1
|
Encrenaz T, Sicardy B, Roques F, Coustenis A. Atmospheric sounding using Earth-based occultations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240195. [PMID: 40013575 DOI: 10.1098/rsta.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 02/28/2025]
Abstract
The observation of Earth-based stellar occultations by solar system planets and satellites has been used for decades to retrieve information on the physical properties of their atmospheres. From the variations of the stellar flux during ingress and egress and, in some favourable cases, from the central flash, one can infer the vertical density, pressure and temperature profiles around the half-light level (typically in the range of a few μbars), as well as zonal wind regimes and the presence of hazes. Earth-based occultations have been successfully applied to all planets and satellites surrounded by an atmosphere, and have delivered unique and significant information that are often complementary to the results obtained by planetary space missions. The great improvement of the stellar catalogues provided by the Gaia astrometric space mission has drastically enlarged the capabilities of the stellar occultation method, which appears especially promising for probing the tenuous atmospheres of distant objects of the solar system.This article is part of the theme issue 'Major advances in planetary sciences thanks to stellar occultations'.
Collapse
Affiliation(s)
- Therese Encrenaz
- LESIA, Observatoire de Paris, Université PSL, Meudon 92195, France
- CNRS, UPMC, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, Meudon 92190, France
| | - Bruno Sicardy
- LESIA, Observatoire de Paris, Université PSL, Meudon 92195, France
- CNRS, UPMC, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, Meudon 92190, France
| | - Françoise Roques
- LESIA, Observatoire de Paris, Université PSL, Meudon 92195, France
- CNRS, UPMC, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, Meudon 92190, France
| | - Athena Coustenis
- LESIA, Observatoire de Paris, Université PSL, Meudon 92195, France
- CNRS, UPMC, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, Meudon 92190, France
| |
Collapse
|
2
|
GNSS-RO Deep Refraction Signals from Moist Marine Atmospheric Boundary Layer (MABL). ATMOSPHERE 2022. [DOI: 10.3390/atmos13060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The marine atmospheric boundary layer (MABL) has a profound impact on sensible heat and moisture exchanges between the surface and the free troposphere. The goal of this study is to develop an alternative technique for retrieving MABL-specific humidity (q) using GNSS-RO data in deep-refracted signals. The GNSS-RO signal amplitude (i.e., signal-to-noise ratio or SNR) at the deep straight-line height (HSL) was been found to be strongly impacted by water vapor within the MABL. This study presents a statistical analysis to empirically relate the normalized SNR (SRO) at deep HSL to the MABL q at 950 hPa (~400 m). When compared to the ERA5 reanalysis data, a good linear q–SRO relationship is found with the deep HSL SRO data, but careful treatments of receiver noise, SNR normalization, and receiver orbital altitude are required. We attribute the good q–SRO correlation to the strong refraction from a uniform, horizontally stratiform and dynamically quiet MABL water vapor layer. Ducting and diffraction/interference by this layer help to enhance the SRO amplitude at deep HSL. Potential MABL water vapor retrieval can be further developed to take advantage of a higher number of SRO measurements in the MABL compared to the Level-2 products. A better sampled diurnal variation of the MABL q is demonstrated with the SRO data over the Southeast Pacific (SEP) and the Northeast Pacific (NEP) regions, which appear to be consistent with the low cloud amount variations reported in previous studies.
Collapse
|
3
|
Styczinski MJ, Vance SD, Harnett EM, Cochrane CJ. A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically. ICARUS 2022; 376:114840. [PMID: 35140451 PMCID: PMC8819682 DOI: 10.1016/j.icarus.2021.114840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 R above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.
Collapse
Affiliation(s)
- Marshall J. Styczinski
- Department of Physics, University of Washington, Box 351560, 3910 15th Ave NE, Seattle, WA 98195-1560, USA
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| | - Erika M. Harnett
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
- Department of Earth and Space Sciences, University of Washington, Box 351310, 4000 15th Ave NE, Seattle, WA 98195-1310, USA
| | - Corey J. Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| |
Collapse
|
4
|
Fan S, Gao P, Zhang X, Adams DJ, Kutsop NW, Bierson CJ, Liu C, Yang J, Young LA, Cheng AF, Yung YL. A bimodal distribution of haze in Pluto's atmosphere. Nat Commun 2022; 13:240. [PMID: 35017491 PMCID: PMC8752795 DOI: 10.1038/s41467-021-27811-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Pluto, Titan, and Triton make up a unique class of solar system bodies, with icy surfaces and chemically reducing atmospheres rich in organic photochemistry and haze formation. Hazes play important roles in these atmospheres, with physical and chemical processes highly dependent on particle sizes, but the haze size distribution in reducing atmospheres is currently poorly understood. Here we report observational evidence that Pluto’s haze particles are bimodally distributed, which successfully reproduces the full phase scattering observations from New Horizons. Combined with previous simulations of Titan’s haze, this result suggests that haze particles in reducing atmospheres undergo rapid shape change near pressure levels ~0.5 Pa and favors a photochemical rather than a dynamical origin for the formation of Titan’s detached haze. It also demonstrates that both oxidizing and reducing atmospheres can produce multi-modal hazes, and encourages reanalysis of observations of hazes on Titan and Triton. Pluto’s haze is revealed to have two types of particles: small spherical organic haze particles and micron-size fluffy aggregates. The persistence of these two populations has important implications for haze formation and properties on icy worlds.
Collapse
Affiliation(s)
- Siteng Fan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA. .,LMD/IPSL, Sorbonne Université, PSL Research University, École Normale Supérieure, École Polytechnique, CNRS, Paris, 75005, France.
| | - Peter Gao
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA
| | - Xi Zhang
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Danica J Adams
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Carver J Bierson
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85281, USA
| | - Chao Liu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiani Yang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Andrew F Cheng
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Yuk L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
5
|
Paty C, Arridge CS, Cohen IJ, DiBraccio GA, Ebert RW, Rymer AM. Ice giant magnetospheres. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190480. [PMID: 33161869 DOI: 10.1098/rsta.2019.0480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Carol Paty
- Department of Earth Sciences, University of Oregon, 100 Cascade Hall, Eugene, OR 97403-1272, USA
| | - Chris S Arridge
- Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Gina A DiBraccio
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Robert W Ebert
- Department of Space Research, Southwest Research Institute, San Antonio, TX 78228-0510, USA
- Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249-0600, USA
| | - Abigail M Rymer
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
6
|
Teanby NA, Irwin PGJ, Moses JI, Helled R. Neptune and Uranus: ice or rock giants? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190489. [PMID: 33161863 PMCID: PMC7658781 DOI: 10.1098/rsta.2019.0489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 05/20/2023]
Abstract
Existing observations of Uranus and Neptune's fundamental physical properties can be fitted with a wide range of interior models. A key parameter in these models is the bulk rock:ice ratio and models broadly fall into ice-dominated (ice giant) and rock-dominated (rock giant) categories. Here we consider how observations of Neptune's atmospheric temperature and composition (H2, He, D/H, CO, CH4, H2O and CS) can provide further constraints. The tropospheric CO profile in particular is highly diagnostic of interior ice content, but is also controversial, with deep values ranging from zero to 0.5 parts per million. Most existing CO profiles imply extreme O/H enrichments of >250 times solar composition, thus favouring an ice giant. However, such high O/H enrichment is not consistent with D/H observations for a fully mixed and equilibrated Neptune. CO and D/H measurements can be reconciled if there is incomplete interior mixing (ice giant) or if tropospheric CO has a solely external source and only exists in the upper troposphere (rock giant). An interior with more rock than ice is also more compatible with likely outer solar system ice sources. We primarily consider Neptune, but similar arguments apply to Uranus, which has comparable C/H and D/H enrichment, but no observed tropospheric CO. While both ice- and rock-dominated models are viable, we suggest a rock giant provides a more consistent match to available atmospheric observations. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- N. A. Teanby
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - P. G. J. Irwin
- Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - J. I. Moses
- Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA
| | - R. Helled
- Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Melin H. The upper atmospheres of Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190478. [PMID: 33161864 PMCID: PMC7658783 DOI: 10.1098/rsta.2019.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H3+ provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H3+ has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H3+ at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Henrik Melin
- School of Physics and Astronomy, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Helled R, Fortney JJ. The interiors of Uranus and Neptune: current understanding and open questions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190474. [PMID: 33161856 DOI: 10.1098/rsta.2019.0474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets' internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Ravit Helled
- Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, Switzerland
| | - Jonathan J Fortney
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Fletcher LN, de Pater I, Orton GS, Hofstadter MD, Irwin PGJ, Roman MT, Toledo D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. SPACE SCIENCE REVIEWS 2020; 216:21. [PMID: 32165773 PMCID: PMC7040070 DOI: 10.1007/s11214-020-00646-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/15/2020] [Indexed: 05/04/2023]
Abstract
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.
Collapse
Affiliation(s)
- Leigh N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Imke de Pater
- Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720 USA
| | - Glenn S. Orton
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | | | - Patrick G. J. Irwin
- Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Michael T. Roman
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Daniel Toledo
- Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| |
Collapse
|
10
|
Fletcher LN, de Pater I, Orton GS, Hofstadter MD, Irwin PGJ, Roman MT, Toledo D. Ice Giant Circulation Patterns: Implications for Atmospheric Probes. SPACE SCIENCE REVIEWS 2020. [PMID: 32165773 DOI: 10.1007/s11214-019-0619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.
Collapse
Affiliation(s)
- Leigh N Fletcher
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Imke de Pater
- 3Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720 USA
| | - Glenn S Orton
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Mark D Hofstadter
- 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
| | - Patrick G J Irwin
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Michael T Roman
- 1School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Daniel Toledo
- 4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| |
Collapse
|
11
|
Guarguaglini M, Hernandez JA, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T, Ravasio A. Laser-driven shock compression of "synthetic planetary mixtures" of water, ethanol, and ammonia. Sci Rep 2019; 9:10155. [PMID: 31300690 PMCID: PMC6626017 DOI: 10.1038/s41598-019-46561-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets' internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia "synthetic planetary mixture" (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000-4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000-14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
Collapse
Affiliation(s)
- M Guarguaglini
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France. .,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France.
| | - J-A Hernandez
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France
| | - T Okuchi
- Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - P Barroso
- GEPI, Observatoire de Paris, PSL Université, CNRS, 77 avenue Denfert Rochereau, 75014, Paris, France
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France
| | - M Bethkenhagen
- Universität Rostock, Institut für Physik, 18051, Rostock, Germany
| | - R Bolis
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France
| | - E Brambrink
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France
| | - M French
- Universität Rostock, Institut für Physik, 18051, Rostock, Germany
| | - Y Fujimoto
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - R Kodama
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - M Koenig
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - F Lefevre
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France
| | - K Miyanishi
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.,Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - R Redmer
- Universität Rostock, Institut für Physik, 18051, Rostock, Germany
| | - T Sano
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Y Umeda
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - T Vinci
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France.,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France
| | - A Ravasio
- LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France. .,Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d'utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, place Jussieu, 75252, Paris cedex 05, France.
| |
Collapse
|
12
|
Garcia-Lopez E, Cid C. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Front Microbiol 2017; 8:1407. [PMID: 28804477 PMCID: PMC5532398 DOI: 10.3389/fmicb.2017.01407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.
Collapse
Affiliation(s)
| | - Cristina Cid
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
13
|
Fegley B. Properties and Composition of the Terrestrial Oceans and of the Atmospheres of the Earth and Other Planets. AGU REFERENCE SHELF 2013. [DOI: 10.1029/rf001p0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Yoder CF. Astrometric and Geodetic Properties of Earth and the Solar System. AGU REFERENCE SHELF 2013. [DOI: 10.1029/rf001p0001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Krasnopolsky VA, Sandel BR, Herbert F, Vervack RJ. Temperature, N2, and N density profiles of Triton's atmosphere: Observations and model. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92je02680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Hubbard WB, Nellis WJ, Mitchell AC, Holmes NC, Limaye SS, McCandless PC. Interior structure of neptune: comparison with uranus. Science 2010; 253:648-51. [PMID: 17772369 DOI: 10.1126/science.253.5020.648] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-calied planetary ;;ice,'' have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.
Collapse
|
17
|
Broadfoot AL, Atreya SK, Bertaux JL, Blamont JE, Dessler AJ, Donahue TM, Forrester WT, Hall DT, Herbert F, Holberg JB, Hunter DM, Krasnopolsky VA, Linick S, Lunine JI, McConnell JC, Moos HW, Sandel BR, Schneider NM, Shemansky DE, Smith GR, Strobel DF, Yelle RV. Ultraviolet spectrometer observations of neptune and triton. Science 2010; 246:1459-66. [PMID: 17756000 DOI: 10.1126/science.246.4936.1459] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.
Collapse
|
18
|
Abstract
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator.
Collapse
|
19
|
Solar system ionospheres. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/130gm04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Burns JA, Hamilton DP, Showalter MR. Dusty Rings and Circumplanetary Dust: Observations and Simple Physics. ASTRONOMY AND ASTROPHYSICS LIBRARY 2001. [DOI: 10.1007/978-3-642-56428-4_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
|
22
|
|
23
|
Atmospheric Ices. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-011-5252-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
The Surface Compositions of Triton, Pluto, and Charon. ASTROPHYSICS AND SPACE SCIENCE LIBRARY 1998. [DOI: 10.1007/978-94-011-5252-5_27] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jd01569] [Citation(s) in RCA: 999] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Sittler EC, Hartle RE. Triton's ionospheric source: Electron precipitation or photoionization. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Holme R, Bloxham J. The magnetic fields of Uranus and Neptune: Methods and models. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95je03437] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
|
29
|
Krasnopolsky VA, Cruikshank DP. Photochemistry of Triton's atmosphere and ionosphere. JOURNAL OF GEOPHYSICAL RESEARCH 1995; 100:21271-86. [PMID: 11541126 DOI: 10.1029/95je01904] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The photochemistry of 32 neutral and 21 ion species in Triton's atmosphere is considered. Parent species N2, CH4, and CO (with a mixing ratio of 3 x 10(-4) in our basic model) sublime from the ice with rates of 40, 208, and 0.3 g/cm2/b.y., respectively. Chemistry below 50 km is driven mostly by photolysis of methane by the solar and interstellar medium Lyman-alpha photons, producing hydrocarbons C2H4, C2H6, and C2H2 which form haze particles with precipitation rates of 135, 28, and 1.3 g/cm2/b.y., respectively. Some processes are discussed which increase the production of HCN (by an order of magnitude to a value of 29 g/cm2/b.y.) and involve indirect photolysis of N2 by neutrals. Reanalysis of the measured methane profiles gives an eddy diffusion coefficient K = 4 x 10(3) cm2/s above the tropopause and a more accurate methane number density near the surface, (3.1 +/- 0.8) x 10(11) cm-3. Chemistry above 200 km is driven by the solar EUV radiation (lambda < 1000 angstroms) and by precipitation of magnetospheric electrons with a total energy input of 10(8) W (based on thermal balance calculations). The most abundant photochemical species are N, H2, H, O, and C. They escape with the total rates of 7.7 x 10(24) s-1, 4.5 x 10(25) s-1, 2.4 x 10(25) s-1, 4.4 x 10(22) s-1, and 1.1 x 10(24) s-1, respectively. Atomic species are transported to a region of 50-200 km and drive the chemistry there. Ionospheric chemistry explains the formation of an E region at 150-240 km with HCO+ as a major ion, and of an F region above 240 km with a peak at 320 km and C+ as a major ion. The ionosphere above 500 km consists of almost equal densities of C+ and N+ ions. The model profiles agree with the measured atomic nitrogen and electron density profiles. A number of other models with varying rate coefficients of some reactions, differing properties of the haze particles (chemically passive or active), etc., were developed. These models show that there are four basic unknown values which have strong impacts on the composition and structure of the atmosphere and ionosphere. These values and their plausible ranges are the CO mixing ratio fco = 10(-4)-10(-3), the magnetospheric electron energy input (1 +/- 0.5) x 10(8) W, the rate coefficient of charge-exchange reaction N2(+) + C k = 10(-11)-10(-10) cm3/s, and the ion escape velocity Vi approximately equal to 150 cm/s.
Collapse
Affiliation(s)
- V A Krasnopolsky
- National Research Council/NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | |
Collapse
|
30
|
Abstract
Microwave propagation experiments performed with Voyager 2 at Neptune revealed sharp layers of electrons in Neptune's lower ionosphere with densities of approximately 10(4) per cubic centimeter. These layers are reminiscent of the sporadic-E layers in the Earth's ionosphere, and when taken together with data from the other giant planets, these data confirm the importance of the magnetic field in layer formation. A photochemical model that incorporates species produced by meteoroid ablation predicts that singly ionized magnesium is the most likely metal to be found in the layers, although laboratory data on the kinetics of metallic atoms and ions in a reducing environment are lacking. The metal chemistry discussed here is directly relevant to the abundant metals observed at the impact site of the G fragment of comet Shoemaker Levy 9 on Jupiter.
Collapse
Affiliation(s)
- J R Lyons
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125
| |
Collapse
|
31
|
Owen T. The search for other planets: clues from the solar system. ASTROPHYSICS AND SPACE SCIENCE 1994; 212:1-11. [PMID: 11539456 DOI: 10.1007/bf00984503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of element abundances and values of D/H in the atmospheres of the outer planets and Titan support a two-step model for the formation of these bodies. This model suggests that the dimensions of Uranus provide a good index for the sensitivity required to detect planets around other stars. The high proportion of N2 on the surfaces of Pluto and Triton indicates that this gas was the dominant reservoir of nitrogen in the early solar nebula. It should also be abundant on pristine comets. There is evidence that some of these comets may well have brought a large store of volatiles to the inner planets, while others were falling into the sun. In other systems, icy planetesimals falling into stars should reveal themselves through high values of D/H.
Collapse
Affiliation(s)
- T Owen
- Institute for Astronomy, Honolulu, Hawaii, USA
| |
Collapse
|
32
|
|
33
|
Owen TC, Roush TL, Cruikshank DP, Elliot JL, Young LA, de Bergh C, Schmitt B, Geballe TR, Brown RH, Bartholomew MJ. Surface Ices and the Atmospheric Composition of Pluto. Science 1993; 261:745-8. [PMID: 17757212 DOI: 10.1126/science.261.5122.745] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.
Collapse
|
34
|
Cruikshank DP, Roush TL, Owen TC, Geballe TR, de Bergh C, Schmitt B, Brown RH, Bartholomew MJ. Ices on the Surface of Triton. Science 1993; 261:742-5. [PMID: 17757211 DOI: 10.1126/science.261.5122.742] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The near-infrared spectrum of Triton reveals ices of nitrogen, methane, carbon monoxide, and carbon dioxide, of which nitrogen is the dominant component. Carbon dioxide ice may be spatially segregated from the other more volatile ices, covering about 10 percent of Triton's surface. The absence of ices of other hydrocarbons and nitriles challenges existing models of methane and nitrogen photochemistry on Triton.
Collapse
|
35
|
Abstract
If the upper atmosphere and ionosphere of Triton are controlled by precipitation of electrons from Neptune's magnetosphere as previously proposed, Triton could have the only ionosphere in the solar system not controlled by solar radiation. However, a new model of Triton's atmosphere, in which only solar radiation is present, predicts a large column of carbon atoms. With an assumed, but reasonable, rate of charge transfer between N2(+) and C, a peak C+ abundance results that is close to the peak electron densities measured by Voyager in Triton's ionosphere. These results suggest that Triton's upper atmospheric chemistry may thus be solar-controlled. Measurement of key reaction rate constants, currently unknown or highly uncertain at Triton's low temperatures, would help to clarify the chemical and physical processes occurring in Triton's atmosphere.
Collapse
Affiliation(s)
- J R Lyons
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
36
|
Abstract
Calculations of radiative equilibrium temperatures on Triton's rough surface suggest that significant condensation of N(2) may be occurring in the northern equatorial regions, despite their relatively dark appearance. The bright frost is not apparent in the Voyager images because it tends to be concentrated in relatively unilluminated facets of the surface. This patchwork of bright frost-covered regions and darker bare ground may be distributed on scales smaller than that of the Voyager resolution; as a result the northern equatorial regions may appear relatively dark. This hypothesis also accounts for the observed wind direction in the southern hemisphere because it implies that the equatorial regions are warmer than the south polar regions.
Collapse
|
37
|
Sawyer CB, Warwick JW, Romig JH. The effect of magnetic topography on high-latitude radio emission at Neptune. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/91ja02390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Tyler GL, Balmino G, Hinson DP, Sjogren WL, Smith DE, Woo R, Asmar SW, Connally MJ, Hamilton CL, Simpson RA. Radio science investigations with Mars Observer. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je00513] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Bishop J, Atreya SK, Romani PN, Sandel BR, Herbert F. Voyager 2 ultraviolet spectrometer solar occultations at Neptune: Constraints on the abundance of methane in the stratosphere. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je00959] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Krasnopolsky VA, Sandel BR, Herbert F. Properties of haze in the atmosphere of Triton. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je00945] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Abstract
Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between approximately 0.5 and 1.5 K above that possible with absorbed sunlight alone, resulting in an increase of about a factor of approximately 1.5 to 2.5 in Triton's basal atmospheric pressure. If Triton's internal heat flow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent global albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as ten times higher in the recent past.
Collapse
|
42
|
Neubauer FM, Lüttgen A, Ness NF. On the lack of a magnetic signature of Triton's magnetospheric interaction on the Voyager 2 flyby trajectory. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
|
44
|
|
45
|
Zhang M, Richardson JD, Sittler EC. Voyager 2 electron observations in the magnetosphere of Neptune. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01857] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Limaye SS, Sromovsky LA. Winds of Neptune: Voyager observations of cloud motions. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01701] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
|
48
|
Conrath BJ, Gautier D, Lindal GF, Samuelson RE, Shaffer WA. The helium abundance of Neptune from Voyager measurements. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01703] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Hillier J, Helfenstein P, Verbiscer A, Veverka J. Voyager photometry of Triton: Haze and surface photometric properties. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01736] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Bézard B, Romani PN, Conrath BJ, Maguire WC. Hydrocarbons in Neptune's stratosphere from Voyager infrared observations. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01930] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|