1
|
Li X, Su H, Liang W, Zhou W, Rahman A, Xu Z, Zhong C, Mai D, Dai R, Gou H, Wang Z, Zheng X, Wu Q, Zhang Z. Inference of a "Hot Ice" Layer in Nitrogen-Rich Planets: Demixing the Phase Diagram and Phase Composition for Variable Concentration Helium-Nitrogen Mixtures Based on Isothermal Compression. J Phys Chem A 2022; 126:3745-3757. [PMID: 35648656 DOI: 10.1021/acs.jpca.2c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Van der Waals (vdW) chemistry in simple molecular systems may be important for understanding the structure and properties of the interiors of the outer planets and their satellites, where pressures are high and such components may be abundant. In the current study, Raman spectra and visual observation are employed to investigate the phase separation and composition determination for helium-nitrogen mixtures with helium concentrations from 20 to 95% along the 295 K isothermal compression. Fluid-fluid-solid triple-phase equilibrium and several equilibria of two phases including fluid-fluid and fluid-solid have been observed in different helium-nitrogen mixtures upon loading or unloading pressure. The homogeneous fluid in helium-nitrogen mixtures separates into a helium-rich fluid (F1) and a nitrogen-rich fluid (F2) with increasing pressure. The triple-phase point occurs at 295 K and 8.8 GPa for a solid-phase (N2)11He vdW compound, fluid F1 with around 50% helium, and fluid F2 with 95% helium. Helium concentrations of F1 coexisted with the (N2)11He vdW compound or δ-N2 in helium-nitrogen mixtures with different helium concentrations between 40 and 50% and between 20 and 40%, respectively. In addition, the helium concentration of F2 is the same in helium-nitrogen mixtures with different helium concentrations and decreases upon loading pressure. Pressure-induced nitrogen molecule ordering at 32.6 GPa and a structural phase transition at 110 GPa are observed in (N2)11He. In addition, at 187 GPa, a pressure-induced transition to an amorphous state is identified.
Collapse
Affiliation(s)
- Xiangdong Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Su
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentao Liang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenju Zhou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Azizur Rahman
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zilong Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Zhong
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Di Mai
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Zhongping Wang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianxu Zheng
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Qiang Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Paty C, Arridge CS, Cohen IJ, DiBraccio GA, Ebert RW, Rymer AM. Ice giant magnetospheres. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190480. [PMID: 33161869 DOI: 10.1098/rsta.2019.0480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Carol Paty
- Department of Earth Sciences, University of Oregon, 100 Cascade Hall, Eugene, OR 97403-1272, USA
| | - Chris S Arridge
- Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Gina A DiBraccio
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Robert W Ebert
- Department of Space Research, Southwest Research Institute, San Antonio, TX 78228-0510, USA
- Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249-0600, USA
| | - Abigail M Rymer
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
3
|
Melin H. The upper atmospheres of Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190478. [PMID: 33161864 PMCID: PMC7658783 DOI: 10.1098/rsta.2019.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H3+ provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H3+ has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H3+ at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Henrik Melin
- School of Physics and Astronomy, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Lamy L. Auroral emissions from Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190481. [PMID: 33161867 PMCID: PMC7658782 DOI: 10.1098/rsta.2019.0481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 05/20/2023]
Abstract
Uranus and Neptune possess highly tilted/offset magnetic fields whose interaction with the solar wind shapes unique twin asymmetric, highly dynamical, magnetospheres. These radiate complex auroral emissions, both reminiscent of those observed at the other planets and unique to the ice giants, which have been detected at radio and ultraviolet (UV) wavelengths to date. Our current knowledge of these radiations, which probe fundamental planetary properties (magnetic field, rotation period, magnetospheric processes, etc.), still mostly relies on Voyager 2 radio, UV and in situ measurements, when the spacecraft flew by each planet in the 1980s. These pioneering observations were, however, limited in time and sampled specific solar wind/magnetosphere configurations, which significantly vary at various timescales down to a fraction of a planetary rotation. Since then, despite repeated Earth-based observations at similar and other wavelengths, only the Uranian UV aurorae have been re-observed at scarce occasions by the Hubble Space Telescope. These observations revealed auroral features radically different from those seen by Voyager 2, diagnosing yet another solar wind/magnetosphere configuration. Perspectives for the in-depth study of the Uranian and Neptunian auroral processes, with implications for exoplanets, include follow-up remote Earth-based observations and future orbital exploration of one or both ice giant planetary systems. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- L. Lamy
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
- LAM, Pythéas, Aix Marseille Université, CNRS, CNES, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France
- e-mail:
| |
Collapse
|
5
|
Moore L, Moses JI, Melin H, Stallard TS, O’Donoghue J. Atmospheric implications of the lack of H 3+ detection at Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200100. [PMID: 33161862 PMCID: PMC7658779 DOI: 10.1098/rsta.2020.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
H3+ has been detected at all of the solar system giant planets aside from Neptune. Current observational upper limits imply that there is far less H3+ emission at Neptune than rudimentary modelling would suggest. Here, we explore via modelling a range of atmospheric conditions in order to find some that could be consistent with observational constraints. In particular, we consider that the upper atmosphere might be much cooler than it was during the 1989 Voyager 2 encounter, and we examine the impact of an enhanced influx of external material that could act to reduce H3+ density. Resulting ionosphere models that are consistent with existing H3+ observational constraints have an exospheric temperature of 450 K or less, 300 K lower than the Voyager 2 value. Alternatively, if a topside CO influx of 2 × 108 cm-2 s-1 is imposed, the upper atmospheric temperature can be higher, up to 550 K. The potential cooling of Neptune's atmosphere is relevant for poorly understood giant planet thermospheric energetics, and would also impact aerobreaking manoeuvers for any future spacecraft. Such a large CO influx, if present, could imply Triton is a very active moon with prominent atmospheric escape, and/or that Neptune's rings significantly modify its upper atmosphere, and the introduction of so much exogenic material would complicate interpretation of the origin of species observed in Neptune's lower atmosphere. This article is part a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- L. Moore
- Boston University, Boston, MA, USA
| | | | - H. Melin
- University of Leicester, Leicester, UK
| | | | - J. O’Donoghue
- JAXA Institute of Space and Astronautical Science, Tokyo, Japan
| |
Collapse
|
6
|
Moses JI, Cavalié T, Fletcher LN, Roman MT. Atmospheric chemistry on Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190477. [PMID: 33161866 PMCID: PMC7658780 DOI: 10.1098/rsta.2019.0477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
Comparatively little is known about atmospheric chemistry on Uranus and Neptune, because remote spectral observations of these cold, distant 'Ice Giants' are challenging, and each planet has only been visited by a single spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is expected to control the composition in the deeper, hotter regions of the atmosphere on both planets, but disequilibrium chemical processes such as transport-induced quenching and photochemistry alter the composition in the upper atmospheric regions that can be probed remotely. Surprising disparities in the abundance of disequilibrium chemical products between the two planets point to significant differences in atmospheric transport. The atmospheric composition of Uranus and Neptune can provide critical clues for unravelling details of planet formation and evolution, but only if it is fully understood how and why atmospheric constituents vary in a three-dimensional sense and how material coming in from outside the planet affects observed abundances. Future mission planning should take into account the key outstanding questions that remain unanswered about atmospheric chemistry on Uranus and Neptune, particularly those questions that pertain to planet formation and evolution, and those that address the complex, coupled atmospheric processes that operate on Ice Giants within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- J. I. Moses
- Space Science Institute, 4765 Walnut Street, Suite B, Boulder, CO 80301, USA
| | - T. Cavalié
- Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- LESIA, Observatoire de Paris, 92195 Meudon, France
| | - L. N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - M. T. Roman
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
7
|
Maughan MR, Hacker Z, Murgatroyd T, Leachman J. Instrumented Cylindrical Punch Indentation of Solid Nitrogen at 30-40 K. CRYOGENICS 2020; 111:103191. [PMID: 33281199 PMCID: PMC7709784 DOI: 10.1016/j.cryogenics.2020.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In support of NASA's Triton Hopper project, mechanical response data for solid nitrogen are needed for concept validation and development. Available mechanical properties data is sparse with only three known indentation measurements existing between 30 and 40 K. To generate more data, a custom instrumented hardness tester was developed to interface with a cryostat. The system was used to conduct cylindrical punch indentation testing at Triton-relevant thermodynamic conditions. Pressure versus displacement curves and hardness values were obtained. In the experiments the hardness ranged between about 2 kg/mm2 and 0.5 kg/mm2 in the aforementioned temperature range. A suspected brittle fracture is observed at lower temperatures in the range.
Collapse
Affiliation(s)
- Michael R. Maughan
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, USA
| | - Zachary Hacker
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, USA
| | - Thomas Murgatroyd
- Hydrogen Properties for Energy Research (HYPER) Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Jacob Leachman
- Hydrogen Properties for Energy Research (HYPER) Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Fletcher LN, de Pater I, Orton GS, Hofstadter MD, Irwin PGJ, Roman MT, Toledo D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. SPACE SCIENCE REVIEWS 2020; 216:21. [PMID: 32165773 PMCID: PMC7040070 DOI: 10.1007/s11214-020-00646-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/15/2020] [Indexed: 05/04/2023]
Abstract
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.
Collapse
Affiliation(s)
- Leigh N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Imke de Pater
- Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720 USA
| | - Glenn S. Orton
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | | | - Patrick G. J. Irwin
- Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Michael T. Roman
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Daniel Toledo
- Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| |
Collapse
|
9
|
Fletcher LN, de Pater I, Orton GS, Hofstadter MD, Irwin PGJ, Roman MT, Toledo D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. SPACE SCIENCE REVIEWS 2020. [PMID: 32165773 DOI: 10.1007/s11214-019-0619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.
Collapse
Affiliation(s)
- Leigh N Fletcher
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Imke de Pater
- 3Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720 USA
| | - Glenn S Orton
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Mark D Hofstadter
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Patrick G J Irwin
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Michael T Roman
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Daniel Toledo
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| |
Collapse
|
10
|
Moore L, Melin H, O'Donoghue J, Stallard TS, Moses JI, Galand M, Miller S, Schmidt CA. Modelling H 3+ in planetary atmospheres: effects of vertical gradients on observed quantities. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190067. [PMID: 31378180 PMCID: PMC6710898 DOI: 10.1098/rsta.2019.0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2019] [Indexed: 05/20/2023]
Abstract
Since its detection in the aurorae of Jupiter approximately 30 years ago, the H3+ ion has served as an invaluable probe of giant planet upper atmospheres. However, the vast majority of monitoring of planetary H3+ radiation has followed from observations that rely on deriving parameters from column-integrated paths through the emitting layer. Here, we investigate the effects of density and temperature gradients along such paths on the measured H3+ spectrum and its resulting interpretation. In a non-isothermal atmosphere, H3+ column densities retrieved from such observations are found to represent a lower limit, reduced by 20% or more from the true atmospheric value. Global simulations of Uranus' ionosphere reveal that measured H3+ temperature variations are often attributable to well-understood solar zenith angle effects rather than indications of real atmospheric variability. Finally, based on these insights, a preliminary method of deriving vertical temperature structure is demonstrated at Jupiter using model reproductions of electron density and H3+ measurements. The sheer diversity and uncertainty of conditions in planetary atmospheres prohibits this work from providing blanket quantitative correction factors; nonetheless, we illustrate a few simple ways in which the already formidable utility of H3+ observations in understanding planetary atmospheres can be enhanced. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.
Collapse
Affiliation(s)
- L. Moore
- Boston University, Boston, MA, USA
| | - H. Melin
- University of Leicester, Leicester, UK
| | - J. O'Donoghue
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | | | - M. Galand
- Department of Physics, Imperial College London, London, UK
| | - S. Miller
- University College London, London, UK
| | | |
Collapse
|
11
|
Qin Z, Zhao J, Liu L. Radiative transition probabilities between low-lying electronic states of N 2. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1562579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhi Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Junming Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Linhua Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
- School of Energy and Power Engineering, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
12
|
Moses JI, Fletcher LN, Greathouse TK, Orton GS, Hue V. Seasonal Stratospheric Photochemistry on Uranus and Neptune. ICARUS 2018; 307:124-145. [PMID: 30842687 PMCID: PMC6398965 DOI: 10.1016/j.icarus.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere. At mbar pressures and deeper, slower chemistry and diffusion lead to latitude variations that become more symmetric about the equator. On Uranus, the stagnant, poorly mixed stratosphere confines methane and its photochemical products to higher pressures, where chemistry and diffusion time scales remain large. Seasonal variations in hydrocarbons are therefore predicted to be more muted on Uranus, despite the planet's very large obliquity. Radiative-transfer simulations demonstrate that latitude variations in hydrocarbons on both planets are potentially observable with future JWST mid-infrared spectral imaging. Our seasonal model predictions for Neptune compare well with retrieved C2H2 and C2H6 abundances from spatially resolved ground-based observations (no such observations currently exist for Uranus), suggesting that stratospheric circulation - which was not included in these models - may have little influence on the large-scale meridional hydrocarbon distributions on Neptune, unlike the situation on Jupiter and Saturn.
Collapse
Affiliation(s)
- Julianne I Moses
- Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA
| | - Leigh N Fletcher
- Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Glenn S Orton
- Jet Propulsion Laboratory, MS 183-501, Pasadena, CA 91109, USA
| | - Vincent Hue
- Southwest Research Institute, San Antonio, TX 78228, USA
| |
Collapse
|
13
|
Kudryavtsev D, Serovaiskii A, Mukhina E, Kolesnikov A, Gasharova B, Kutcherov V, Dubrovinsky L. Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa. J Phys Chem A 2017; 121:6004-6011. [PMID: 28737910 DOI: 10.1021/acs.jpca.7b05492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman and IR spectroscopy studies on propane were performed at pressures of up to 40 GPa at ambient temperatures using the diamond anvil cell technique. Propane undergoes three phase transitions at 6.4(5), 14.5(5), and 26.5(5) GPa in Raman spectroscopy and at 7.0(5), 14.0(5), and 27.0(5) GPa in IR spectroscopy. The phase transitions were identified using the Raman and IR splitting modes and the appearance or disappearance of peaks, which clearly corresponded to the changes in the frequencies of the modes as the pressure changed. Our results demonstrate the complex high-pressure behavior of solid propane.
Collapse
Affiliation(s)
- Daniil Kudryavtsev
- Department of Energy Technology Royal Institute of Technology , 100 44 Stockholm, Sweden
| | - Alexander Serovaiskii
- Department of Energy Technology Royal Institute of Technology , 100 44 Stockholm, Sweden
| | - Elena Mukhina
- Department of Energy Technology Royal Institute of Technology , 100 44 Stockholm, Sweden
| | - Anton Kolesnikov
- Department of Physics Gubkin Russian State University of Oil and Gas , 119991 Moscow, Russia
| | - Biliana Gasharova
- Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Vladimir Kutcherov
- Department of Energy Technology Royal Institute of Technology , 100 44 Stockholm, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth , D-95440 Bayreuth, Germany
| |
Collapse
|
14
|
OSCILLATOR STRENGTHS OF VIBRIONIC EXCITATIONS OF NITROGEN DETERMINED BY THE DIPOLE (γ,γ) METHOD. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/819/2/142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Adams SF, Williamson JM. Spectroscopic study of N2(b1Πu, ν = 8) by atmospheric-pressure resonant-enhanced multiphoton ionization and fluorescence detection. J Phys Chem A 2013; 117:13535-42. [PMID: 24047155 DOI: 10.1021/jp407412t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A spectroscopic analysis of the strongly perturbed N2(b(1)Πu, ν = 8) state has been conducted, accounting for b(1)Πu(ν = 8) ← X (1)Σg(+)(ν = 0) transitions, for the first time, up to J' = 20. A novel laser spectroscopy technique, using a combination of resonant-enhanced multiphoton ionization and fluorescence detection at atmospheric pressure, avoids the severe effects of perturbation reported in past extreme vacuum ultraviolet absorption experiments that produced weak and unusable spectra for the ν = 8 level. The R, Q, and P branches of the three-photon absorption transition b(1)Πu(ν = 8) ← X(1)Σg(+)(ν = 0) were fit, allowing rotational term energy assignment up to J' = 20 and molecular constants to be determined. Evidence of the previously suspected perturbation in b(1)Πu(ν = 8) is clear in this data, with significant Λ-type doubling at higher J' along with an anomalous negative value determined for the centrifugal distortion coefficient.
Collapse
Affiliation(s)
- Steven F Adams
- Air Force Research Laboratory, Wright-Patterson AFB , Ohio 45433, United States
| | | |
Collapse
|
16
|
Fegley B. Properties and Composition of the Terrestrial Oceans and of the Atmospheres of the Earth and Other Planets. AGU REFERENCE SHELF 2013. [DOI: 10.1029/rf001p0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Krasnopolsky VA, Sandel BR, Herbert F, Vervack RJ. Temperature, N2, and N density profiles of Triton's atmosphere: Observations and model. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92je02680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Singhal RP, Bhardwaj A. Monte Carlo simulation of photoelectron energization in parallel electric fields: Electroglow on Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja02749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Desch MD, Farrell WM, Kaiser ML. An anomalous component of neptune radio emission: Implications for the auroral zone. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja02325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
O'Keeffe P, Bolognesi P, Moise A, Richter R, Ovcharenko Y, Avaldi L. Vibrationally resolved photoionization of N2 near threshold. J Chem Phys 2012; 136:104307. [PMID: 22423838 DOI: 10.1063/1.3692687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recently developed velocity map imaging spectrometer has been used to study the photoionization of molecular nitrogen near threshold. The potentialities of the spectrometer have been exploited to measure simultaneously the energy and angular distribution of the photoelectrons corresponding to the residual N(2)(+) X(2)Σ(g) v = 0-3 ion states. In a single experiment all the experimental observables, i.e., the total and partial cross sections, their branching ratios and the asymmetry parameter of the angular distributions have been determined.
Collapse
Affiliation(s)
- P O'Keeffe
- CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Area della Ricerca di Roma 1, Monterotondo Scalo, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Moise A, Prince KC, Richter R. Time-resolved study of excited states of N2 near its first ionization threshold. J Chem Phys 2011; 134:114312. [PMID: 21428624 DOI: 10.1063/1.3560909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing (1)Σ(g)(-) state has been excited via the intermediate c(4) (v = 0) (1)Π(u) Rydberg state. We present the analysis of the band located at T(v) = 10,800.7 ± 2 cm(-1) with respect to the intermediate state, 126,366 ± 11 cm(-1) with respect to the ground state, approximately 700 cm(-1) above the first ionization threshold. From the analysis a rotational constant of B(v) = 1.700 ± 0.005 cm(-1) has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c(4) (0) and c(5) (0) states are 5.6 and 4.4 ns, respectively, while the b(') (12), c(')(4) (4, 5, 6), and c(')(5) (0) states all have lifetimes in the range of hundreds of picoseconds.
Collapse
Affiliation(s)
- Angelica Moise
- Sincrotrone Trieste, Area Science Park, I-34149 Basovizza, Trieste, Italy.
| | | | | |
Collapse
|
22
|
Conrath B, Flasar FM, Hanel R, Kunde V, Maguire W, Pearl J, Pirraglia J, Samuelson R, Gierasch P, Weir A, Bezard B, Gautier D, Cruikshank D, Horn L, Springer R, Shaffer W. Infrared observations of the neptunian system. Science 2010; 246:1454-9. [PMID: 17755999 DOI: 10.1126/science.246.4936.1454] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The infrared interferometer spectrometer on Voyager 2 obtained thermal emission spectra of Neptune with a spectral resolution of 4.3 cm(-1). Measurements of reflected solar radiation were also obtained with a broadband radiometer sensitive in the visible and near infrared. Analysis of the strong C(2)H(2) emission feature at 729 cm(-1) suggests an acetylene mole fraction in the range between 9 x 10(-8) and 9 x 10(-7). Vertical temperature profiles were derived between 30 and 1000 millibars at 70 degrees and 42 degrees S and 30 degrees N. Temperature maps of the planet between 80 degrees S and 30 degrees N were obtained for two atmospheric layers, one in the lower stratosphere between 30 and 120 millibars and the other in the troposphere between 300 and 1000 millibars. Zonal mean temperatures obtained from these maps and from latitude scans indicate a relatively warm pole and equator with cooler mid-latitudes. This is qualitatively similar to the behavior found on Uranus even though the obliquities and internal heat fluxes of the two planets are markedly different. Comparison of winds derived from images with the vertical wind shear calculated from the temperature field indicates a general decay of wind speed with height, a phenomenon also observed on the other three giant planets. Strong, wavelike longitudinal thermal structure is found, some of which appears to be associated with the Great Dark Spot. An intense, localizd cold region is seen in the lower stratosphere, which does not appear to be correlated with any visible feature. A preliminary estimate of the effective temperature of the planet yields a value of 59.3 +/- 1.0 kelvins. Measurements of Triton provide an estimate of the daytime surface temperature of 38(+3)(-4) kelvins.
Collapse
|
23
|
Abstract
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator.
Collapse
|
24
|
Abstract
The Voyager mission revealed a complex system of rings and ring arcs around Neptune and uncovered six new satellites, four of which occupy orbits well inside the ring region. Analysis of Voyager data shows that a radial distortion with an amplitude of approximately 30 kilometers is traveling through the ring arcs, a perturbation attributable to the nearby satellite Galatea. Moreover, the arcs appear to be azimuthally confined by a resonant interaction with the same satellite, yielding a maximum spread in ring particle semimajor axes of 0.6 kilometer and a spread in forced eccentricities large enough to explain the arcs' 15-kilometer radial widths. Additional ring arcs discovered in the course of this study give further support to this model.
Collapse
|
25
|
Lavín C, Velasco A, Martín I. Rotational line intensities of the c4′1Σu+(1)-X1Σg+(0-2) bands of N2. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Liu X, Heays AN, Shemansky DE, Lewis BR, Feldman PD. Analysis of terrestrial thermospheric N2c′41Σu+(0) ∼b′1Σu+(1) −X1Σg+dayglow emission observed by the Far Ultraviolet Spectroscopic Explorer. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Heays AN, Lewis BR, Stark G, Yoshino K, Smith PL, Huber KP, Ito K. Oscillator strengths and line widths of dipole-allowed transitions in [sup 14]N[sub 2] between 86.0 and 89.7 nm. J Chem Phys 2009; 131:194308. [DOI: 10.1063/1.3257690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Stark G, Lewis BR, Heays AN, Yoshino K, Smith PL, Ito K. Oscillator strengths and line widths of dipole-allowed transitions in N214 between 89.7 and 93.5nm. J Chem Phys 2008; 128:114302. [DOI: 10.1063/1.2834933] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Johnson PV, Malone CP, Khakoo MA, McConkey, JW, Kanik I. Electron collisions with constituents of planetary atmospheres. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1742-6596/88/1/012069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Wu CYR, Fung HS, Chang KY, Singh TS, Mu XL, Nee JB, Chiang SY, Judge DL. Fluorescence excitation spectra of the bΠu1, b′Σu+1, cnΠu1, and cn′Σu+1 states of N2 in the 80–100nm region. J Chem Phys 2007; 127:084314. [PMID: 17764255 DOI: 10.1063/1.2768923] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.
Collapse
Affiliation(s)
- C Y Robert Wu
- Space Sciences Center, University of Southern California, Los Angeles, California 90089-1341, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stark G, Huber KP, Yoshino K, Smith PL, Ito K. Oscillator strength and linewidth measurements of dipole-allowed transitions in N214 between 93.5 and 99.5nm. J Chem Phys 2005; 123:214303. [PMID: 16356044 DOI: 10.1063/1.2134703] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Line oscillator strengths in 16 electric dipole-allowed bands of 14N2 in the 93.5-99.5 nm (106,950-100,500 cm(-1)) region have been measured at an instrumental resolution of 6.5 x 10(-4) nm (0.7 cm(-1)). The transitions terminate on vibrational levels of the 3psigma 1Sigma u (+), 3ppi 1Pi u, and 3ssigma 1Pi u Rydberg states and of the b' 1Sigma u (+) and b 1Pi u valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled-Schrodinger-equation calculations that do not take into account rotational interactions. Most bands in this study reveal a marked J dependence of the f values and/or display anomalous P-, Q- and R-branch intensity patterns. These patterns should help inform future spectroscopic models that incorporate rotational effects, and these are critical for the construction of realistic atmospheric radiative transfer models. Linewidth measurements are reported for four bands. Information provided by the J dependences of the experimental linewidths should be of use in the development of a more complete understanding of the predissociation mechanisms in N2.
Collapse
Affiliation(s)
- G Stark
- Department of Physics, Wellesley College, Wellesley, Massachusetts 02481, USA.
| | | | | | | | | |
Collapse
|
32
|
Bertaux JL, Leblanc F, Witasse O, Quemerais E, Lilensten J, Stern SA, Sandel B, Korablev O. Discovery of an aurora on Mars. Nature 2005; 435:790-4. [PMID: 15944698 DOI: 10.1038/nature03603] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 03/29/2005] [Indexed: 11/09/2022]
Abstract
In the high-latitude regions of Earth, aurorae are the often-spectacular visual manifestation of the interaction between electrically charged particles (electrons, protons or ions) with the neutral upper atmosphere, as they precipitate along magnetic field lines. More generally, auroral emissions in planetary atmospheres "are those that result from the impact of particles other than photoelectrons" (ref. 1). Auroral activity has been found on all four giant planets possessing a magnetic field (Jupiter, Saturn, Uranus and Neptune), as well as on Venus, which has no magnetic field. On the nightside of Venus, atomic O emissions at 130.4 nm and 135.6 nm appear in bright patches of varying sizes and intensities, which are believed to be produced by electrons with energy <300 eV (ref. 7). Here we report the discovery of an aurora in the martian atmosphere, using the ultraviolet spectrometer SPICAM on board Mars Express. It corresponds to a distinct type of aurora not seen before in the Solar System: it is unlike aurorae at Earth and the giant planets, which lie at the foot of the intrinsic magnetic field lines near the magnetic poles, and unlike venusian auroras, which are diffuse, sometimes spreading over the entire disk. Instead, the martian aurora is a highly concentrated and localized emission controlled by magnetic field anomalies in the martian crust.
Collapse
Affiliation(s)
- Jean-Loup Bertaux
- Service d'Aéronomie du CNRS/IPSL, BP 3, Verrières-le-Buisson, 91371, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Galand M, Chakrabarti S. Auroral processes in the solar system. ATMOSPHERES IN THE SOLAR SYSTEM: COMPARATIVE AERONOMY 2002. [DOI: 10.1029/130gm05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Solar system ionospheres. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/130gm04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Burns JA, Hamilton DP, Showalter MR. Dusty Rings and Circumplanetary Dust: Observations and Simple Physics. ASTRONOMY AND ASTROPHYSICS LIBRARY 2001. [DOI: 10.1007/978-3-642-56428-4_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Lee AYT, Yung YL, Moses J. Photochemical modeling of CH3abundances in the outer solar system. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001186] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Krasnopolsky VA, Cruikshank DP. Photochemistry of Pluto's atmosphere and ionosphere near perihelion. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je001038] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
The Surface Compositions of Triton, Pluto, and Charon. ASTROPHYSICS AND SPACE SCIENCE LIBRARY 1998. [DOI: 10.1007/978-94-011-5252-5_27] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Abstract
A stellar-occultation light curve for Triton shows asymmetry that can be understood if Triton's middle atmosphere is distorted from spherical symmetry. Although a globally oblate model can explain the data, the inferred atmospheric flattening is so large that it could be caused only by an unrealistic internal mass distribution or highly supersonic zonal winds. Cyclostrophic winds confined to a jet near Triton's northern or southern limbs (or both) could also be responsible for the details of the light curve, but such winds are required to be slightly supersonic. Hazes and clouds in the atmosphere are unlikely to have caused the asymmetry in the light curve.
Collapse
Affiliation(s)
- J L Elliot
- Department of Earth, Atmospheric, and Planetary Sciences and Department of Physics, Building 54-422, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| | | | | | | | | |
Collapse
|
40
|
Seiff A, Kirk DB, Knight TCD, Young LA, Milos FS, Venkatapathy E, Mihalov JD, Blanchard RC, Young RE, Schubert G. Thermal Structure of Jupiter's Upper Atmosphere Derived from the Galileo Probe. Science 1997; 276:102-4. [PMID: 9082977 DOI: 10.1126/science.276.5309.102] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperatures in Jupiter's atmosphere derived from Galileo Probe deceleration data increase from 109 kelvin at the 175-millibar level to 900 ± 40 kelvin at 1 nanobar, consistent with Voyager remote sensing data. Wavelike oscillations are present at all levels. Vertical wavelengths are 10 to 25 kilometers in the deep isothermal layer, which extends from 12 to 0.003 millibars. Above the 0.003-millibar level, only 90- to 270- kilometer vertical wavelengths survive, suggesting dissipation of wave energy as the probable source of upper atmosphere heating.
Collapse
Affiliation(s)
- A Seiff
- A. Seiff, Department of Meteorology, San Jose State University Foundation and MS 245-1, Ames Research Center, Moffett Field, CA 94035, USA. D. B. Kirk, University of Oregon, 37465 Riverside Drive, Pleasant Hill, Oregon 97455, USA. T. C. D. Knight, 2370 S. Brentwood St., Lakewood, CO 80227, USA. L. A. Young, Center for Space Physics, Boston University, 725 Commonwealth Ave., Boston, Massachusetts 02215, USA. F. S. Milos, M.S. 234-1, Ames Research Center, NASA, Moffett Field, CA 94035, USA. E. Venkatapathy, Eloret Institute, MS 230-2, Ames Research Center, Moffett Field, CA 94035, USA. J. D. Mihalov and R. E. Young, MS 245-3, Ames Research Center, Moffett Field, CA 94035, USA. R. C. Blanchard, MS 408A, Langley Research Center, NASA, Hampton, VA 23681, USA. G. Schubert, Department of Earth and Space Sciences, University of California, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Ajello JM, Ciocca M. Fast nitrogen atoms from dissociative excitation of N2by electron impact. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je01827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Sittler EC, Hartle RE. Triton's ionospheric source: Electron precipitation or photoionization. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Yelle RV, Young LA, Vervack RJ, Young R, Pfister L, Sandel BR. Structure of Jupiter's upper atmosphere: Predictions for Galileo. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95je03384] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
|
46
|
Krasnopolsky VA, Cruikshank DP. Photochemistry of Triton's atmosphere and ionosphere. JOURNAL OF GEOPHYSICAL RESEARCH 1995; 100:21271-86. [PMID: 11541126 DOI: 10.1029/95je01904] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The photochemistry of 32 neutral and 21 ion species in Triton's atmosphere is considered. Parent species N2, CH4, and CO (with a mixing ratio of 3 x 10(-4) in our basic model) sublime from the ice with rates of 40, 208, and 0.3 g/cm2/b.y., respectively. Chemistry below 50 km is driven mostly by photolysis of methane by the solar and interstellar medium Lyman-alpha photons, producing hydrocarbons C2H4, C2H6, and C2H2 which form haze particles with precipitation rates of 135, 28, and 1.3 g/cm2/b.y., respectively. Some processes are discussed which increase the production of HCN (by an order of magnitude to a value of 29 g/cm2/b.y.) and involve indirect photolysis of N2 by neutrals. Reanalysis of the measured methane profiles gives an eddy diffusion coefficient K = 4 x 10(3) cm2/s above the tropopause and a more accurate methane number density near the surface, (3.1 +/- 0.8) x 10(11) cm-3. Chemistry above 200 km is driven by the solar EUV radiation (lambda < 1000 angstroms) and by precipitation of magnetospheric electrons with a total energy input of 10(8) W (based on thermal balance calculations). The most abundant photochemical species are N, H2, H, O, and C. They escape with the total rates of 7.7 x 10(24) s-1, 4.5 x 10(25) s-1, 2.4 x 10(25) s-1, 4.4 x 10(22) s-1, and 1.1 x 10(24) s-1, respectively. Atomic species are transported to a region of 50-200 km and drive the chemistry there. Ionospheric chemistry explains the formation of an E region at 150-240 km with HCO+ as a major ion, and of an F region above 240 km with a peak at 320 km and C+ as a major ion. The ionosphere above 500 km consists of almost equal densities of C+ and N+ ions. The model profiles agree with the measured atomic nitrogen and electron density profiles. A number of other models with varying rate coefficients of some reactions, differing properties of the haze particles (chemically passive or active), etc., were developed. These models show that there are four basic unknown values which have strong impacts on the composition and structure of the atmosphere and ionosphere. These values and their plausible ranges are the CO mixing ratio fco = 10(-4)-10(-3), the magnetospheric electron energy input (1 +/- 0.5) x 10(8) W, the rate coefficient of charge-exchange reaction N2(+) + C k = 10(-11)-10(-10) cm3/s, and the ion escape velocity Vi approximately equal to 150 cm/s.
Collapse
Affiliation(s)
- V A Krasnopolsky
- National Research Council/NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | |
Collapse
|
47
|
Ajello JM, Kanik I, Ahmed SM, Clarke JT. Line profile of H Lyman α from dissociative excitation of H2with application to Jupiter. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/95je02360] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Paranicas C, Cheng AF. Drift shells and aurora computed using the O8 magnetic field model for Neptune. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94ja01573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Stevens MH, Meier RR, Conway RR, Strobel DF. A resolution of the N2Carroll-Yoshino (c4′ -X) band problem in the Earth's atmosphere. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/93ja01996] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
|