1
|
Zhou D, Cui Y, Liang T, Wu Z, Yan H, Li Y, Yin W, Lin Y, You Q. Pan-cancer analysis identifies CLEC12A as a potential biomarker and therapeutic target for lung adenocarcinoma. Cancer Cell Int 2025; 25:128. [PMID: 40181336 PMCID: PMC11967068 DOI: 10.1186/s12935-025-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
C-type lectin domain family 12 member A (CLEC12A) is a type II transmembrane glycoprotein widely expressed in innate immune cells, where it plays a crucial role in immune modulation and has been implicated in cancer progression. However, its precise function in oncogenesis and immune infiltration remains incompletely understood. To investigate this, we utilized multiple databases to assess the mRNA and protein expression levels of CLEC12A across normal tissues and a broad spectrum of cancers. We also evaluated its prognostic and diagnostic significance in pan-cancer contexts. Furthermore, the relationship between CLEC12A expression and immune cell infiltration, immune checkpoints, and immune predictors was explored. In addition, Weighted Gene Co-Expression Network Analysis (WGCNA) and differential expression analysis were performed to examine the biological relevance of CLEC12A in lung adenocarcinoma (LUAD). We also leveraged various databases to predict CLEC12A's response to immunotherapy and drug sensitivity. Finally, in vitro experiments validated the functional role of CLEC12A in LUAD. Our comprehensive pan-cancer analysis revealed that CLEC12A exhibited distinct expression patterns across different cancer types, suggesting its potential as both a diagnostic and prognostic biomarker. Notably, CLEC12A expression was strongly correlated with immune cell infiltration, immune checkpoints, and immune predictors. Functional enrichment analysis highlighted that increased CLEC12A expression in LUAD was associated with a variety of immune-related biological processes and pathways. Moreover, CLEC12A showed significant predictive value for immunotherapy outcomes, and several drugs targeting CLEC12A were identified. In vitro experiments further demonstrated that CLEC12A overexpression inhibited the proliferation, migration, and invasion of LUAD cells. Taken together, our findings position CLEC12A as a promising candidate for cancer detection, prognosis, and as a therapeutic target, particularly in LUAD, where it may serve as a potential target for both immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Desheng Zhou
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianxiang Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhenpeng Wu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiping Yan
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Yunen Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Qiang You
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Yang K, Ma Y, Chen W, Liu L, Yang Z, He C, Zheng N, Liu X, Cheng X, Song J, Chen Y, Qiao H, Zhang R. CCDC58 is a potential biomarker for diagnosis, prognosis, immunity, and genomic heterogeneity in pan-cancer. Sci Rep 2024; 14:8575. [PMID: 38609450 PMCID: PMC11014850 DOI: 10.1038/s41598-024-59154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Coiled-coil domain-containing 58 (CCDC58) is a member of the CCDC protein family. Similar to other members, CCDC58 exhibits potential tumorigenic roles in a variety of malignancies. However, there is no systematic and comprehensive pan-cancer analysis to investigate the diagnosis, prognosis, immune infiltration, and other related functions of CCDC58. We used several online websites and databases, such as TCGA, GTEx, UALCAN, HPA, CancerSEA, BioGRID, GEPIA 2.0, TIMER 2.0, and TISIDB, to extract CCDC58 expression data and clinical data of patients in pan-cancer. Then, the relationship between CCDC58 expression and diagnosis, prognosis, genetic alterations, DNA methylation, genomic heterogeneity, and immune infiltration level were determined. In addition, the biological function of CCDC58 in liver hepatocellular carcinoma (LIHC) was investigated. Pan-cancer analysis results showed that CCDC58 was differentially expressed in most tumors and showed excellent performance in diagnosis and prediction of prognosis. The expression of CCDC58 was highly correlated with genetic alterations, DNA methylation, and genomic heterogeneity in some tumors. In addition, the correlation analysis of CCDC58 with the level of immune infiltration and immune checkpoint marker genes indicated that CCDC58 might affect the composition of the tumor immune microenvironment. Enrichment analysis showed that CCDC58-related genes were mainly linked to mitosis, chromosome, and cell cycle. Finally, biological function experiments demonstrated that CCDC58 plays an important role in tumor cell proliferation and migration. CCDC58 was first identified as a pan-cancer biomarker. It may be used as a potential therapeutic target to improve the prognosis of patients in the future.
Collapse
Affiliation(s)
- Kai Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yan Ma
- Department of Gynecology and Obstetrics, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Weigang Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lu Liu
- College of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Chaokui He
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Nanbei Zheng
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Xinyu Liu
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xin Cheng
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Junbo Song
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Hongyu Qiao
- Department of Pediatrics, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Hao Q, Li R, Li H, Rui S, You L, Zhang L, Zhao Y, Li P, Li Y, Kong X, Chen H, Zou X, Liu F, Wang X, Zhou J, Zhang W, Huang L, Shu Y, Liu J, Sun R, Li C, Zhu J, Jiang Y, Wei T, Qian K, Bai B, Hu Y, Peng Y, Dai L, Caulin C, Xu H, Li Z, Park J, Luo H, Ying B. Dynamics of The Γδtcr Repertoires During The Dedifferentiation Process and Pilot Implications for Immunotherapy of Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306364. [PMID: 38286670 PMCID: PMC10987121 DOI: 10.1002/advs.202306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/29/2023] [Indexed: 01/31/2024]
Abstract
γδ T cells are evolutionarily conserved T lymphocytes that manifest unique antitumor efficacy independent of tumor mutation burden (TMB) and conventional human leukocyte antigen (HLA) recognition. However, the dynamic changes in their T cell receptor (TCR) repertoire during cancer progression and treatment courses remain unclear. Here, a comprehensive characterization of γδTCR repertoires are performed in thyroid cancers with divergent differentiation states through cross-sectional studies. The findings revealed a significant correlation between the differentiation states and TCR repertoire diversity. Notably, highly expanded clones are prominently enriched in γδ T cell compartment of dedifferentiated patients. Moreover, by longitudinal investigations of the γδ T cell response to various antitumor therapies, it is found that the emergence and expansion of the Vδ2neg subset may be potentially associated with favorable clinical outcomes after post-radiotherapeutic immunotherapy. These findings are further validated at single-cell resolution in both advanced thyroid cancer patients and a murine model, underlining the importance of further investigations into the role of γδTCR in cancer immunity and therapeutic strategies.
Collapse
Affiliation(s)
- Qing Hao
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Ruicen Li
- Health Promotion CenterWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Hancong Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Shu Rui
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Liting You
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Lingyun Zhang
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SAR999077China
| | - Yue Zhao
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Peiheng Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuanmin Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease Related Molecular Network, West China HospitalSichuan UniversityChengdu610041China
| | - Xinagyu Kong
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Haining Chen
- Colorectal Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Xiuhe Zou
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Feng Liu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Xiaofei Wang
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Juan Zhou
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Weihan Zhang
- Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Libing Huang
- Division of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yang Shu
- Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - JiaYe Liu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Ronghao Sun
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Institute, Sichuan Cancer Prevention and Treatment CenterCancer Hospital of University of Electronic Science and Technology School of MedicineChengdu610041China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Institute, Sichuan Cancer Prevention and Treatment CenterCancer Hospital of University of Electronic Science and Technology School of MedicineChengdu610041China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yong Jiang
- Division of Pathology, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Tao Wei
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200230China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyYunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Carlos Caulin
- Department of Otolaryngology – Head & Neck Surgery and University of Arizona Cancer CenterUniversity of ArizonaTucsonAZ85721USA
| | - Heng Xu
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Zhihui Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Han Luo
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Sichuan Clinical Research Center for laboratory medicineChengduSichuan610041China
| | - Binwu Ying
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- Sichuan Clinical Research Center for laboratory medicineChengduSichuan610041China
| |
Collapse
|
4
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Heng E, Moy A, Liu G, Heng HH, Zhang K. ER Stress and Micronuclei Cluster: Stress Response Contributes to Genome Chaos in Cancer. Front Cell Dev Biol 2021; 9:673188. [PMID: 34422803 PMCID: PMC8371933 DOI: 10.3389/fcell.2021.673188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eric Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Bao L, Pu M, Messer K. AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data. ACTA ACUST UNITED AC 2014; 30:1056-1063. [PMID: 24389661 DOI: 10.1093/bioinformatics/btt759] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/23/2013] [Indexed: 12/30/2022]
Abstract
MOTIVATION Detection and quantification of the absolute DNA copy number alterations in tumor cells is challenging because the DNA specimen is extracted from a mixture of tumor and normal stromal cells. Estimates of tumor purity and ploidy are necessary to correctly infer copy number, and ploidy may itself be a prognostic factor in cancer progression. As deep sequencing of the exome or genome has become routine for characterization of tumor samples, in this work, we aim to develop a simple and robust algorithm to infer purity, ploidy and absolute copy numbers in whole numbers for tumor cells from sequencing data. RESULTS A simulation study shows that estimates have reasonable accuracy, and that the algorithm is robust against the presence of segmentation errors and subclonal populations. We validated our algorithm against a panel of cell lines with experimentally determined ploidy. We also compared our algorithm with the well-established single-nucleotide polymorphism array-based method called ABSOLUTE on three sets of tumors of different types. Our method had good performance on these four benchmark datasets for both purity and ploidy estimates, and may offer a simple solution to copy number alteration quantification for cancer sequencing projects. AVAILABILITY AND IMPLEMENTATION The R package absCNseq is available from http://biostats.mcc.ucsd.edu/files/absCNseq_1.0.tar.gz CONTACT: kmesser@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lei Bao
- Division of Biostatistics, Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | - Minya Pu
- Division of Biostatistics, Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | - Karen Messer
- Division of Biostatistics, Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|