1
|
Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. PLANT PHYSIOLOGY 2023; 192:2687-2702. [PMID: 37096683 DOI: 10.1093/plphys/kiad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.
Collapse
Affiliation(s)
- Kristina Schaefer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Tina Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Babaee S, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M. Synthesis of picolinates via a cooperative vinylogous anomeric-based oxidation using UiO-66(Zr)-N(CH 2PO 3H 2) 2 as a catalyst. RSC Adv 2023; 13:22503-22511. [PMID: 37497088 PMCID: PMC10368083 DOI: 10.1039/d3ra03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The anomeric effect highlights the significant influence of the functional group and reaction conditions on oxidation-reduction. This article successfully investigates the anomeric effect in the synthesis of picolinate and picolinic acid derivatives through a multi-component reaction involving 2-oxopropanoic acid or ethyl 2-oxopropanoate, ammonium acetate, malononitrile, and various aldehydes. To facilitate this process, we employed UiO-66(Zr)-N(CH2PO3H2)2 as a novel nanoporous heterogeneous catalyst. The inclusion of phosphorous acid tags on the UiO-66(Zr)-N(CH2PO3H2)2 offers the potential for synthesizing picolinates at ambient temperature.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P.O. Box 31787-316 Karaj Iran
| |
Collapse
|
3
|
The TetR Family Repressor HpaR Negatively Regulates the Catabolism of 5-Hydroxypicolinic Acid in Alcaligenes faecalis JQ135 by Binding to Two Unique DNA Sequences in the Promoter of hpa Operon. Appl Environ Microbiol 2022; 88:e0239021. [PMID: 35138929 DOI: 10.1128/aem.02390-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
5-Hydroxypicolinic acid (5HPA), an important natural pyridine derivative, is microbially degraded in the environment. Previously, a gene cluster hpa responsible for 5HPA degradation has been identified in Alcaligenes faecalis JQ135. However, the transcription regulation mechanism of the hpa cluster is still unknown. In this study, the transcription start site and promoter of hpa operon was identified. Quantitative reverse transcription-PCR and promoter activity analysis indicated that the transcription of hpa operon was negatively regulated by a TetR family regulator HpaR, whereas the transcription of hpaR itself was not regulated by HpaR. Electrophoretic mobility shift assay and DNase I footprinting revealed that HpaR bound to two DNA sequences, covering -35 region and -10 region, respectively, in the promoter region of hpa operon. Interestingly, the two binding sequences are partial-palindromic with 3-4 mismatches, and are complementary with each other. 5HPA acted as a ligand of HpaR preventing HpaR from binding to promoter region thus derepressing the transcription of hpa operon. The study revealed that HpaR binds to two unique complementary sequences of the promoter of hpa operon to negatively regulate the catabolism of 5HPA. IMPORTANCE This study revealed that the transcription of hpa operon was negatively regulated by a TetR family regulator HpaR. The binding of HpaR to the promoter of hpa operon has the following unique features: (1) HpaR has two independent binding sites in the promoter of the hpa operon, covering -35 region and -10 region, respectively. (2) the palindrome sequences of the two binding sites are complementary with each other. (3) both of the two binding sites include a 10-nt partial palindrome sequences with 3-4 mismatches. This study provides new insights into the binding features of the TetR family regulator with DNA sequences.
Collapse
|
4
|
Long C, Yang Y, Yang Y, Huang S, Zhang X, Du W, Yang D, Guo Y, Zhang L. The Exploration of Novel Pharmacophore Characteristics and Multidirectional Elucidation of Structure-Activity Relationship and Mechanism of Sesquiterpene Pyridine Alkaloids from Tripterygium Based on Computational Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6676470. [PMID: 33833819 PMCID: PMC8012133 DOI: 10.1155/2021/6676470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Sesquiterpene pyridine alkaloids are a large group of highly oxygenated sesquiterpenoids, which are characterized by a macrocyclic dilactone skeleton containing 2-(carboxyalkyl) nicotinic acid and dihydro-β-agarofuran sesquiterpenoid, and are believed to be the active and less toxic components of Tripterygium. In this study, 55 sesquiterpene pyridine alkaloids from Tripterygium were subjected to identification of pharmacophore characteristics and potential targets analysis. Our results revealed that the greatest structural difference of these compounds was in the pyridine ring and the pharmacophore model-5 (Pm-05) was the best model that consisted of three features including hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and hydrophobic (HY), especially hydrophobic group located in the pyridine ring. It was proposed that 2-(carboxyalkyl) nicotinic acid part possessing a pyridine ring system was not only a pharmacologically active center but also a core of structural diversity of alkaloids from Tripterygium wilfordii. Furthermore, sesquiterpene pyridine alkaloids from Tripterygium were predicted to target multiple proteins and pathways and possibly played essential roles in the cure of Alzheimer's disease, breast cancer, Chagas disease, and nonalcoholic fatty liver disease (NAFLD). They also had other pharmacological effects, depending on the binding interactions between pyridine rings of these compounds and active cavities of the target genes platelet-activating factor receptor (PTAFR), cannabinoid receptor 1 (CNR1), cannabinoid receptor 1 (CNR2), squalene synthase (FDFT1), and heat shock protein HSP 90-alpha (HSP90AA1). Taken together, the results of this present study indicated that sesquiterpene pyridine alkaloids from Tripterygium are promising candidates that exhibit potential for development as medicine sources and need to be promoted.
Collapse
Affiliation(s)
- Chengyan Long
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Yang Yang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Sixing Huang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Wei Du
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| |
Collapse
|
5
|
Whiteker GT, Froese RDJ, Arndt KE, Renga JM, Zhu Y, Roth GA, Yang Q, Canturk B, Klosin J. Synthesis of 6-Aryl-5-fluoropicolinate Herbicides via Halex Reaction of Tetrachloropicolinonitrile. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory T. Whiteker
- Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | | | - Kim E. Arndt
- Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - James M. Renga
- Discovery Chemistry, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Yuanming Zhu
- Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Gary A. Roth
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Qiang Yang
- Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Belgin Canturk
- Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jerzy Klosin
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| |
Collapse
|
6
|
A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2018; 84:AEM.00910-18. [PMID: 29802182 DOI: 10.1128/aem.00910-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 μM and 37.8 μM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.
Collapse
|
7
|
Biswas S, Majee D, Guin S, Samanta S. Metal- and Solvent-Free Approach to Diversely Substituted Picolinates via Domino Reaction of Cyclic Sulfamidate Imines with β,γ-Unsaturated α-Ketocarbonyls. J Org Chem 2017; 82:10928-10938. [DOI: 10.1021/acs.joc.7b01792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumen Biswas
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Debashis Majee
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Soumitra Guin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
8
|
The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. G3-GENES GENOMES GENETICS 2016; 6:1383-90. [PMID: 26976444 PMCID: PMC4856089 DOI: 10.1534/g3.115.025585] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity.
Collapse
|
9
|
Johnson PL, Renga JM, Galliford CV, Whiteker GT, Giampietro NC. Synthesis of Novel Fluoropicolinate Herbicides by Cascade Cyclization of Fluoroalkyl Alkynylimines. Org Lett 2015; 17:2905-7. [DOI: 10.1021/acs.orglett.5b01176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter L. Johnson
- Discovery Chemistry and ‡Process Chemistry, Dow AgroSciences, 9330 Zionsville
Road, Indianapolis, Indiana 46268, United States
| | - James M. Renga
- Discovery Chemistry and ‡Process Chemistry, Dow AgroSciences, 9330 Zionsville
Road, Indianapolis, Indiana 46268, United States
| | - Christopher V. Galliford
- Discovery Chemistry and ‡Process Chemistry, Dow AgroSciences, 9330 Zionsville
Road, Indianapolis, Indiana 46268, United States
| | - Gregory T. Whiteker
- Discovery Chemistry and ‡Process Chemistry, Dow AgroSciences, 9330 Zionsville
Road, Indianapolis, Indiana 46268, United States
| | - Natalie C. Giampietro
- Discovery Chemistry and ‡Process Chemistry, Dow AgroSciences, 9330 Zionsville
Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
10
|
Wang X, Zhao J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3789-3796. [PMID: 23544987 DOI: 10.1021/jf4004658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microcapsules of the herbicide picloram (PLR) were formulated by a layer-by-layer (LbL) self-assembly method using the polyelectrolyte biopolymers of biocompatible chitosan (CS) and the UV-absorbent sodium lignosulfonate (SL) as shell materials. The herbicide PLR was recrystallized and characterized using XRD analysis. The obtained PLR-loaded microcapsules were characterized by using SEM, FTIR, CLSM, and ζ-potential measurements. The herbicide loading and encapsulation efficiency were also analyzed for the PLR-loaded microcapsules. The influence of LbL layer numbers on herbicide release and photodegradation rates was investigated in vitro. The results showed that the release rates and photodegradation rates of PLR in microcapsules decreased with increasing number of CS/SL self-assembly layers. The results demonstrated that polyelectrolyte biopolymer-based LbL multilayer microcapsules can be a promising approach for the controlled release of PLR as well as other pesticides with poor photostability or short half-release time.
Collapse
Affiliation(s)
- Xiaojing Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology , 15 Beisanhuan East Road, Chao Yang District, Beijing 100029, China
| | | |
Collapse
|
11
|
Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M. The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr Biol 2011; 21:520-5. [PMID: 21396817 DOI: 10.1016/j.cub.2011.02.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/21/2011] [Accepted: 02/19/2011] [Indexed: 11/30/2022]
Abstract
The plant hormone auxin is perceived by a family of F box proteins called the TIR1/auxin-signaling F box proteins (AFBs). Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling. In this report, we demonstrate a unique role for the AFB4 clade. Both AFB4 and AFB5 function as auxin receptors based on in vitro assays. However, unlike other members of the family, loss of AFB4 results in a range of growth defects that are consistent with auxin hypersensitivity, including increased hypocotyl and petiole elongation and increased numbers of lateral roots. Indeed, qRT-PCR experiments show that afb4-2 is hypersensitive to indole-3-acetic acid (IAA) in the hypocotyl, indicating that AFB4 is a negative regulator of auxin response. Furthermore, we show that AFB4 has a particularly important role in the response of seedlings to elevated temperature. Finally, we provide evidence that the AFB4 clade is the major target of the picloram family of auxinic herbicides. These results reveal a previously unknown aspect of auxin receptor function.
Collapse
Affiliation(s)
- Katie Greenham
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Chaleff RS, Parsons MF. Direct selection in vitro for herbicide-resistant mutants of Nicotiana tabacum. Proc Natl Acad Sci U S A 2010; 75:5104-7. [PMID: 16592583 PMCID: PMC336272 DOI: 10.1073/pnas.75.10.5104] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven cell lines of Nicotiana tabacum resistant to the herbicide picloram were isolated from cell cultures. In crosses of plants regenerated from four cell lines, resistance was inherited as a single dominant Mendelian allele. Plants could not be regenerated from one cell line, and expression of resistance proved unstable in two others.
Collapse
Affiliation(s)
- R S Chaleff
- Department of Plant Breeding and Biometry and Section of Botany, Genetics, and Development, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
13
|
Irvine NM, Cooper DH, Thornburgh S. Characterization of two hydroxytrichloropicolinic acids: application of the one-bond chlorine-isotope effect in 13C NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:436-440. [PMID: 18318451 DOI: 10.1002/mrc.2196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structures of 4-hydroxy-3,5,6-trichloropyridine-2-carboxylic acid (1a) and 6-hydroxy-3,4,5-trichloro-2-carboxylic acid (1b) were verified by the NMR analysis of their corresponding methylated and decarboxylated derivatives 2,3,5-trichloro-4-methoxypyridine (5) and 3,4,5-trichloro-2-methoxypyridine (8), respectively. The 6-hydroxy isomer (1a) was found to be in equilibrium with its pyridinone tautomer as evidenced by the formation of significant amounts of 3,4,5-trichloro-1-methyl-6-oxo-1,6-dihydropyridine-2-carboxylic acid methyl ester (6b) on exhaustive methylation. The one-bond chlorine-isotope effect was used and shown to be an effective tool for the identification of chlorinated carbons in (13)C NMR spectra providing an additional tool for solving structural problems in chlorinated compounds.
Collapse
Affiliation(s)
- Nicholas M Irvine
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | | | | |
Collapse
|
14
|
Garraway JL. Growth-regulating activity of some thiazole-and thiazoline-acetic acids. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780010605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Kirkwood RC. The relationship of metabolism studies to the modes of action of herbicides. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780140417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Pereira LF, Campello AP, Silveira O. Effect of Tordon 2,4-D 64/240 triethanolamine BR on the energy metabolism of rat liver mitochondria. J Appl Toxicol 1994; 14:21-6. [PMID: 8157865 DOI: 10.1002/jat.2550140105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tordon herbicide, which is a mixture of 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D), depresses the phosphorylation efficiency of the rat liver mitochondria, as inferred from the decrease of the respiratory control coefficient and the ADP/O ratios when NAD(+)-dependent substrates were used; NADH oxidase and NADH cytochrome c reductase were also inhibited, without any effect on the other enzymatic complexes of the respiratory chain. Tordon (66.2 nmol picloram + 270 nmol 2,4-D mg-1 protein) affected the amplitude of swelling induced by glutamate, succinate, (N,N,N',N'-tetramethyl-p-phenyldiamine + sodium ascorbate and ATP. These results characterize an interaction of Tordon with complex I of the respiratory chain and also a partial collapse of the proton motive force of the mitochondrial inner membrane without affecting its elasticity.
Collapse
Affiliation(s)
- L F Pereira
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, PR Brasil
| | | | | |
Collapse
|
17
|
Deschamps RJA, Hall JC. Validation of a monoclonal antibody‐based indirect enzyme immunoassay method for picloram detection in soil and plants. FOOD AGR IMMUNOL 1991. [DOI: 10.1080/09540109109354739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
|
19
|
|
20
|
Abstract
Two studies of the carcinogenicity of the herbicide picloram in animals were reviewed. Examination of histological sections showed that picloram is highly carcinogenic in rats and mice. Neoplasms at all sites, including malignant neoplasms, were increased in male and female rats given both low and high doses of picloram in the National Cancer Institute rat study. The malignant neoplasms were both carcinomas and sarcomas. Neoplasms of the endocrine organs, particularly carcinomas, were increased in male and female rats given picloram. These carcinomas were observed in the adrenal, thyroid, and pituitary glands. Neoplasms were also increased in the liver of male and female rats and in the reproductive organs of female rats given picloram. Male and female mice exposed to picloram developed neoplasms of the spleen in the National Cancer Institute mouse study. There were also toxic changes in rats and mice. Male rats had chronic renal disease, parathyroid hyperplasia, and polyarteritis. There was atrophy of the testes in both male rats and mice given picloram.
Collapse
|
21
|
McGuire TA, Wing RE, Doane WM. Preparation of Starch Esters of Herbicides and Their Evaluation as Slow-Release Agents. STARCH-STARKE 1981. [DOI: 10.1002/star.19810330409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Livingston RJ, de La Cruz AA. Review of current literature concerning the acute and chronic effects of pesticides on aquatic organisms. ACTA ACUST UNITED AC 1977. [DOI: 10.1080/10643387709381655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
REID CPP, HURTT W. Root Exudation of Herbicides by Woody Plants: Allelopathic Implications. Nature 1970. [DOI: 10.1038/225291a0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. ADVANCES IN APPLIED MICROBIOLOGY 1965; 7:35-80. [PMID: 5321881 DOI: 10.1016/s0065-2164(08)70383-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|