1
|
Li X, Su H, Liang W, Zhou W, Rahman A, Xu Z, Zhong C, Mai D, Dai R, Gou H, Wang Z, Zheng X, Wu Q, Zhang Z. Inference of a "Hot Ice" Layer in Nitrogen-Rich Planets: Demixing the Phase Diagram and Phase Composition for Variable Concentration Helium-Nitrogen Mixtures Based on Isothermal Compression. J Phys Chem A 2022; 126:3745-3757. [PMID: 35648656 DOI: 10.1021/acs.jpca.2c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Van der Waals (vdW) chemistry in simple molecular systems may be important for understanding the structure and properties of the interiors of the outer planets and their satellites, where pressures are high and such components may be abundant. In the current study, Raman spectra and visual observation are employed to investigate the phase separation and composition determination for helium-nitrogen mixtures with helium concentrations from 20 to 95% along the 295 K isothermal compression. Fluid-fluid-solid triple-phase equilibrium and several equilibria of two phases including fluid-fluid and fluid-solid have been observed in different helium-nitrogen mixtures upon loading or unloading pressure. The homogeneous fluid in helium-nitrogen mixtures separates into a helium-rich fluid (F1) and a nitrogen-rich fluid (F2) with increasing pressure. The triple-phase point occurs at 295 K and 8.8 GPa for a solid-phase (N2)11He vdW compound, fluid F1 with around 50% helium, and fluid F2 with 95% helium. Helium concentrations of F1 coexisted with the (N2)11He vdW compound or δ-N2 in helium-nitrogen mixtures with different helium concentrations between 40 and 50% and between 20 and 40%, respectively. In addition, the helium concentration of F2 is the same in helium-nitrogen mixtures with different helium concentrations and decreases upon loading pressure. Pressure-induced nitrogen molecule ordering at 32.6 GPa and a structural phase transition at 110 GPa are observed in (N2)11He. In addition, at 187 GPa, a pressure-induced transition to an amorphous state is identified.
Collapse
Affiliation(s)
- Xiangdong Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Su
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentao Liang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenju Zhou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Azizur Rahman
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zilong Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Zhong
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Di Mai
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Zhongping Wang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianxu Zheng
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Qiang Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Wang CT, Chang WT, Jeng LH, Liu PE, Liu LY. Concentrations of Calcium, Copper, Iron, Magnesium, and Zinc in Young Female Hair with Different Body Mass Indexes in Taiwan. ACTA ACUST UNITED AC 2005. [DOI: 10.1248/jhs.51.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chin-Thin Wang
- Department of Holistic Education Center St. John's and St. Mary's Institute of Technology
| | - Wei-Tun Chang
- Department of Forensic Science, Central Police University
| | - Lin-Her Jeng
- Department of Holistic Education Center St. John's and St. Mary's Institute of Technology
| | - Po-En Liu
- Mackay Junior College of Medical Management and Nursing
| | - Li-Yun Liu
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shin Chien University
| |
Collapse
|
7
|
Griffith CA, Zahnle K. Influx of cometary volatiles to planetary moons: the atmospheres of 1000 possible Titans. JOURNAL OF GEOPHYSICAL RESEARCH 1995; 100:16907-22. [PMID: 11539417 DOI: 10.1029/95je01135] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We use a Monte Carlo model to simulate impact histories of possible Titans, Callistos, and Ganymedes. Comets create or erode satellite atmospheres, depending on their mass and velocity distributions: faster and bigger comets remove atmophiles; slower or smaller comets supply them. Mass distributions and the minimum total mass of comets passing through the Saturn system were derived from the crater records of Rhea and Iapetus. These were then scaled to give a minimum impact history for Titan. From this cometary population, of 1000 initially airless Titans, 16% acquired atmospheres larger than Titan's present atmosphere (9 x 10(21) g), and more than half accumulated atmospheres larger than 10(21) g. In contrasts to the work of Zahnle et al. (1992), we find that, in most trials, Callisto acquires comet-based atmospheres. Atmospheres acquired by Callisto and, especially, Ganymede are sensitive to assumptions regarding energy partitioning into the ejecta plume. If we assume that only the normal velocity component heats the plume, the majority of Ganymedes and half of the Callistos accreted atmospheres smaller than 10(20) g. If all the impactor's velocity heats the plume, Callisto's most likely atmosphere is 10(17) g and Ganymede's is negligible. The true cometary flux was most likely larger than that derived from crater records, which raises the probability that Titan, Ganymede, and Callisto acquired substantial atmospheres. However, other loss processes (e.g., sputtering by ions swept up by the planetary magnetic field, solar UV photolysis of hydrocarbons) are potentially capable of eliminating small atmospheres over the age of the solar system. The dark material on Callisto's surface may be a remnant of an earlier, now vanished atmosphere.
Collapse
Affiliation(s)
- C A Griffith
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, USA
| | | |
Collapse
|
9
|
Owen TC, Roush TL, Cruikshank DP, Elliot JL, Young LA, de Bergh C, Schmitt B, Geballe TR, Brown RH, Bartholomew MJ. Surface Ices and the Atmospheric Composition of Pluto. Science 1993; 261:745-8. [PMID: 17757212 DOI: 10.1126/science.261.5122.745] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.
Collapse
|
10
|
Abstract
Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.
Collapse
|