in a distinct clade apart from eight other breeds. Linkage disequilibrium analysis showed that the selection intensity of Xichuan black-bone chickens is higher than for other chicken breeds. The estimated time of divergence between the Xichuan black-bone chickens and other breeds is 2.89 ka years ago. Fst analysis identified a selective sweep that contains genes related to melanogenesis. This region is probably associated with the black skin of the Xichuan black-bone chickens and may be the product of long-term artificial selection. A combined analysis of genomic and transcriptomic data suggests that the candidate gene related to the black-bone trait, EDN3, might interact with the upstream ncRNA LOC101747896 to generate black skin color during melanogenesis. Conclusions These findings help explain the unique genetic and phenotypic characteristics of Xichuan black-bone chickens, and provide basic research data for studying melanin deposition in animals.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Meng Zhang
- The First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China.
| |
Collapse
|
35
|
Inaba M, Chuong CM. Avian Pigment Pattern Formation: Developmental Control of Macro- (Across the Body) and Micro- (Within a Feather) Level of Pigment Patterns. Front Cell Dev Biol 2020; 8:620. [PMID: 32754601 PMCID: PMC7365947 DOI: 10.3389/fcell.2020.00620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Animal color patterns are of interest to many fields, such as developmental biology, evolutionary biology, ethology, mathematical biology, bio-mimetics, etc. The skin provides easy access to experimentation and analysis enabling the developmental pigment patterning process to be analyzed at the cellular and molecular level. Studies in animals with distinct pigment patterns (such as zebrafish, horse, feline, etc.) have revealed some genetic information underlying color pattern formation. Yet, how the complex pigment patterns in diverse avian species are established remains an open question. Here we summarize recent progress. Avian plumage shows color patterns occurring at different spatial levels. The two main levels are macro- (across the body) and micro- (within a feather) pigment patterns. At the cellular level, colors are mainly produced by melanocytes generating eumelanin (black) and pheomelanin (yellow, orange). These melanin-based patterns are regulated by melanocyte migration, differentiation, cell death, and/or interaction with neighboring skin cells. In addition, non-melanin chemical pigments and structural colors add more colors to the available palette in different cell types or skin regions. We discuss classic and recent tissue transplantation experiments that explore the avian pigment patterning process and some potential molecular mechanisms. We find color patterns can be controlled autonomously by melanocytes but also non-autonomously by dermal cells. Complex plumage color patterns are generated by the combination of these multi-scale patterning mechanisms. These interactions can be further modulated by environmental factors such as sex hormones, which generate striking sexual dimorphic colors in avian integuments and can also be influenced by seasons and aging.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Fan R, Gu Z, Guang X, Marín JC, Varas V, González BA, Wheeler JC, Hu Y, Li E, Sun X, Yang X, Zhang C, Gao W, He J, Munch K, Corbett-Detig R, Barbato M, Pan S, Zhan X, Bruford MW, Dong C. Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca. Genome Biol 2020; 21:159. [PMID: 32616020 PMCID: PMC7331169 DOI: 10.1186/s13059-020-02080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.
Collapse
Affiliation(s)
- Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Zhongru Gu
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Juan Carlos Marín
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillán, Chile
| | - Valeria Varas
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias., Universidad Austral de Chile, Valdivia, Chile
| | - Benito A. González
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Jane C. Wheeler
- CONOPA-Instituto de Investigación y Desarrollo de Camélidos Sudamericanos, Pachacamac, Lima, Peru
| | - Yafei Hu
- BGI Genomics, BGI, Shenzhen, China
| | - Erli Li
- BGI Genomics, BGI, Shenzhen, China
| | | | | | | | - Wenjun Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Junping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Russel Corbett-Detig
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Mario Barbato
- Department of Animal Science, Food and Technology – DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Shengkai Pan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangjiang Zhan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Michael W. Bruford
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- School of Biosciences and Sustainable Places Institute, Cardiff University, Cardiff, Wales UK
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| |
Collapse
|
37
|
Buckley RM, Gandolfi B, Creighton EK, Pyne CA, Bouhan DM, LeRoy ML, Senter DA, Gobble JR, Abitbol M, Lyons LA, 99 Lives Consortium. Werewolf, There Wolf: Variants in Hairless Associated with Hypotrichia and Roaning in the Lykoi Cat Breed. Genes (Basel) 2020; 11:E682. [PMID: 32580512 PMCID: PMC7348984 DOI: 10.3390/genes11060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Connor A. Pyne
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Delia M. Bouhan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Michelle L. LeRoy
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | - David A. Senter
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | | | - Marie Abitbol
- NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Faculty of Medicine, Rockefeller, Claude Bernard Lyon I University, 69008 Lyon, France;
- VetAgro Sup, University of Lyon, Marcy-l’Etoile, 69280 Lyon, France
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | | |
Collapse
|
38
|
Schiavo G, Bovo S, Tinarelli S, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association analyses for coat colour patterns in the autochthonous Nero Siciliano pig breed. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Abstract
Of all the big cats, or perhaps of all the endangered wildlife, the tiger may be both the most charismatic and most well-recognized flagship species in the world. The rapidly changing field of molecular genetics, particularly advances in genome sequencing technologies, has provided new tools to reconstruct what characterizes a tiger. Here we review how applications of molecular genomic tools have been used to depict the tiger's ancestral roots, phylogenetic hierarchy, demographic history, morphological diversity, and genetic patterns of diversification on both temporal and geographical scales. Tiger conservation, stabilization, and management are important areas that benefit from use of these genome resources for developing survival strategies for this charismatic megafauna both in situ and ex situ.
Collapse
Affiliation(s)
- Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
40
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Haupaix N, Manceau M. The embryonic origin of periodic color patterns. Dev Biol 2020; 460:70-76. [DOI: 10.1016/j.ydbio.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
|
42
|
Caro T, Mallarino R. Coloration in Mammals. Trends Ecol Evol 2020; 35:357-366. [PMID: 31980234 PMCID: PMC10754262 DOI: 10.1016/j.tree.2019.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Mammalian colors and color patterns are some of the most diverse and conspicuous traits found in nature and have been widely studied from genetic/developmental and evolutionary perspectives. In this review we first discuss the proximate causes underlying variation in pigment type (i.e., color) and pigment distribution (i.e., color pattern) and highlight both processes as having a distinct developmental basis. Then, using multiple examples, we discuss ultimate factors that have driven the evolution of coloration differences in mammals, which include background matching, intra- and interspecific signaling, and physiological influences. Throughout, we outline bridges between developmental and functional investigatory approaches that help broaden knowledge of mammals' memorable external appearances, and we point out areas for future interdisciplinary research.
Collapse
Affiliation(s)
- Tim Caro
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS81TQ, UK; Center for Population Biology, 1 Shields Avenue, University of California, Davis, CA 95616, USA.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
43
|
Kubala J, Gregorová E, Smolko P, Klinga P, Iľko T, Kaňuch P. The coat pattern in the Carpathian population of Eurasian lynx has changed: a sign of demographic bottleneck and limited connectivity. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1338-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Xiong Q, Tao H, Zhang N, Zhang L, Wang G, Li X, Suo X, Zhang F, Liu Y, Chen M. Skin transcriptome profiles associated with black- and white-coated regions in Boer and Macheng black crossbred goats. Genomics 2019; 112:1853-1860. [PMID: 31678151 DOI: 10.1016/j.ygeno.2019.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
Abstract
To increase the current understanding of the gene-expression profiles in different skin regions associated with different coat colors and identify key genes for the regulation of color patterns in goats, we used the Illumina RNA-Seq method to compare the skin transcriptomes of the black- and white-coated regions containing hair follicles from the Boer and Macheng Black crossbred goat, which has a black head and a white body. Six cDNA libraries derived from skin samples of the white-coated region (n = 3) and black-coated region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for skin samples from black- and white-coated regions, respectively, of which 75.39% and 76.05% were covered in the genome database. A total of 165 differentially expressed genes (DEGs) were detected between these two color regions, among which 110 were upregulated and 55 were downregulated in the skin samples of white- vs. black-coated regions. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of these DEGs may play an important role in controlling the pigmentation of skin or hair follicles. We identified three key DEGs, i.e., Agouti, DCT, and TYRP1, in the pathway related to melanogenesis in the different skin regions of the crossbred goat. DCT and TYRP1 were downregulated and Agouti was upregulated in the skin of the white-coated region, suggesting a lack of mature melanocytes in this region and that Agouti might play a key developmental role in color-pattern formation. All data sets (Gene Expression Omnibus) are available via public repositories. In addition, MC1R was genotyped in 200 crossbred goats with a black head and neck. Loss-of-function mutations in MC1R as well as homozygosity for the mutant alleles were widely found in this population. The MC1R gene did not seem to play a major role in determining the black head and neck in our crossbred goats. Our study provides insights into the transcriptional regulation of two distinct coat colors, which might serve as a key resource for understanding coat color pigmentation in goats. The region-specific expression of Agouti may be associated with the distribution of pigments across the body in Boer and Macheng Black crossbred goats.
Collapse
Affiliation(s)
- Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Nian Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Liqing Zhang
- Hubei Livestock and Poultry Breeding Centre, Wuhan 430070, China
| | - Guiqiang Wang
- Hubei Livestock and Poultry Breeding Centre, Wuhan 430070, China
| | - Xiaofeng Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Xiaojun Suo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Feng Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China.
| |
Collapse
|
45
|
Wide coverage of the body surface by melanocyte-mediated skin pigmentation. Dev Biol 2019; 449:83-89. [DOI: 10.1016/j.ydbio.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
|
46
|
Inaba M, Jiang TX, Liang YC, Tsai S, Lai YC, Widelitz RB, Chuong CM. Instructive role of melanocytes during pigment pattern formation of the avian skin. Proc Natl Acad Sci U S A 2019; 116:6884-6890. [PMID: 30886106 PMCID: PMC6452743 DOI: 10.1073/pnas.1816107116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animal skin pigment patterns are excellent models to study the mechanism of biological self-organization. Theoretical approaches developed mathematical models of pigment patterning and molecular genetics have brought progress; however, the responsible cellular mechanism is not fully understood. One long unsolved controversy is whether the patterning information is autonomously determined by melanocytes or nonautonomously determined from the environment. Here, we transplanted purified melanocytes and demonstrated that melanocytes could form periodic pigment patterns cell autonomously. Results of heterospecific transplantation among quail strains are consistent with this finding. Further, we observe that developing melanocytes directly connect with each other via filopodia to form a network in culture and in vivo. This melanocyte network is reminiscent of zebrafish pigment cell networks, where connexin is implicated in stripe formation via genetic studies. Indeed, we found connexin40 (cx40) present on developing melanocytes in birds. Stripe patterns can form in quail skin explant cultures. Several calcium channel modulators can enhance or suppress pigmentation globally, but a gap junction inhibitor can change stripe patterning. Most interestingly, in ovo, misexpression of dominant negative cx40 expands the black region, while overexpression of cx40 expands the yellow region. Subsequently, melanocytes instruct adjacent dermal cells to express agouti signaling protein (ASIP), the regulatory factor for pigment switching, which promotes pheomelanin production. Thus, we demonstrate Japanese quail melanocytes have an autonomous periodic patterning role during body pigment stripe formation. We also show dermal agouti stripes and how the coupling of melanocytes with dermal cells may confer stable and distinct pigment stripe patterns.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
| | - Stephanie Tsai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089
- Graduate School of Clinical Dentistry, National Taiwan University, 100 Taipei, Taiwan
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|
47
|
Johnson MR, Barsh GS, Mallarino R. Periodic patterns in Rodentia: Development and evolution. Exp Dermatol 2019; 28:509-513. [PMID: 30506729 PMCID: PMC6488409 DOI: 10.1111/exd.13852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Mammalian periodic pigment patterns, such as spots and stripes, have long interested mathematicians and biologists because they arise from non-random developmental processes that are programmed to be spatially constrained, and can therefore be used as a model to understand how organized morphological structures develop. Despite such interest, the developmental and molecular processes underlying their formation remain poorly understood. Here, we argue that Arvicanthines, a clade of African rodents that naturally evolved a remarkable array of coat patterns, represent a tractable model system in which to dissect the mechanistic basis of pigment pattern formation. Indeed, we review recent insights into the process of stripe formation that were obtained using an Arvicanthine species, the African striped mouse (Rhabdomys pumilio), and discuss how these rodents can be used to probe deeply into our understanding of the factors that specify and implement positional information in the skin. By combining naturally evolved pigment pattern variation in rodents with classic and novel experimental approaches, we can substantially advance our understanding of the processes by which spatial patterns of cell differentiation are established during embryogenesis, a fundamental question in developmental biology.
Collapse
Affiliation(s)
- Matthew R. Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
48
|
Igoshin AV, Yurchenko AA, Belonogova NM, Petrovsky DV, Aitnazarov RB, Soloshenko VA, Yudin NS, Larkin DM. Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations. BMC Genet 2019; 20:26. [PMID: 30885142 PMCID: PMC6421640 DOI: 10.1186/s12863-019-0725-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Design of new highly productive livestock breeds, well-adapted to local climatic conditions is one of the aims of modern agriculture and breeding. The genetics underlying economically important traits in cattle are widely studied, whereas our knowledge of the genetic mechanisms of adaptation to local environments is still scarce. To address this issue for cold climates we used an integrated approach for detecting genomic intervals related to body temperature maintenance under acute cold stress. Our approach combined genome-wide association studies (GWAS) and scans for signatures of selection applied to a cattle population (Hereford and Kazakh Whiteheaded beef breeds) bred in Siberia. We utilized the GGP HD150K DNA chip containing 139,376 single nucleotide polymorphism markers. Results We detected a single candidate region on cattle chromosome (BTA)15 overlapping between the GWAS results and the results of scans for selective sweeps. This region contains two genes, MSANTD4 and GRIA4. Both genes are functional candidates to contribute to the cold-stress resistance phenotype, due to their indirect involvement in the cold shock response (MSANTD4) and body thermoregulation (GRIA4). Conclusions Our results point to a novel region on BTA15 which is a candidate region associated with the body temperature maintenance phenotype in Siberian cattle. The results of our research and the follow up studies might be used for the development of cattle breeds better adapted to cold climates of the Russian Federation and other Northern countries with similar climates. Electronic supplementary material The online version of this article (10.1186/s12863-019-0725-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Nadezhda M Belonogova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Dmitry V Petrovsky
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Ruslan B Aitnazarov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | | | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia. .,Royal Veterinary College, University of London, London, NW1 0TU, UK.
| |
Collapse
|
49
|
Extending the Mathematical Palette for Developmental Pattern Formation: Piebaldism. Bull Math Biol 2019; 81:1461-1478. [PMID: 30689102 DOI: 10.1007/s11538-019-00569-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Here, we present a theoretical investigation with potential insights on developmental mechanisms. Three biological factors, consisting of two diffusing factors and a cell-autonomous immobile transcription factor are combined with different feedback mechanisms. This results in four different situations or fur patterns. Two of them reproduce classical Turing patterns: (1) regularly spaced spots, (2) labyrinth patterns or straight lines with an initial slope in the activation of the transcription factor. The third situation does not lead to patterns, but results in different homogeneous color tones. Finally, the fourth one sheds new light on the possible mechanisms leading to the formation of piebald patterns exemplified by the random patterns on the fur of some cows' strains and Dalmatian dogs. Piebaldism is usually manifested as white areas of fur, hair, or skin due to the absence of pigment-producing cells in those regions. The distribution of the white and colored zones does not reflect the classical Turing patterns. We demonstrate that these piebald patterns are of transient nature, developing from random initial conditions and relying on a system's bistability. We show numerically that the presence of a cell-autonomous factor not only expands the range of reaction diffusion parameters in which a pattern may arise, but also extends the pattern-forming abilities of the reaction-diffusion equations.
Collapse
|
50
|
Lee DE, Cavener DR, Bond ML. Seeing spots: quantifying mother-offspring similarity and assessing fitness consequences of coat pattern traits in a wild population of giraffes ( Giraffa camelopardalis). PeerJ 2018; 6:e5690. [PMID: 30310743 PMCID: PMC6173159 DOI: 10.7717/peerj.5690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Polymorphic phenotypes of mammalian coat coloration have been important to the study of genetics and evolution, but less is known about the inheritance and fitness consequences of individual variation in complex coat pattern traits such as spots and stripes. Giraffe coat markings are highly complex and variable and it has been hypothesized that variation in coat patterns most likely affects fitness by camouflaging neonates against visually hunting predators. We quantified complex coat pattern traits of wild Masai giraffes using image analysis software, determined the similarity of spot pattern traits between mother and offspring, and assessed whether variation in spot pattern traits was related to fitness as measured by juvenile survival. The methods we described could comprise a framework for objective quantification of complex mammal coat pattern traits based on photographic coat pattern data. We demonstrated that some characteristics of giraffe coat spot shape were likely to be heritable, as measured by mother-offspring regression. We found significant variation in juvenile survival among phenotypic groups of neonates defined by multivariate clustering based on spot trait measurement variables. We also found significant variation in neonatal survival associated with spot size and shape covariates. Larger spots (smaller number of spots) and irregularly shaped or rounder spots (smaller aspect ratio) were correlated with increased survival. These findings will inform investigations into developmental and genetic architecture of complex mammal coat patterns and their adaptive value.
Collapse
Affiliation(s)
- Derek E Lee
- Wild Nature Institute, Concord, NH, United States of America.,Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Douglas R Cavener
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Monica L Bond
- Wild Nature Institute, Concord, NH, United States of America.,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|