1
|
de Villa K, González-Cataldo F, Militzer B. Double superionicity in icy compounds at planetary interior conditions. Nat Commun 2023; 14:7580. [PMID: 37990010 PMCID: PMC10663582 DOI: 10.1038/s41467-023-42958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
The elements hydrogen, carbon, nitrogen and oxygen are assumed to comprise the bulk of the interiors of the ice giant planets Uranus, Neptune, and sub-Neptune exoplanets. The details of their interior structures have remained largely unknown because it is not understood how the compounds H2O, NH3 and CH4 behave and react once they have been accreted and exposed to high pressures and temperatures. Here we study thirteen H-C-N-O compounds with ab initio computer simulations and demonstrate that they assume a superionic state at elevated temperatures, in which the hydrogen ions diffuse through a stable sublattice that is provided by the larger nuclei. At yet higher temperatures, four of the thirteen compounds undergo a second transition to a novel doubly superionic state, in which the smallest of the heavy nuclei diffuse simultaneously with hydrogen ions through the remaining sublattice. Since this transition and the melting transition at yet higher temperatures are both of first order, this may introduce additional layers in the mantle of ice giant planets and alter their convective patterns.
Collapse
Affiliation(s)
- Kyla de Villa
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA.
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
- Department of Astronomy, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Cohen IJ, Smith EJ, Clark GB, Turner DL, Ellison DH, Clare B, Regoli LH, Kollmann P, Gallagher DT, Holtzman GA, Likar JJ, Morizono T, Shannon M, Vodusek KS. Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus. SPACE SCIENCE REVIEWS 2023; 219:65. [PMID: 37869526 PMCID: PMC10587260 DOI: 10.1007/s11214-023-01013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
Collapse
Affiliation(s)
- Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Evan J Smith
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Drew L Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Donald H Ellison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ben Clare
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Leonardo H Regoli
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Peter Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - G Allan Holtzman
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Justin J Likar
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Takeshi Morizono
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Matthew Shannon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | |
Collapse
|
3
|
Abstract
A numerical model description of a hot Jupiter extended envelope based on the approximation of multi-component magnetic hydrodynamics is presented. The main attention is focused on the problem of implementing the completed MHD stellar wind model. As a result, the numerical model becomes applicable for calculating the structure of the extended envelope of hot Jupiters not only in the super-Alfvén and sub-Alfvén regimes of the stellar wind flow around and in the trans-Alfvén regime. The multi-component MHD approximation allows the consideration of changes in the chemical composition of hydrogen–helium envelopes of hot Jupiters. The results of calculations show that, in the case of a super-Alfvén flow regime, all the previously discovered types of extended gas-dynamic envelopes are realized in the new numerical model. With an increase in magnitude of the wind magnetic field, the extended envelope tends to become more closed. Under the influence of a strong magnetic field of the stellar wind, the envelope matter does not move along the ballistic trajectory but along the magnetic field lines of the wind toward the host star. This corresponds to an additional (sub-Alfvénic) envelope type of hot Jupiters, which has specific observational features. In the transient (trans-Alfvén) mode, a bow shock wave has a fragmentary nature. In the fully sub-Alfvén regime, the bow shock wave is not formed, and the flow structure is shock-less.
Collapse
|
4
|
Kumar S, Poser AJ, Schöttler M, Kleinschmidt U, Dietrich W, Wicht J, French M, Redmer R. Ionization and transport in partially ionized multicomponent plasmas: Application to atmospheres of hot Jupiters. Phys Rev E 2021; 103:063203. [PMID: 34271624 DOI: 10.1103/physreve.103.063203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
We study ionization and transport processes in partially ionized multicomponent plasmas. The plasma composition is calculated via a system of coupled mass-action laws. The electronic transport properties are determined by the electron-ion and electron-neutral transport cross sections. The influence of electron-electron scattering is considered via a correction factor to the electron-ion contribution. Based on these data, the electrical and thermal conductivities as well as the Lorenz number are calculated. For the thermal conductivity, we consider also the contributions of the translational motion of neutral particles and of the dissociation, ionization, and recombination reactions. We apply our approach to a partially ionized plasma composed of hydrogen, helium, and a small fraction of metals (Li, Na, Ca, Fe, K, Rb, and Cs) as typical for atmospheres of hot Jupiters. We present results for the plasma composition and the transport properties as a function of density and temperature and then along typical P-T profiles for the outer part of the hot Jupiter HD 209458b. The electrical conductivity profile allows revising the Ohmic heating power related to the fierce winds in the planet's atmosphere. We show that the higher temperatures suggested by recent interior models could boost the conductivity and thus the Ohmic heating power to values large enough to explain the observed inflation of HD 209458b.
Collapse
Affiliation(s)
- Sandeep Kumar
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Anna Julia Poser
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Manuel Schöttler
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Uwe Kleinschmidt
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Wieland Dietrich
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - Johannes Wicht
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - Martin French
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| |
Collapse
|
5
|
Vidotto AA. The evolution of the solar wind. LIVING REVIEWS IN SOLAR PHYSICS 2021; 18:3. [PMID: 34722865 PMCID: PMC8550356 DOI: 10.1007/s41116-021-00029-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/12/2021] [Indexed: 06/13/2023]
Abstract
How has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activity. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.
Collapse
Affiliation(s)
- Aline A. Vidotto
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin-2, Ireland
| |
Collapse
|
6
|
Symmetries of Magnetic Fields Driven by Spherical Dynamos of Exoplanets and Their Host Stars. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Observations of exoplanets open a new area of scientific activity and the structure of exoplanet magnetospheres is an important part of this area. Here we use symmetry arguments and experiences in spherical dynamo modeling to obtain the set of possible magnetic configurations for exoplanets and their corresponding host stars. The main part of our results is that the possible choice is much richer than the basic dipole magnetic field of both exoplanets and stars. Other options, for example, are quadrupole configurations or mixed parity solutions. Expected configurations of current sheets for the above mentioned exoplanet host star systems are presented as well.
Collapse
|
7
|
Güdel M. The Sun Through Time. SPACE SCIENCE REVIEWS 2020; 216:143. [PMID: 33328695 PMCID: PMC7724955 DOI: 10.1007/s11214-020-00773-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/17/2020] [Indexed: 06/01/2023]
Abstract
Magnetic activity of stars like the Sun evolves in time because of spin-down owing to angular momentum removal by a magnetized stellar wind. These magnetic fields are generated by an internal dynamo driven by convection and differential rotation. Spin-down therefore converges at an age of about 700 Myr for solar-mass stars to values uniquely determined by the stellar mass and age. Before that time, however, rotation periods and their evolution depend on the initial rotation period of a star after it has lost its protostellar/protoplanetary disk. This non-unique rotational evolution implies similar non-unique evolutions for stellar winds and for the stellar high-energy output. I present a summary of evolutionary trends for stellar rotation, stellar wind mass loss and stellar high-energy output based on observations and models.
Collapse
Affiliation(s)
- Manuel Güdel
- Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180 Vienna, Austria
| |
Collapse
|
8
|
Meyer ER, Ticknor C, Bethkenhagen M, Hamel S, Redmer R, Kress JD, Collins LA. Bonding and structure in dense multi-component molecular mixtures. J Chem Phys 2015; 143:164513. [DOI: 10.1063/1.4934626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edmund R. Meyer
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Christopher Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, D-18501 Rostock, Germany
| | - Joel D. Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A. Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Hu R, Seager S, Yung YL. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/807/1/8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|