1
|
Kurupati RK, Kossenkoff A, Kannan S, Haut LH, Doyle S, Yin X, Schmader KE, Liu Q, Showe L, Ertl HCJ. The effect of timing of influenza vaccination and sample collection on antibody titers and responses in the aged. Vaccine 2017; 35:3700-3708. [PMID: 28583307 DOI: 10.1016/j.vaccine.2017.05.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/25/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Antibody responses, B cell subset distribution in blood and the blood transcriptome were analyzed in younger and aged human subjects before and after vaccination with the inactivated influenza vaccine. In the aged, but not the younger, individuals we saw a clear difference in antibody titers including those at baseline depending on the time of vaccination and sample collection. Differences in baseline titers in aged individuals treated in the morning or afternoon in turn affected responsiveness to the vaccine. In both younger and aged individuals, the time of sample collection also affected relative numbers of some of the B cell subsets in blood. A global gene expression analysis with whole blood samples from the aged showed small but statistically significant differences depending on the time of sample collection. Our data do not indicate that timing of vaccination affects immune responsiveness of the aged, but rather shows that in clinical influenza vaccine trials timing of collection of samples can have a major and potentially misleading influence on study outcome. In future vaccine trials, timing of vaccination and sample collection should be recorded carefully to allow for its use as a study covariant.
Collapse
Affiliation(s)
| | | | - Senthil Kannan
- The Wistar Institute, Philadelphia, PA, USA; Biomedical Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Susan Doyle
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Kenneth E Schmader
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | |
Collapse
|
2
|
Takahashi JS. Molecular Architecture of the Circadian Clock in Mammals. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Chronobiology and Pharmacologic Modulation of the Renin–Angiotensin–Aldosterone System in Dogs: What Have We Learned? Rev Physiol Biochem Pharmacol 2015; 169:43-69. [DOI: 10.1007/112_2015_27] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci 2012; 70:2985-98. [PMID: 23161063 PMCID: PMC3760145 DOI: 10.1007/s00018-012-1207-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022]
Abstract
Circadian clocks orchestrate 24-h oscillations of essential physiological and behavioral processes in response to daily environmental changes. These clocks are remarkably precise under constant conditions yet highly responsive to resetting signals. With the molecular composition of the core oscillator largely established, recent research has increasingly focused on clock-modifying mechanisms/molecules. In particular, small molecule modifiers, intrinsic or extrinsic, are emerging as powerful tools for understanding basic clock biology as well as developing putative therapeutic agents for clock-associated diseases. In this review, we will focus on synthetic compounds capable of modifying the period, phase, or amplitude of circadian clocks, with particular emphasis on the mammalian clock. We will discuss the potential of exploiting these small molecule modifiers in both basic and translational research.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
- To whom correspondence should be addressed: ;
| | - Seung-Hee Yoo
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- To whom correspondence should be addressed: ;
| |
Collapse
|