1
|
Su T, Chua WZ, Liu Y, Fan J, Tan SY, Yang DW, Sham LT. Rewiring the pneumococcal capsule pathway for investigating glycosyltransferase specificity and genetic glycoengineering. SCIENCE ADVANCES 2023; 9:eadi8157. [PMID: 37672581 PMCID: PMC10482335 DOI: 10.1126/sciadv.adi8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C. However, what defines their specificities remain poorly understood. Here, we developed a genetic glycoengineering platform by reprogramming the capsular polysaccharide pathways in Streptococcus pneumoniae to interrogate GT specificity and manipulate glycan structures. Our findings suggest that the central cleft of GT-B enzymes is important for determining acceptor specificity. The constraint of the glycoengineering platform was partially alleviated when the specificity of the precursor transporter was reduced, indicating that the transporter contributes to the overall fidelity of glycan synthesis. We also modified the pneumococcal capsule to produce several medically important mammalian glycans, as well as demonstrated the importance of regiochemistry in a glycosidic linkage on binding lung epithelial cells. Our work provided mechanistic insights into GT specificity and an approach for investigating glycan functions.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yao Liu
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Jingsong Fan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Si-Yin Tan
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Dai-wen Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
2
|
Luo ZX, Liu M, Li T, Xiong DC, Ye XS. Electrochemical Bromination of Glycals. Front Chem 2022; 9:796690. [PMID: 35004613 PMCID: PMC8732377 DOI: 10.3389/fchem.2021.796690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Herein, the convenient one-step electrochemical bromination of glycals using Bu4NBr as the brominating source under metal-catalyst-free and oxidant-free reaction conditions was described. A series of 2-bromoglycals bearing different electron-withdrawing or electron-donating protective groups were successfully synthesized in moderate to excellent yields. The coupling of tri-O-benzyl-2-bromogalactal with phenylacetylene, potassium phenyltrifluoroborate, or a 6-OH acceptor was achieved to afford 2C-branched carbohydrates and disaccharides via Sonogashira coupling, Suzuki coupling, and Ferrier rearrangement reactions with high efficiency. The radical trapping and cyclic voltammetry experiments indicated that bromine radicals may be involved in the reaction process.
Collapse
Affiliation(s)
- Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Yu. Kostina N, Söder D, Haraszti T, Xiao Q, Rahimi K, Partridge BE, Klein ML, Percec V, Rodriguez‐Emmenegger C. Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angew Chem Int Ed Engl 2021; 60:8352-8360. [PMID: 33493389 PMCID: PMC8048596 DOI: 10.1002/anie.202100400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 01/10/2023]
Abstract
The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association.
Collapse
Affiliation(s)
- Nina Yu. Kostina
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Dominik Söder
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Tamás Haraszti
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Qi Xiao
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
- Institute of Computational Molecular ScienceTemple UniversityPhiladelphiaPA19122USA
| | - Khosrow Rahimi
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Benjamin E. Partridge
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
| | - Michael L. Klein
- Institute of Computational Molecular ScienceTemple UniversityPhiladelphiaPA19122USA
| | - Virgil Percec
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
| | - Cesar Rodriguez‐Emmenegger
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
4
|
Yu. Kostina N, Söder D, Haraszti T, Xiao Q, Rahimi K, Partridge BE, Klein ML, Percec V, Rodriguez‐Emmenegger C. Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nina Yu. Kostina
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Dominik Söder
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Tamás Haraszti
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
- Institute of Computational Molecular Science Temple University Philadelphia PA 19122 USA
| | - Khosrow Rahimi
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Benjamin E. Partridge
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Michael L. Klein
- Institute of Computational Molecular Science Temple University Philadelphia PA 19122 USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Cesar Rodriguez‐Emmenegger
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
5
|
Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers. Proc Natl Acad Sci U S A 2020; 117:11931-11939. [PMID: 32424105 PMCID: PMC7275670 DOI: 10.1073/pnas.2003938117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetic macromolecules that mimic glycolipids, named Janus glycodendrimers (JGDs), have been shown to self-assemble into nanoscale vesicles displaying glycans on their outer surface, similar to the glycocalyx coating of eukaryotic cells, bacteria, and viruses. Specifically, both linear and branched oligosaccharides synthesized by automated glycan assembly, with hydrophobic linkers, have been used to create JGDs via an isothiocyanate–amine coupling reaction. Surprisingly, in spite of the hydrophobic linker, these JGDs self-organize into nanovesicles exhibiting lamellar surface morphologies, which mimic the recognition structures of cell-surface glycans and viral glycoproteins. Therefore, they are likely to be useful in helping elucidate mechanisms of significance for translational medicine such as the camouflage functionality employed by viruses to evade recognition. Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine “click”-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar “raft-like” nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity.
Collapse
|
6
|
Kröger AP, Komil MI, Hamelmann NM, Juan A, Stenzel MH, Paulusse JMJ. Glucose Single-Chain Polymer Nanoparticles for Cellular Targeting. ACS Macro Lett 2019; 8:95-101. [PMID: 30775156 PMCID: PMC6369679 DOI: 10.1021/acsmacrolett.8b00812] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Naturally occurring glycoconjugates possess carbohydrate moieties that fulfill essential roles in many biological functions. Through conjugation of carbohydrates to therapeutics or imaging agents, naturally occurring glycoconjugates are mimicked and efficient targeting or increased cellular uptake of glycoconjugated macromolecules is achieved. In this work, linear and cyclic glucose moieties were functionalized with methacrylates via enzymatic synthesis and used as building blocks for intramolecular cross-linked single-chain glycopolymer nanoparticles (glyco-SCNPs). A set of water-soluble sub-10 nm-sized glyco-SCNPs was prepared by thiol-Michael addition cross-linking in water. Bioactivity of various glucose-conjugated glycopolymers and glyco-SCNPs was evaluated in binding studies with the glucose-specific lectin Concanavalin A and by comparing their cellular uptake efficiency in HeLa cells. Cytotoxicity studies did not reveal discernible cytotoxic effects, making these SCNPs promising candidates for ligand-based targeted imaging and drug delivery.
Collapse
Affiliation(s)
- A. Pia
P. Kröger
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Muhabbat I. Komil
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Naomi M. Hamelmann
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Alberto Juan
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Molecular NanoFabrication, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jos M. J. Paulusse
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
7
|
Cheng J, Gu Z, He C, Jin J, Wang L, Li G, Sun B, Wang H, Bai J. An efficient synthesis of novel bis-triazole glycoconjugates via a three-component condensation as a key reaction. Carbohydr Res 2015; 414:72-7. [DOI: 10.1016/j.carres.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 01/04/2023]
|
8
|
Force fields and scoring functions for carbohydrate simulation. Carbohydr Res 2015; 401:73-81. [DOI: 10.1016/j.carres.2014.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
|