1
|
Raghavan AR, Hochwagen A. Keeping it safe: control of meiotic chromosome breakage. Trends Genet 2025; 41:315-329. [PMID: 39672680 PMCID: PMC11981862 DOI: 10.1016/j.tig.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Kay TM, Inman JT, Lubkowska L, Le TT, Qian J, Hall PM, Wang D, Kashlev M, Wang MD. RNA Polymerase II is a Polar Roadblock to a Progressing DNA Fork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617674. [PMID: 39416093 PMCID: PMC11482878 DOI: 10.1101/2024.10.11.617674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA replication and transcription occur simultaneously on the same DNA template, leading to inevitable conflicts between the replisome and RNA polymerase. These conflicts can stall the replication fork and threaten genome stability. Although numerous studies show that head-on conflicts are more detrimental and more prone to promoting R-loop formation than co-directional conflicts, the fundamental cause for the RNA polymerase roadblock polarity remains unclear, and the structure of these R-loops is speculative. In this work, we use a simple model system to address this complex question by examining the Pol II roadblock to a DNA fork advanced via mechanical unzipping to mimic the replisome progression. We found that the Pol II binds more stably to resist removal in the head-on configuration, even with minimal transcript size, demonstrating that the Pol II roadblock has an inherent polarity. However, an elongating Pol II with a long RNA transcript becomes an even more potent and persistent roadblock while retaining the polarity, and the formation of an RNA-DNA hybrid mediates this enhancement. Surprisingly, we discovered that when a Pol II collides with the DNA fork head-on and becomes backtracked, an RNA-DNA hybrid can form on the lagging strand in front of Pol II, creating a topological lock that traps Pol II at the fork. TFIIS facilitates RNA-DNA hybrid removal by severing the connection of Pol II with the hybrid. We further demonstrate that this RNA-DNA hybrid can prime lagging strand replication by T7 DNA polymerase while Pol II is still bound to DNA. Our findings capture basal properties of the interactions of Pol II with a DNA fork, revealing significant implications for transcription-replication conflicts.
Collapse
Affiliation(s)
- Taryn M. Kay
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Tung T. Le
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Porter M. Hall
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, Ivshina AV, Kuznetsov VA. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol 2024; 14:1227151. [PMID: 38756663 PMCID: PMC11097164 DOI: 10.3389/fonc.2024.1227151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Yee Aau
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Csaba Papp
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Anna V. Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
5
|
Kim S, Shin WH, Kang Y, Kim H, Lee JY. Direct visualization of replication and R-loop collision using single-molecule imaging. Nucleic Acids Res 2024; 52:259-273. [PMID: 37994723 PMCID: PMC10783495 DOI: 10.1093/nar/gkad1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures that can cause replication stress by blocking replication fork progression. However, the detailed mechanism underlying the collision of DNA replication forks and R-loops remains elusive. To investigate how R-loops induce replication stress, we use single-molecule fluorescence imaging to directly visualize the collision of replicating Phi29 DNA polymerase (Phi29 DNAp), the simplest replication system, and R-loops. We demonstrate that a single R-loop can block replication, and the blockage is more pronounced when an RNA-DNA hybrid is on the non-template strand. We show that this asymmetry results from secondary structure formation on the non-template strand, which impedes the progression of Phi29 DNAp. We also show that G-quadruplex formation on the displaced single-stranded DNA in an R-loop enhances the replication stalling. Moreover, we observe the collision between Phi29 DNAp and RNA transcripts synthesized by T7 RNA polymerase (T7 RNAp). RNA transcripts cause more stalling because of the presence of T7 RNAp. Our work provides insights into how R-loops impede DNA replication at single-molecule resolution.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Woo Hee Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Institute of Basic Science Center for Genomic Integrity, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
7
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
8
|
Schindler D, Walker RSK, Jiang S, Brooks AN, Wang Y, Müller CA, Cockram C, Luo Y, García A, Schraivogel D, Mozziconacci J, Pena N, Assari M, Sánchez Olmos MDC, Zhao Y, Ballerini A, Blount BA, Cai J, Ogunlana L, Liu W, Jönsson K, Abramczyk D, Garcia-Ruiz E, Turowski TW, Swidah R, Ellis T, Pan T, Antequera F, Shen Y, Nieduszynski CA, Koszul R, Dai J, Steinmetz LM, Boeke JD, Cai Y. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 2023; 186:5237-5253.e22. [PMID: 37944512 DOI: 10.1016/j.cell.2023.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland; School of Natural Sciences and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Carolin A Müller
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Julien Mozziconacci
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Noah Pena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mahdi Assari
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Alba Ballerini
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Benjamin A Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lois Ogunlana
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Wei Liu
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Katarina Jönsson
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Dariusz Abramczyk
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Reem Swidah
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Yue Shen
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
9
|
Sardar SK, Ghosal A, Haldar T, Das K, Saito-Nakano Y, Kobayashi S, Dutta S, Nozaki T, Ganguly S. Investigating genetic polymorphism in E. histolytica isolates with distinct clinical phenotypes. Parasitol Res 2023; 122:2525-2537. [PMID: 37642770 DOI: 10.1007/s00436-023-07952-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Amoebiasis is an infection caused by enteric protozoa, most commonly Entamoeba histolytica, and is globally considered a potentially severe and life-threatening condition. To understand the impact of the parasite genome on disease outcomes, it is important to study the genomes of infecting strains in areas with high disease prevalence. These studies aim to establish correlations between parasite genotypes and the clinical presentation of amoebiasis. We employ a strain typing approach that utilizes multiple loci, including SREHP and three polymorphic non-coding loci (tRNA-linked array N-K2 and loci 1-2 and 5-6), for high-resolution analysis. Distinct clinical phenotype isolates underwent amplification and sequencing of studied loci. The nucleotide sequences were analysed using Tandem Repeats Finder to detect short tandem repeats (STRs). These patterns were combined to assign a genotype, and the correlation between clinical phenotypes and repetitive patterns was statistically evaluated. This study found significant polymorphism in the size and number of PCR fragments at SREHP and 5-6 locus, while the 1-2 locus and NK2 locus showed variations in PCR product sizes. Out of 41 genotypes, two (I6 and I41) were significantly associated with their respective disease outcomes and were found in multiple isolates. We observed that I6 was linked with a symptomatic outcome, with a statistically significant p-value of 0.0183. Additionally, we found that I41 was associated with ALA disease outcome, with a p-value of 0.0089. Our study revealed new repeat units not previously reported, unveiling the genetic composition of E. histolytica strains in India, associated with distinct disease manifestations.
Collapse
Affiliation(s)
- Sanjib K Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Koushik Das
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
- Faculty of Science, Assam Downtown University, Guwahati, Assam, 781026, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Seiki Kobayashi
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India.
| |
Collapse
|
10
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
11
|
Vardi-Yaacov O, Yaacov A, Rosenberg S, Simon I. Both cell autonomous and non-autonomous processes modulate the association between replication timing and mutation rate. Sci Rep 2023; 13:13143. [PMID: 37573368 PMCID: PMC10423235 DOI: 10.1038/s41598-023-39463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Cancer somatic mutations are the product of multiple mutational and repair processes, some of which are tightly associated with DNA replication. Mutation rates (MR) are known to be higher in late replication timing (RT) regions, but different processes can affect this association. Systematic analysis of the mutational landscape of 2787 tumors from 32 tumor types revealed that approximately one third of the tumor samples show weak association between replication timing and mutation rate. Further analyses revealed that those samples have unique mutational signatures and are enriched with mutations in genes involved in DNA replication, DNA repair and chromatin structure. Surprisingly, analysis of differentially expressed genes between weak and strong RT-MR association groups revealed that tumors with weak association are enriched with genes associated with cell-cell communication and the immune system, suggesting a non-autonomous response to DNA damage.
Collapse
Affiliation(s)
- Oriya Vardi-Yaacov
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adar Yaacov
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Sharett Institute for Oncology, The Gaffin Center for Neuro-Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shai Rosenberg
- Sharett Institute for Oncology, The Gaffin Center for Neuro-Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
13
|
Huang D, Johnson AE, Sim BS, Lo TW, Merrikh H, Wiggins PA. The in vivo measurement of replication fork velocity and pausing by lag-time analysis. Nat Commun 2023; 14:1762. [PMID: 36997519 PMCID: PMC10063678 DOI: 10.1038/s41467-023-37456-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractAn important step towards understanding the mechanistic basis of the central dogma is the quantitative characterization of the dynamics of nucleic-acid-bound molecular motors in the context of the living cell. To capture these dynamics, we develop lag-time analysis, a method for measuring in vivo dynamics. Using this approach, we provide quantitative locus-specific measurements of fork velocity, in units of kilobases per second, as well as replisome pause durations, some with the precision of seconds. The measured fork velocity is observed to be both locus and time dependent, even in wild-type cells. In this work, we quantitatively characterize known phenomena, detect brief, locus-specific pauses at ribosomal DNA loci in wild-type cells, and observe temporal fork velocity oscillations in three highly-divergent bacterial species.
Collapse
|
14
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
15
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
16
|
Claussin C, Vazquez J, Whitehouse I. Single-molecule mapping of replisome progression. Mol Cell 2022; 82:1372-1382.e4. [PMID: 35240057 PMCID: PMC8995386 DOI: 10.1016/j.molcel.2022.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.
Collapse
Affiliation(s)
- Clémence Claussin
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jacob Vazquez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Wu W, He JN, Lan M, Zhang P, Chu WK. Transcription-Replication Collisions and Chromosome Fragility. Front Genet 2021; 12:804547. [PMID: 34956339 PMCID: PMC8703014 DOI: 10.3389/fgene.2021.804547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate replication of the entire genome is critical for cell division and propagation. Certain regions in the genome, such as fragile sites (common fragile sites, rare fragile sites, early replicating fragile sites), rDNA and telomeres, are intrinsically difficult to replicate, especially in the presence of replication stress caused by, for example, oncogene activation during tumor development. Therefore, these regions are particularly prone to deletions and chromosome rearrangements during tumorigenesis, rendering chromosome fragility. Although, the mechanism underlying their “difficult-to-replicate” nature and genomic instability is still not fully understood, accumulating evidence suggests transcription might be a major source of endogenous replication stress (RS) leading to chromosome fragility. Here, we provide an updated overview of how transcription affects chromosome fragility. Furthermore, we will use the well characterized common fragile sites (CFSs) as a model to discuss pathways involved in offsetting transcription-induced RS at these loci with a focus on the recently discovered atypical DNA synthesis repair pathway Mitotic DNA Synthesis (MiDAS).
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Mengjiao Lan
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
19
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
20
|
DNA Replication-Transcription Conflicts Do Not Significantly Contribute to Spontaneous Mutations Due to Replication Errors in Escherichia coli. mBio 2021; 12:e0250321. [PMID: 34634932 PMCID: PMC8510543 DOI: 10.1128/mbio.02503-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Encounters between DNA replication and transcription can cause genomic disruption, particularly when the two meet head-on. Whether these conflicts produce point mutations is debated. This paper presents detailed analyses of a large collection of mutations generated during mutation accumulation experiments with mismatch repair (MMR)-defective Escherichia coli. With MMR absent, mutations are primarily due to DNA replication errors. Overall, there were no differences in the frequencies of base pair substitutions or small indels (i.e., insertion and deletions of ≤4 bp) in the coding sequences or promoters of genes oriented codirectionally versus head-on to replication. Among a subset of highly expressed genes, there was a 2- to 3-fold bias for indels in genes oriented head-on to replication, but this difference was almost entirely due to the asymmetrical genomic locations of tRNA genes containing mononucleotide runs, which are hot spots for indels. No additional orientation bias in mutation frequencies occurred when MMR− strains were also defective for transcription-coupled repair (TCR). However, in contrast to other reports, loss of TCR slightly increased the overall mutation rate, meaning that TCR is antimutagenic. There was no orientation bias in mutation frequencies among the stress response genes that are regulated by RpoS or induced by DNA damage. Thus, biases in the locations of mutational targets can account for most, if not all, apparent biases in mutation frequencies between genes oriented head-on versus codirectional to replication. In addition, the data revealed a strong correlation of the frequency of base pair substitutions with gene length but no correlation with gene expression levels.
Collapse
|
21
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
22
|
Técher H, Pasero P. The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Front Cell Dev Biol 2021; 9:702584. [PMID: 34249949 PMCID: PMC8270677 DOI: 10.3389/fcell.2021.702584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| |
Collapse
|
23
|
Shyian M, Shore D. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Front Cell Dev Biol 2021; 9:672510. [PMID: 34124054 PMCID: PMC8194067 DOI: 10.3389/fcell.2021.672510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
During nuclear DNA replication multiprotein replisome machines have to jointly traverse and duplicate the total length of each chromosome during each cell cycle. At certain genomic locations replisomes encounter tight DNA-protein complexes and slow down. This fork pausing is an active process involving recognition of a protein barrier by the approaching replisome via an evolutionarily conserved Fork Pausing/Protection Complex (FPC). Action of the FPC protects forks from collapse at both programmed and accidental protein barriers, thus promoting genome integrity. In addition, FPC stimulates the DNA replication checkpoint and regulates topological transitions near the replication fork. Eukaryotic cells have been proposed to employ physiological programmed fork pausing for various purposes, such as maintaining copy number at repetitive loci, precluding replication-transcription encounters, regulating kinetochore assembly, or controlling gene conversion events during mating-type switching. Here we review the growing number of approaches used to study replication pausing in vivo and in vitro as well as the characterization of additional factors recently reported to modulate fork pausing in different systems. Specifically, we focus on the positive role of topoisomerases in fork pausing. We describe a model where replisome progression is inherently cautious, which ensures general preservation of fork stability and genome integrity but can also carry out specialized functions at certain loci. Furthermore, we highlight classical and novel outstanding questions in the field and propose venues for addressing them. Given how little is known about replisome pausing at protein barriers in human cells more studies are required to address how conserved these mechanisms are.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Kara N, Krueger F, Rugg-Gunn P, Houseley J. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq. PLoS Biol 2021; 19:e3000886. [PMID: 33760805 PMCID: PMC8021198 DOI: 10.1371/journal.pbio.3000886] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3' ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3' ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.
Collapse
Affiliation(s)
- Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Peter Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
25
|
Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, Xiao S, Higgs MR, Garcia P, Saponaro M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 2021; 34:108759. [PMID: 33596418 PMCID: PMC7900609 DOI: 10.1016/j.celrep.2021.108759] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jingwen Mao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martina Mustè Sadurnì
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Garnier
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Songshu Xiao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin R Higgs
- Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paloma Garcia
- Stem Cells and Genome Stability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
26
|
Brüning JG, Marians KJ. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 2020; 48:10353-10367. [PMID: 32926139 PMCID: PMC7544221 DOI: 10.1093/nar/gkaa741] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
27
|
Wessel SR, Mohni KN, Luzwick JW, Dungrawala H, Cortez D. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep 2020; 28:3497-3509.e4. [PMID: 31553917 PMCID: PMC6878991 DOI: 10.1016/j.celrep.2019.08.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.
Collapse
Affiliation(s)
- Sarah R Wessel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kareem N Mohni
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Wolak C, Ma HJ, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol Microbiol 2020; 114:495-509. [PMID: 32426857 PMCID: PMC7934204 DOI: 10.1111/mmi.14529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.
Collapse
Affiliation(s)
- Christine Wolak
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Hui Jun Ma
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - James L. Keck
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
29
|
Comparative Analysis of the Minimum Number of Replication Origins in Trypanosomatids and Yeasts. Genes (Basel) 2020; 11:genes11050523. [PMID: 32397111 PMCID: PMC7288466 DOI: 10.3390/genes11050523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.
Collapse
|
30
|
Sui Y, Qi L, Zhang K, Saini N, Klimczak LJ, Sakofsky CJ, Gordenin DA, Petes TD, Zheng DQ. Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases. Proc Natl Acad Sci U S A 2020; 117:9440-9450. [PMID: 32277034 PMCID: PMC7196835 DOI: 10.1073/pnas.1922472117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta. In the low DNA polymerase alpha and delta strains, the APOBEC-induced mutations are concentrated on the lagging-strand template, whereas in the low DNA polymerase epsilon strain, mutations occur on the leading- and lagging-strand templates with similar frequencies. In addition, for most genes, the transcribed strand is mutagenized more frequently than the nontranscribed strand. Lastly, some of the APOBEC-induced clusters in strains with low levels of DNA polymerase alpha or delta are greater than 10 kb in length.
Collapse
Affiliation(s)
- Yang Sui
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Lei Qi
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Ke Zhang
- Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710;
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, 316021 Zhoushan, China;
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
31
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
32
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
33
|
Determinants of Replication-Fork Pausing at tRNA Genes in Saccharomyces cerevisiae. Genetics 2020; 214:825-838. [PMID: 32071194 DOI: 10.1534/genetics.120.303092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Transfer RNA (tRNA) genes are widely studied sites of replication-fork pausing and genome instability in the budding yeast Saccharomyces cerevisiae tRNAs are extremely highly transcribed and serve as constitutive condensin binding sites. tRNA transcription by RNA polymerase III has previously been identified as stimulating replication-fork pausing at tRNA genes, but the nature of the block to replication has not been incontrovertibly demonstrated. Here, we describe a systematic, genome-wide analysis of the contributions of candidates to replication-fork progression at tDNAs in yeast: transcription factor binding, transcription, topoisomerase activity, condensin-mediated clustering, and Rad18-dependent DNA repair. We show that an asymmetric block to replication is maintained even when tRNA transcription is abolished by depletion of one or more subunits of RNA polymerase III. By contrast, analogous depletion of the essential transcription factor TFIIIB removes the obstacle to replication. Therefore, our data suggest that the RNA polymerase III transcription complex itself represents an asymmetric obstacle to replication even in the absence of RNA synthesis. We additionally demonstrate that replication-fork progression past tRNA genes is unaffected by the global depletion of condensin from the nucleus, and can be stimulated by the removal of topoisomerases or Rad18-dependent DNA repair pathways.
Collapse
|
34
|
Fumasoni M, Murray AW. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress. eLife 2020; 9:e51963. [PMID: 32043971 PMCID: PMC7069727 DOI: 10.7554/elife.51963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Many biological features are conserved and thus considered to be resistant to evolutionary change. While rapid genetic adaptation following the removal of conserved genes has been observed, we often lack a mechanistic understanding of how adaptation happens. We used the budding yeast, Saccharomyces cerevisiae, to investigate the evolutionary plasticity of chromosome metabolism, a network of evolutionary conserved modules. We experimentally evolved cells constitutively experiencing DNA replication stress caused by the absence of Ctf4, a protein that coordinates the enzymatic activities at replication forks. Parallel populations adapted to replication stress, over 1000 generations, by acquiring multiple, concerted mutations. These mutations altered conserved features of two chromosome metabolism modules, DNA replication and sister chromatid cohesion, and inactivated a third, the DNA damage checkpoint. The selected mutations define a functionally reproducible evolutionary trajectory. We suggest that the evolutionary plasticity of chromosome metabolism has implications for genome evolution in natural populations and cancer.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
35
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
36
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Yeast PAF1 complex counters the pol III accumulation and replication stress on the tRNA genes. Sci Rep 2019; 9:12892. [PMID: 31501524 PMCID: PMC6733944 DOI: 10.1038/s41598-019-49316-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.
Collapse
|
38
|
PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc Natl Acad Sci U S A 2019; 116:19464-19473. [PMID: 31488723 DOI: 10.1073/pnas.1903188116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.
Collapse
|
39
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
40
|
Abstract
Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.
Collapse
|
41
|
tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 2019; 39:MCB.00432-18. [PMID: 30718362 DOI: 10.1128/mcb.00432-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.
Collapse
|
42
|
Gaboriaud J, Wu PYJ. Insights into the Link between the Organization of DNA Replication and the Mutational Landscape. Genes (Basel) 2019; 10:genes10040252. [PMID: 30934791 PMCID: PMC6523204 DOI: 10.3390/genes10040252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
The generation of a complete and accurate copy of the genetic material during each cell cycle is integral to cell growth and proliferation. However, genetic diversity is essential for adaptation and evolution, and the process of DNA replication is a fundamental source of mutations. Genome alterations do not accumulate randomly, with variations in the types and frequencies of mutations that arise in different genomic regions. Intriguingly, recent studies revealed a striking link between the mutational landscape of a genome and the spatial and temporal organization of DNA replication, referred to as the replication program. In our review, we discuss how this program may contribute to shaping the profile and spectrum of genetic alterations, with implications for genome dynamics and organismal evolution in natural and pathological contexts.
Collapse
Affiliation(s)
- Julia Gaboriaud
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| |
Collapse
|
43
|
DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in Saccharomyces cerevisiae. Genes (Basel) 2019; 10:genes10020167. [PMID: 30795600 PMCID: PMC6409922 DOI: 10.3390/genes10020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
This review discusses a set of experimental results that support the existence of extended strand displacement events during budding yeast lagging strand DNA synthesis. Starting from introducing the mechanisms and factors involved in leading and lagging strand DNA synthesis and some aspects of the architecture of the eukaryotic replisome, we discuss studies on bacterial, bacteriophage and viral DNA polymerases with potent strand displacement activities. We describe proposed pathways of Okazaki fragment processing via short and long flaps, with a focus on experimental results obtained in Saccharomyces cerevisiae that suggest the existence of frequent and extended strand displacement events during eukaryotic lagging strand DNA synthesis, and comment on their implications for genome integrity.
Collapse
|
44
|
Jalan M, Oehler J, Morrow CA, Osman F, Whitby MC. Factors affecting template switch recombination associated with restarted DNA replication. eLife 2019; 8:41697. [PMID: 30667359 PMCID: PMC6358216 DOI: 10.7554/elife.41697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Oehler
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes (Basel) 2018; 9:E632. [PMID: 30558210 PMCID: PMC6316733 DOI: 10.3390/genes9120632] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) jeopardize genome integrity and can-when repaired unfaithfully-give rise to structural rearrangements associated with cancer. Exogenous agents such as ionizing radiation or chemotherapy can invoke DSBs, but a vast amount of breakage arises during vital endogenous DNA transactions, such as replication and transcription. Additionally, chromatin looping involved in 3D genome organization and gene regulation is increasingly recognized as a possible contributor to DSB events. In this review, we first discuss insights into the mechanisms of endogenous DSB formation, showcasing the trade-off between essential DNA transactions and the intrinsic challenges that these processes impose on genomic integrity. In the second part, we highlight emerging methods for genome-wide profiling of DSBs, and discuss future directions of research that will help advance our understanding of genome-wide DSB formation and repair.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
46
|
Rossi SE, Foiani M, Giannattasio M. Dna2 processes behind the fork long ssDNA flaps generated by Pif1 and replication-dependent strand displacement. Nat Commun 2018; 9:4830. [PMID: 30446656 PMCID: PMC6240037 DOI: 10.1038/s41467-018-07378-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Dna2 is a DNA helicase-endonuclease mediating DSB resection and Okazaki fragment processing. Dna2 ablation is lethal and rescued by inactivation of Pif1, a helicase assisting Okazaki fragment maturation, Pol32, a DNA polymerase δ subunit, and Rad9, a DNA damage response (DDR) factor. Dna2 counteracts fork reversal and promotes fork restart. Here we show that Dna2 depletion generates lethal DNA structures activating the DDR. While PIF1 deletion rescues the lethality of Dna2 depletion, RAD9 ablation relieves the first cell cycle arrest causing genotoxicity after few cell divisions. Slow fork speed attenuates DDR in Dna2 deprived cells. Electron microscopy shows that Dna2-ablated cells accumulate long ssDNA flaps behind the forks through Pif1 and fork speed. We suggest that Dna2 offsets the strand displacement activity mediated by the lagging strand polymerase and Pif1, processing long ssDNA flaps to prevent DDR activation. We propose that this Dna2 function has been hijacked by Break Induced Replication in DSB processing. DNA2 encodes a 5′ flap DNA endonuclease involved in replication and DNA double strand break processing. Here the authors by using a conditional degron system together with electron microscopy characterize the role played by Dna2 and Pif1 helicase during unperturbed DNA replication in S. cerevisiae.
Collapse
Affiliation(s)
- Silvia Emma Rossi
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, Milan, 20139, Italy
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, Milan, 20139, Italy. .,Dipartimento di Oncologia ed Emato-Oncologia, Universita' degli Studi di Milano, Via Festa del Perdono 7, Milan, 20122, Italy.
| | - Michele Giannattasio
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, Milan, 20139, Italy. .,Dipartimento di Oncologia ed Emato-Oncologia, Universita' degli Studi di Milano, Via Festa del Perdono 7, Milan, 20122, Italy.
| |
Collapse
|
47
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
48
|
Simoneau A, Ricard É, Wurtele H. An interplay between multiple sirtuins promotes completion of DNA replication in cells with short telomeres. PLoS Genet 2018; 14:e1007356. [PMID: 29659581 PMCID: PMC5919697 DOI: 10.1371/journal.pgen.1007356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/26/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily-conserved sirtuin family of histone deacetylases regulates a multitude of DNA-associated processes. A recent genome-wide screen conducted in the yeast Saccharomyces cerevisiae identified Yku70/80, which regulate nonhomologous end-joining (NHEJ) and telomere structure, as being essential for cell proliferation in the presence of the pan-sirtuin inhibitor nicotinamide (NAM). Here, we show that sirtuin-dependent deacetylation of both histone H3 lysine 56 and H4 lysine 16 promotes growth of yku70Δ and yku80Δ cells, and that the NAM sensitivity of these mutants is not caused by defects in DNA double-strand break repair by NHEJ, but rather by their inability to maintain normal telomere length. Indeed, our results indicate that in the absence of sirtuin activity, cells with abnormally short telomeres, e.g., yku70/80Δ or est1/2Δ mutants, present striking defects in S phase progression. Our data further suggest that early firing of replication origins at short telomeres compromises the cellular response to NAM- and genotoxin-induced replicative stress. Finally, we show that reducing H4K16ac in yku70Δ cells limits activation of the DNA damage checkpoint kinase Rad53 in response to replicative stress, which promotes usage of translesion synthesis and S phase progression. Our results reveal a novel interplay between sirtuin-mediated regulation of chromatin structure and telomere-regulating factors in promoting timely completion of S phase upon replicative stress.
Collapse
Affiliation(s)
- Antoine Simoneau
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | - Étienne Ricard
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | - Hugo Wurtele
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
49
|
Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nat Commun 2018; 9:379. [PMID: 29371596 PMCID: PMC5785523 DOI: 10.1038/s41467-017-02756-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023] Open
Abstract
Conflicts between replication and transcription machineries represent a major source of genomic instability and cells have evolved strategies to prevent such conflicts. However, little is known regarding how cells cope with sudden increases of transcription while replicating. Here, we report the existence of a general mechanism for the protection of genomic integrity upon transcriptional outbursts in S phase that is mediated by Mrc1. The N-terminal phosphorylation of Mrc1 blocked replication and prevented transcription-associated recombination (TAR) and genomic instability during stress-induced gene expression in S phase. An unbiased kinome screening identified several kinases that phosphorylate Mrc1 at the N terminus upon different environmental stresses. Mrc1 function was not restricted to environmental cues but was also required when unscheduled transcription was triggered by low fitness states such as genomic instability or slow growth. Our data indicate that Mrc1 integrates multiple signals, thereby defining a general safeguard mechanism to protect genomic integrity upon transcriptional outbursts. During S phase of the cell cycle, transcription and replication need to be coordinated in order to avoid conflicts leading to potential genomic instability. Here, the authors find that Mrc1 integrates signals from different kinases to regulate replication during unscheduled transcription events.
Collapse
|
50
|
Cambridge JM, Blinkova AL, Salvador Rocha EI, Bode Hernández A, Moreno M, Ginés-Candelaria E, Goetz BM, Hunicke-Smith S, Satterwhite E, Tucker HO, Walker JR. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages. PLoS One 2018; 13:e0189673. [PMID: 29293521 PMCID: PMC5749712 DOI: 10.1371/journal.pone.0189673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.
Collapse
Affiliation(s)
- Joshua M. Cambridge
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Alexandra L. Blinkova
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Erick I. Salvador Rocha
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Addys Bode Hernández
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Maday Moreno
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Edwin Ginés-Candelaria
- Department of Natural Sciences, Health & Wellness, Miami Dade College-Wolfson Campus, Miami, FL, United States of America
| | - Benjamin M. Goetz
- Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX, United States of America
| | - Scott Hunicke-Smith
- Genomic Sequencing and Analysis Facility, Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Ed Satterwhite
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - Haley O. Tucker
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
| | - James R. Walker
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|