1
|
Li S, Shu Y, Lu Z, Luo C, Wu F, Chen W, Yuan D, Wang X. High-Resolution Crossed-Beam Dynamics Studies of the D + Para-H 2 → HD + H Reaction at 1.21 eV. J Phys Chem A 2024; 128:4467-4473. [PMID: 38783510 DOI: 10.1021/acs.jpca.4c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Understanding kinetic isotope effects is important in the study of the reaction dynamics of elementary chemical reactions, particularly those involving hydrogen atoms and molecules. As one of the isotopic variants of the hydrogen exchange reaction, the D + para-H2 reaction has attracted much attention. However, experimental studies of this reaction have been limited primarily due to its strong experimental background noise. In this study, by using the velocity map ion imaging method and the near-threshold ionization technique, together with improvements on the vacuum condition in the vicinity of the collision zone, background noise was reduced significantly, and quantum state-resolved differential cross sections (DCSs) for the D + para-H2 reaction at a collision energy of 1.21 eV were acquired in a crossed molecular beams experiment. Interestingly, clear rotational state-dependent angular distributions were noticed in the quantum state-resolved DCSs. The most intense peak's positions for HD (v', j') products shift to different scattering directions as the product's ro-vibrational quantum number increases. Two different microscopic reaction mechanisms are found to be involved in this reaction for HD products in different vibrational states. The results show a direct correlation between the scattering angle and the product's rotational quantum number, revealing that the contributions of impact parameters are strongly influenced by the corresponding centrifugal barrier.
Collapse
Affiliation(s)
- Shihao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yiyang Shu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhibing Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chang Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fuyan Wu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wentao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
Li F, Ma Y, Yan D, Xu A, Liu J, Wang F. Imaging the Complex-Forming Reaction Dynamics in Al + CO 2 → AlO + CO. J Phys Chem Lett 2022; 13:11630-11635. [PMID: 36484726 DOI: 10.1021/acs.jpclett.2c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For indirect reactions involving more than one intermediate complex from reactant valley to product valley, the reaction dynamics becomes very complicated for researchers due to competition between pathways. In order to resolve the large discrepancy between theoretical and experimental studies on the linear or bent structures of complexes involved in the title endothermic reaction, we performed a crossed-beam experiment at a large collision energy (Ec) range with mapping of the velocity distributions of Al reactants and AlO products. We found that the reaction proceeds through different complex-forming mechanisms with the increase of Ec: at low Ec near the reaction threshold, only low impact-parameter collisions contribute through a collinear Al-OCO short-lived complex, and at high Ec, the bent-structure complexes, formed by either isomerization or noncollinear collisions, come into play.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| | - Yujie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| | - Dong Yan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| | - Ang Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| | - Jiaxing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| | - Fengyan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Wu XK, Tang XF, Zhou XG, Liu SL. Dissociation dynamics of energy-selected ions using threshold photoelectron-photoion coincidence velocity imaging. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1811257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiang-kun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-feng Tang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang HL, Su S, Yu SR, Che L, Wu GR, Yuan KJ, Yang XM, Minton TK. Crossed beam study on the F+D 2→DF+D reaction at hyperthermal collision energy of 23.84 kJ/mol. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1901005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hei-long Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Shu Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Sheng-rui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Li Che
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
- College of Science, Dalian Maritime University, Dalian 116026, China
| | - Guo-rong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Timothy K. Minton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
5
|
Li W, Yuan J, Yuan M, Zhang Y, Yao M, Sun Z. A new potential energy surface of the OH2+ system and state-to-state quantum dynamics studies of the O+ + H2 reaction. Phys Chem Chem Phys 2018; 20:1039-1050. [DOI: 10.1039/c7cp03676k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface of the O+ + H2 system was constructed with neural network method, using about 63000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets.
Collapse
Affiliation(s)
- Wentao Li
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
| | - Jiuchuang Yuan
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Meiling Yuan
- Key Laboratory of Materials Modification by Beams of the Ministry of Education
- School of Physics and Optoelectronic Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yong Zhang
- Department of Physics
- Tonghua Normal University
- Tonghua 134002
- China
| | - Minghai Yao
- Department of College Foundation Education
- Bohai University
- Jinzhou 121000
- China
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
6
|
Smith JM, Nikow M, Ma J, Wilhelm MJ, Han YC, Sharma AR, Bowman JM, Dai HL. Chemical Activation through Super Energy Transfer Collisions. J Am Chem Soc 2014; 136:1682-5. [DOI: 10.1021/ja4126966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan M. Smith
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Matthew Nikow
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yong-Chang Han
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Amit R. Sharma
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Hai-Lung Dai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Scattering resonance state of Br+HBr(v=0)→BrH(v′=0)+Br reaction explored by partial potential energy surface method. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
YANG YANG, LIU RUI, WAN RENZHUO, YANG MINGHUI. SEVEN-DIMENSIONAL QUANTUM DYNAMICS STUDY OF THE H2 + NH2 → H + NH3 REACTION ON AN INTERPOLATED POTENTIAL ENERGY SURFACE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613500545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Initial-state-selected time-dependent wave packet dynamics studies have been performed for the H 2 + NH 2 → H + NH 3 reaction with a seven-dimensional model on a new interpolated ab initio potential energy surface (PES). The PES is constructed using modified Shepard interpolation Scheme and contains 1967 data points with ab initio calculations carried out on UCCSD(T)/aug-cc-pVTZ level. In the seven-dimensional model, NH 2 group keeps C2v symmetry and two NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated when (1) the two reactants are initially at their ground states; (2) NH 2 bending mode is excited, and (3) H 2 is on its first vibrational excited state. The integral cross sections are also reported for these initial states with centrifugal-sudden approximation. Thermal rate constants are calculated for the temperature range of 200–2000 K and compared with the previous calculated values and available experimental data. Good agreements between theory and experiments for the rate constants at intermediate temperature are achieved on this PES.
Collapse
Affiliation(s)
- YANG YANG
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - RUI LIU
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - RENZHUO WAN
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - MINGHUI YANG
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
9
|
Song H, Lee SY, Sun Z, Lu Y. Time-dependent wave packet state-to-state dynamics of H/D + HCl/DCl reactions. J Chem Phys 2013; 138:054305. [DOI: 10.1063/1.4790116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|