1
|
Maric A, Mas P. Chromatin Dynamics and Transcriptional Control of Circadian Rhythms in Arabidopsis. Genes (Basel) 2020; 11:E1170. [PMID: 33036236 PMCID: PMC7601625 DOI: 10.3390/genes11101170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms pervade nearly all aspects of plant growth, physiology, and development. Generation of the rhythms relies on an endogenous timing system or circadian clock that generates 24-hour oscillations in multiple rhythmic outputs. At its bases, the plant circadian function relies on dynamic interactive networks of clock components that regulate each other to generate rhythms at specific phases during the day and night. From the initial discovery more than 13 years ago of a parallelism between the oscillations in chromatin status and the transcriptional rhythms of an Arabidopsis clock gene, a number of studies have later expanded considerably our view on the circadian epigenome and transcriptome landscapes. Here, we describe the most recent identification of chromatin-related factors that are able to directly interact with Arabidopsis clock proteins to shape the transcriptional waveforms of circadian gene expression and clock outputs. We discuss how changes in chromatin marks associate with transcript initiation, elongation, and the rhythms of nascent RNAs, and speculate on future interesting research directions in the field.
Collapse
Affiliation(s)
- Aida Maric
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Xiong Q, Xu D, Shan C, Liu S, Luo Y, Liu F, Liu S, Lan Y, Bai R. Investigating the Mechanism of Palladium-Catalyzed Radical Oxidative C(sp3
)−H Carbonylation: A DFT Study. Chem Asian J 2019; 14:655-661. [DOI: 10.1002/asia.201801862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Qin Xiong
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Dongdong Xu
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Chunhui Shan
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Song Liu
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Yixin Luo
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering; Chongqing Key Laboratory of Theoretical and Computational Chemistry; Chongqing University; Chongqing 400030 China
| |
Collapse
|
3
|
Zhang SR, Wang H, Wang Z, Ren Y, Niu L, Liu J, Liu B. Photoperiodism dynamics during the domestication and improvement of soybean. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1416-1427. [PMID: 28942538 DOI: 10.1007/s11427-016-9154-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/25/2017] [Indexed: 10/18/2022]
Abstract
Soybean (Glycine max) is a facultative short-day plant with a sensitive photoperiod perception and reaction system, which allows it to adjust its physiological state and gene regulatory networks to seasonal and diurnal changes in environmental conditions. In the past few decades, soybean cultivation has spread from East Asia to areas throughout the world. Biologists and breeders must now confront the challenge of understanding the molecular mechanism of soybean photoperiodism and improving agronomic traits to enable this important crop to adapt to geographical and environmental changes. In this review, we summarize the genetic regulatory network underlying photoperiodic responses in soybean. Genomic and genetic studies have revealed that the circadian clock, in conjunction with the light perception pathways, regulates photoperiodic flowering. Here, we provide an annotated list of 844 candidate flowering genes in soybean, with their putative biological functions. Many photoperiod-related genes have been intensively selected during domestication and crop improvement. Finally, we describe recent progress in engineering photoperiod-responsive genes for improving agronomic traits to enhance geographic adaptation in soybean, as well as future prospects for research on soybean photoperiodic responses.
Collapse
Affiliation(s)
- Sheng-Rui Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyu Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yao Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S. Circadian and ultradian glucocorticoid rhythmicity: Implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol 2016; 41:44-58. [PMID: 27234350 DOI: 10.1016/j.yfrne.2016.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 01/01/2023]
Abstract
Psychosocial stress, and within the neuroendocrine reaction to stress specifically the glucocorticoid hormones, are well-characterized inhibitors of neural stem/progenitor cell proliferation in the adult hippocampus, resulting in a marked reduction in the production of new neurons in this brain area relevant for learning and memory. However, the mechanisms by which stress, and particularly glucocorticoids, inhibit neural stem/progenitor cell proliferation remain unclear and under debate. Here we review the literature on the topic and discuss the evidence for direct and indirect effects of glucocorticoids on neural stem/progenitor cell proliferation and adult neurogenesis. Further, we discuss the hypothesis that glucocorticoid rhythmicity and oscillations originating from the activity of the hypothalamus-pituitary-adrenal axis, may be crucial for the regulation of neural stem/progenitor cells in the hippocampus, as well as the implications of this hypothesis for pathophysiological conditions in which glucocorticoid oscillations are affected.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Marijn Schouten
- Neuroscience Program, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Onno C Meijer
- Leiden University Medical Centre, Department of Endocrinology, Leiden, The Netherlands
| | - Paul J Lucassen
- Neuroscience Program, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Stafford Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, United Kingdom
| |
Collapse
|
5
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
6
|
Lück S, Thurley K, Thaben PF, Westermark PO. Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep 2014; 9:741-51. [PMID: 25373909 DOI: 10.1016/j.celrep.2014.09.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/04/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Kevin Thurley
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Paul F Thaben
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany.
| |
Collapse
|
7
|
Frank E, Sidor MM, Gamble KL, Cirelli C, Sharkey KM, Hoyle N, Tikotzky L, Talbot LS, McCarthy MJ, Hasler BP. Circadian clocks, brain function, and development. Ann N Y Acad Sci 2013; 1306:43-67. [DOI: 10.1111/nyas.12335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ellen Frank
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| | - Michelle M. Sidor
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| | - Karen L. Gamble
- Department of Psychiatry University of Alabama at Birmingham Birmingham Alabama
| | - Chiara Cirelli
- Department of Psychiatry University of Wisconsin‐Madison Madison Wisconsin
| | - Katherine M. Sharkey
- Departments of Internal Medicine, and Psychiatry and Human Behavior Brown University Providence Rhode Island
| | - Nathaniel Hoyle
- MRC Laboratory of Molecular Biology Cambridge University Cambridge United Kingdom
| | - Liat Tikotzky
- Department of Psychology Ben Gurion University of the Negev Beer‐Sheva Israel
| | - Lisa S. Talbot
- Department of Psychiatry University of California San Francisco San Francisco California
| | - Michael J. McCarthy
- Department of Psychiatry University of California San Diego San Diego California
| | - Brant P. Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| |
Collapse
|
8
|
Noonin C, Watthanasurorot A, Winberg S, Söderhäll I. Circadian regulation of melanization and prokineticin homologues is conserved in the brain of freshwater crayfish and zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:218-226. [PMID: 23500514 DOI: 10.1016/j.dci.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
Circadian clock is important to living organisms to adjust to the external environment. This clock has been extensively studied in mammals, and prokineticin 2 (Prok2) acts as one of the messenger between the central nervous system and peripheral tissues. In this study, expression profiles of Prok1 and Prok2 were investigated in a non-mammalian vertebrate brain, zebrafish, and the expression was compared to the Prok homologues, astakines (Ast1 and Ast2) in crayfish. These transcripts exhibited circadian oscillation in the brain, and Ast1 had similar pattern to Prok2. In addition, the expression of tyrosinase, an enzyme which expression is regulated by E-box elements like in Prok2, was also examined in zebrafish brain and was compared with the expression of prophenoloxidase (proPO), the melanization enzyme, in crayfish brain. Interestingly, the expressions of both Tyr and proPO displayed circadian rhythm in a similar pattern to Prok2 and Ast1, respectively. Therefore, this study shows that circadian oscillation of prokineticin homologues and enzymes involved in melanization are conserved.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyv. 18A, 752 36 Uppsala, Sweden
| | | | | | | |
Collapse
|
9
|
Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 2013; 24:383-92. [PMID: 23435351 DOI: 10.1016/j.semcdb.2013.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022]
Abstract
The circadian clock is an endogenous timer that anticipates and synchronizes biological processes to the environment. Traditional genetic approaches identified the underlying principles and genetic components, but new discoveries have been greatly impeded by the embedded redundancies that confer necessary robustness to the clock architecture. To overcome this, global (omic) techniques have provided a new depth of information about the Arabidopsis clock. Our understanding of the factors, regulation, and mechanistic connectivity between clock genes and with output processes has substantially broadened through genomic (cDNA libraries, yeast one-hybrid, protein binding microarrays, and ChIP-seq), transcriptomic (microarrays, RNA-seq), proteomic (mass spectrometry and chemical libraries), and metabolomic (mass spectrometry) approaches. This evolution in research will undoubtedly enhance our understanding of how the circadian clock optimizes growth and fitness.
Collapse
Affiliation(s)
- Brenda Y Chow
- Section of Cell and Developmental Biology and Center for Chronobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|