1
|
Nickens DG, Gray SJ, Simmons RH, Bochman ML. Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645294. [PMID: 40196551 PMCID: PMC11974935 DOI: 10.1101/2025.03.25.645294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-stranded DNA (ssDNA) binding proteins (ssBPs) are essential in eukaryotes to protect telomeres from nuclease activity. In Saccharomyces cerevisiae , the ssBP Cdc13 is an essential protein that acts as a central regulator of telomere length homeostasis and chromosome end protection, both alone and as part of the Cdc13-Stn1-Ten1 (CST) complex. Cdc13 has high binding affinity for telomeric ssDNA, with a very slow off-rate. Previously, we reported that despite this tight ssDNA binding, Cdc13 rapidly exchanges between bound and unbound telomeric ssDNA substrates, even at sub-stoichiometric concentrations of competitor ssDNA. This dynamic DNA exchange (DDE) is dependent on the presence and length of telomeric repeat sequence ssDNA and requires both Cdc13 DNA binding domains, OB1 and OB3. Here we investigated if Cdc13 dimerization is important for DDE by characterizing the dimerization mutant Cdc13-L91R. Using mass photometry, we confirmed that Cdc13-L91R fails to dimerize in solution, even in the presence of ssDNA. Gel-based DDE assays revealed that Cdc13-L91R fails to undergo ssDNA exchange compared to recombinant wild-type protein. Biolayer interferometry demonstrated that this effect was not due to differences in ssDNA binding kinetics. Thus, dimerization of Cdc13 is essential for DDE, and we model how this may impact telomere biology in vivo . GRAPHICAL ABSTRACT
Collapse
|
2
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
3
|
Moeller-McCoy CA, Wieser TA, Lubin JW, Gillespie AE, Ramirez JA, Paschini M, Wuttke DS, Lundblad V. The canonical RPA complex interacts with Est3 to regulate yeast telomerase activity. Proc Natl Acad Sci U S A 2025; 122:e2419309122. [PMID: 39913192 PMCID: PMC11848354 DOI: 10.1073/pnas.2419309122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
In most eukaryotic organisms, cells that rely on continuous cell division employ the enzyme telomerase which replenishes chromosome termini through the addition of telomeric repeats. In budding yeast, the telomerase holoenzyme is composed of a catalytic core associated with two regulatory subunits, Est1 and Est3. The Est1 protein binds a telomere-specific RPA-like complex to recruit telomerase to chromosome ends. However, the regulatory function of the Est3 subunit has remained elusive. We report here that an interaction between Est3 and the canonical RPA complex is required for in vivo telomerase function, as revealed by mutations in RPA2 that confer an Est (Ever shorter telomeres) phenotype, characteristic of a defect in the telomerase pathway. Binding between RPA and telomerase, which is supported by compensatory charge-swap mutations in EST3 and RPA2, utilizes a surface on Est3 that is structurally analogous to an interface on the human TPP1 protein that is required for telomerase processivity. Mutations in a subset of conserved DNA contact residues in RPA also result in short telomeres and senescence, which we show is due to a requirement for DNA binding after RPA interacts with telomerase. We propose that once RPA forms a complex with telomerase, RPA utilizes a subset of DNA-binding domains to stabilize the interaction between the telomerase active site and telomeric substrates, thereby facilitating enzyme processivity. These results, combined with prior observations, show that yeast telomerase interacts with two different high-affinity ssDNA-binding complexes, indicating that management of single-stranded DNA is integral to effective telomerase function.
Collapse
Affiliation(s)
- Corinne A. Moeller-McCoy
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Thomas A. Wieser
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Johnathan W. Lubin
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Abigail E. Gillespie
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jocelyn A. Ramirez
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Margherita Paschini
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Rosas Bringas FR, Yin Z, Yao Y, Boudeman J, Ollivaud S, Chang M. Interstitial telomeric sequences promote gross chromosomal rearrangement via multiple mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2407314121. [PMID: 39602274 PMCID: PMC11626172 DOI: 10.1073/pnas.2407314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Telomeric DNA sequences are difficult to replicate. Replication forks frequently pause or stall at telomeres, which can lead to telomere truncation and dysfunction. In addition to being at chromosome ends, telomere repeats are also present at internal locations within chromosomes, known as interstitial telomeric sequences (ITSs). These sequences are unstable and prone to triggering gross chromosomal rearrangements (GCRs). In this study, we quantitatively examined the effect of ITSs on the GCR rate in Saccharomyces cerevisiae using a genetic assay. We find that the GCR rate increases exponentially with ITS length. This increase can be attributed to the telomere repeat binding protein Rap1 impeding DNA replication and a bias of repairing DNA breaks at or distal to the ITS via de novo telomere addition. Additionally, we performed a genome-wide screen for genes that modulate the rate of ITS-induced GCRs. We find that mutation of core components of the DNA replication machinery leads to an increase in GCRs, but many mutants known to increase the GCR rate in the absence of an ITS do not significantly affect the GCR rate when an ITS is present. We also identified genes that promote the formation of ITS-induced GCRs, including genes with roles in telomere maintenance, nucleotide excision repair, and transcription. Our work thus uncovers multiple mechanisms by which an ITS promotes GCR.
Collapse
Affiliation(s)
- Fernando R. Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Ziqing Yin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Yue Yao
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Jonathan Boudeman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Sandra Ollivaud
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
5
|
Grandin N, Charbonneau M. Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints. Cells 2024; 13:1605. [PMID: 39404369 PMCID: PMC11475793 DOI: 10.3390/cells13191605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France;
| |
Collapse
|
6
|
Petrík T, Brzáčová Z, Sepšiová R, Veljačiková K, Tomáška Ľ. Pros and cons of auxin-inducible degron as a tool for regulated depletion of telomeric proteins from Saccharomyces cerevisiae. Yeast 2024; 41:499-512. [PMID: 38923089 DOI: 10.1002/yea.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.
Collapse
Affiliation(s)
- Tomáš Petrík
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons R, Niu H, Bochman M. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. Nucleic Acids Res 2024; 52:6317-6332. [PMID: 38613387 PMCID: PMC11194072 DOI: 10.1093/nar/gkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Zhitong Feng
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Jiangchuan Shen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Spencer J Gray
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Simmons
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Hengyao Niu
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons RH, Niu H, Bochman ML. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569902. [PMID: 38105973 PMCID: PMC10723391 DOI: 10.1101/2023.12.04.569902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
|
9
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Sienkiewicz M, Sroka K, Binienda A, Jurk D, Fichna J. A new face of old cells: An overview about the role of senescence and telomeres in inflammatory bowel diseases. Ageing Res Rev 2023; 91:102083. [PMID: 37802318 DOI: 10.1016/j.arr.2023.102083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Cellular senescence is a pivotal factor contributing to aging and the pathophysiology of age-related diseases. Despite the presence of inflammation and abnormal immune system function in both inflammatory bowel diseases (IBD) and senescence, the relationship between the two remains largely unexplored. Therefore, our study aimed to investigate the intricate connection between cellular senescence, telomeres, and IBD. The review highlights the presence of senescence markers, particularly p16 and p21, in IBD patients, suggesting their potential association with disease progression and mucosal inflammation. We emphasize the critical role of macrophages in eliminating senescent cells and how disturbance in effective clearance may contribute to persistent senescence and inflammation in IBD. Additionally, we shed light on the involvement of telomeres in IBD, as their dysfunction impairs enterocyte function and disrupts colonic barrier integrity, potentially exacerbating the pathogenesis of the disease. Targeting senescence and telomere dysfunctions holds promise for the development of innovative therapeutic approaches to mitigate intestinal inflammation and alleviate symptoms in IBD patients. By unraveling the precise role of senescence in IBD, we can pave the way for the discovery of novel therapeutic interventions that effectively address the underlying mechanisms of intestinal inflammation, offering hope for improved management and treatment of IBD patients.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Sroka
- Department of Family Medicine and Public Health, University of Opole, Opole, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Diana Jurk
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Tesmer VM, Brenner KA, Nandakumar J. Human POT1 protects the telomeric ds-ss DNA junction by capping the 5' end of the chromosome. Science 2023; 381:771-778. [PMID: 37590346 PMCID: PMC10666826 DOI: 10.1126/science.adi2436] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Protection of telomeres 1 (POT1) is the 3' single-stranded overhang-binding telomeric protein that prevents an ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) at chromosome ends. What precludes the DDR machinery from accessing the telomeric double-stranded-single-stranded junction is unknown. We demonstrate that human POT1 binds this junction by recognizing the phosphorylated 5' end of the chromosome. High-resolution crystallographic structures reveal that the junction is capped by POT1 through a "POT-hole" surface, the mutation of which compromises junction protection in vitro and telomeric 5'-end definition and DDR suppression in human cells. Whereas both mouse POT1 paralogs bind the single-stranded overhang, POT1a, not POT1b, contains a POT-hole and binds the junction, which explains POT1a's sufficiency for end protection. Our study shifts the paradigm for DDR suppression at telomeres by highlighting the importance of protecting the double-stranded-single-stranded junction.
Collapse
Affiliation(s)
- Valerie M. Tesmer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Kirsten A. Brenner
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| |
Collapse
|
12
|
Singh P, Gazy I, Kupiec M. Control of telomere length in yeast by SUMOylated PCNA and the Elg1 PCNA unloader. eLife 2023; 12:RP86990. [PMID: 37530521 PMCID: PMC10396338 DOI: 10.7554/elife.86990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Telomeres cap and protect the linear eukaryotic chromosomes. Telomere length is determined by an equilibrium between positive and negative regulators of telomerase activity. A systematic screen for yeast mutants that affect telomere length maintenance in the yeast Saccharomyces cerevisiae revealed that mutations in any of ~500 genes affects telomere length. One of the genes that, when mutated, causes telomere elongation is ELG1, which encodes an unloader of PCNA, the processivity factor for replicative DNA polymerases. PCNA can undergo SUMOylation on two conserved residues, K164 and K127, or ubiquitination at lysine 164. These modifications have already been implicated in genome stability processes. We report that SUMOylated PCNA acts as a signal that positively regulates telomerase activity. We also uncovered physical interactions between Elg1 and the CST (Cdc13-Stn1-Ten) complex and addressed the mechanism by which Elg1 and Stn1 negatively regulates telomere elongation, coordinated by SUMO. We discuss these results with respect to how chromosomal replication and telomere elongation are coordinated.
Collapse
Affiliation(s)
- Pragyan Singh
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Gazy
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Barbour AT, Wuttke DS. RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases. Curr Opin Struct Biol 2023; 81:102611. [PMID: 37245465 PMCID: PMC10524659 DOI: 10.1016/j.sbi.2023.102611] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Telomeres and other single-stranded regions of the genome require specialized management to maintain stability and for proper progression of DNA metabolism pathways. Human Replication Protein A and CTC1-STN1-TEN1 are structurally similar heterotrimeric protein complexes that have essential ssDNA-binding roles in DNA replication, repair, and telomeres. Yeast and ciliates have related ssDNA-binding proteins with strikingly conserved structural features to these human heterotrimeric protein complexes. Recent breakthrough structures have extended our understanding of these commonalities by illuminating a common mechanism used by these proteins to act as processivity factors for their partner polymerases through their ability to manage ssDNA.
Collapse
Affiliation(s)
- Alexandra T Barbour
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA.
| |
Collapse
|
14
|
Laughery MF, Plummer DA, Wilson HE, Vandenberg BN, Mitchell D, Mieczkowski PA, Roberts SA, Wyrick JJ. Genome-wide maps of UVA and UVB mutagenesis in yeast reveal distinct causative lesions and mutational strand asymmetries. Genetics 2023; 224:iyad086. [PMID: 37170598 PMCID: PMC10324949 DOI: 10.1093/genetics/iyad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Ultraviolet (UV) light primarily causes C > T substitutions in lesion-forming dipyrimidine sequences. However, many of the key driver mutations in melanoma do not fit this canonical UV signature, but are instead caused by T > A, T > C, or C > A substitutions. To what extent exposure to the UVB or UVA spectrum of sunlight can induce these noncanonical mutation classes, and the molecular mechanism involved is unclear. Here, we repeatedly exposed wild-type or repair-deficient yeast (Saccharomyces cerevisiae) to UVB or UVA light and characterized the resulting mutations by whole genome sequencing. Our data indicate that UVB induces C > T and T > C substitutions in dipyrimidines, and T > A substitutions that are often associated with thymine-adenine (TA) sequences. All of these mutation classes are induced in nucleotide excision repair-deficient cells and show transcriptional strand asymmetry, suggesting they are caused by helix-distorting UV photoproducts. In contrast, UVA exposure induces orders of magnitude fewer mutations with a distinct mutation spectrum. UVA-induced mutations are elevated in Ogg1-deficient cells, and the resulting spectrum consists almost entirely of C > A/G > T mutations, indicating they are likely derived from oxidative guanine lesions. These mutations show replication asymmetry, with elevated G > T mutations on the leading strand, suggesting there is a strand bias in the removal or bypass of guanine lesions during replication. Finally, we develop a mutation reporter to show that UVA induces a G > T reversion mutation in yeast that mimics the oncogenic NRAS Q61K mutation in melanoma. Taken together, these findings indicate that UVA and UVB exposure can induce many of the noncanonical mutation classes that cause driver mutations in melanoma.
Collapse
Affiliation(s)
- Marian F Laughery
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Brittany N Vandenberg
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Debra Mitchell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Pires VB, Lohner N, Wagner T, Wagner CB, Wilkens M, Hajikazemi M, Paeschke K, Butter F, Luke B. RNA-DNA hybrids prevent resection at dysfunctional telomeres. Cell Rep 2023; 42:112077. [PMID: 36729832 DOI: 10.1016/j.celrep.2023.112077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.
Collapse
Affiliation(s)
- Vanessa Borges Pires
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nina Lohner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tina Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Carolin B Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maya Wilkens
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Falk Butter
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
17
|
Vijayraghavan S, Porcher L, Mieczkowski PA, Saini N. Acetaldehyde makes a distinct mutation signature in single-stranded DNA. Nucleic Acids Res 2022; 50:7451-7464. [PMID: 35776120 PMCID: PMC9303387 DOI: 10.1093/nar/gkac570] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Acetaldehyde (AA), a by-product of ethanol metabolism, is acutely toxic due to its ability to react with various biological molecules including DNA and proteins, which can greatly impede key processes such as replication and transcription and lead to DNA damage. As such AA is classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC). Previous in vitro studies have shown that AA generates bulky adducts on DNA, with signature guanine-centered (GG→TT) mutations. However, due to its weak mutagenicity, short chemical half-life, and the absence of powerful genetic assays, there is considerable variability in reporting the mutagenic effects of AA in vivo. Here, we used an established yeast genetic reporter system and demonstrate that AA treatment is highly mutagenic to cells and leads to strand-biased mutations on guanines (G→T) at a high frequency on single stranded DNA (ssDNA). We further demonstrate that AA-derived mutations occur through lesion bypass on ssDNA by the translesion polymerase Polζ. Finally, we describe a unique mutation signature for AA, which we then identify in several whole-genome and -exome sequenced cancers, particularly those associated with alcohol consumption. Our study proposes a key mechanism underlying carcinogenesis by acetaldehyde—mutagenesis of single-stranded DNA.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
19
|
Malyavko AN, Petrova OA, Zvereva MI, Polshakov VI, Dontsova OA. Telomere length regulation by Rif1 protein from Hansenula polymorpha. eLife 2022; 11:75010. [PMID: 35129114 PMCID: PMC8820739 DOI: 10.7554/elife.75010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rif1 is a large multifaceted protein involved in various processes of DNA metabolism – from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension – a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Petrova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Zvereva
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
20
|
Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-depleted telomeres from MRX-mediated degradation in Saccharomyces cerevisiae. eLife 2022; 11:74090. [PMID: 35044907 PMCID: PMC8791636 DOI: 10.7554/elife.74090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.
Collapse
Affiliation(s)
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | - Pien de Zoeten
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| |
Collapse
|
21
|
Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol Cell 2021; 81:4994-5006.e5. [PMID: 34919819 PMCID: PMC8769213 DOI: 10.1016/j.molcel.2021.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Megan Palacio
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Pamela N Dyer
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
22
|
Itriago H, Jaiswal RK, Philipp S, Cohn M. The telomeric 5' end nucleotide is regulated in the budding yeast Naumovozyma castellii. Nucleic Acids Res 2021; 50:281-292. [PMID: 34908133 PMCID: PMC8754665 DOI: 10.1093/nar/gkab1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
The junction between the double-stranded and single-stranded telomeric DNA (ds-ss junction) is fundamental in the maintenance of the telomeric chromatin, as it directs the assembly of the telomere binding proteins. In budding yeast, multiple Rap1 proteins bind the telomeric dsDNA, while ssDNA repeats are bound by the Cdc13 protein. Here, we aimed to determine, for the first time, the telomeric 5' end nucleotide in a budding yeast. To this end, we developed a permutation-specific PCR-based method directed towards the regular 8-mer telomeric repeats in Naumovozyma castellii. We find that, in logarithmically growing cells, the 320 ± 30 bp long telomeres mainly terminate in either of two specific 5' end permutations of the repeat, both corresponding to a terminal adenine nucleotide. Strikingly, two permutations are completely absent at the 5' end, indicating that not all ds-ss junction structures would allow the establishment of the protective telomere chromatin cap structure. Using in vitro DNA end protection assays, we determined that binding of Rap1 and Cdc13 around the most abundant ds-ss junction ensures the protection of both 5' ends and 3' overhangs from exonucleolytic degradation. Our results provide mechanistic insights into telomere protection, and reveal that Rap1 and Cdc13 have complementary roles.
Collapse
Affiliation(s)
- Humberto Itriago
- Department of Biology, Genetics group, Lund University, SE-223 62 Lund, Sweden
| | - Rishi K Jaiswal
- Department of Biology, Genetics group, Lund University, SE-223 62 Lund, Sweden
| | - Susanne Philipp
- Department of Biology, Genetics group, Lund University, SE-223 62 Lund, Sweden
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
23
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2021; 19:247. [PMID: 34801008 PMCID: PMC8605574 DOI: 10.1186/s12915-021-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01167-1.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands. .,Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Fekete-Szücs E, Rosas Bringas FR, Stinus S, Chang M. Suppression of cdc13-2-associated senescence by pif1-m2 requires Ku-mediated telomerase recruitment. G3-GENES GENOMES GENETICS 2021; 12:6395364. [PMID: 34751785 PMCID: PMC8728030 DOI: 10.1093/g3journal/jkab360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, recruitment of telomerase to telomeres requires an interaction between Cdc13, which binds single-stranded telomeric DNA, and the Est1 subunit of telomerase. A second pathway involving an interaction between the yKu complex and telomerase RNA (TLC1) contributes to telomerase recruitment but cannot sufficiently recruit telomerase on its own to prevent replicative senescence when the primary Cdc13-Est1 pathway is abolished—for example, in the cdc13-2 mutant. In this study, we find that mutation of PIF1, which encodes a helicase that inhibits telomerase, suppresses the replicative senescence of cdc13-2 by increasing reliance on the yKu-TLC1 pathway for telomerase recruitment. Our findings reveal new insight into telomerase-mediated telomere maintenance.
Collapse
Affiliation(s)
- Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Fernando R Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
25
|
Spivakovsky-Gonzalez E, Polleys EJ, Masnovo C, Cebrian J, Molina-Vargas AM, Freudenreich CH, Mirkin SM. Rad9-mediated checkpoint activation is responsible for elevated expansions of GAA repeats in CST-deficient yeast. Genetics 2021; 219:6343461. [PMID: 34849883 DOI: 10.1093/genetics/iyab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Large-scale expansion of (GAA)n repeats in the first intron of the FXN gene is responsible for the severe neurodegenerative disease, Friedreich's ataxia in humans. We have previously conducted an unbiased genetic screen for GAA repeat instability in a yeast experimental system. The majority of genes that came from this screen encoded the components of DNA replication machinery, strongly implying that replication irregularities are at the heart of GAA repeat expansions. This screen, however, also produced two unexpected hits: members of the CST complex, CDC13 and TEN1 genes, which are required for telomere maintenance. To understand how the CST complex could affect intra-chromosomal GAA repeats, we studied the well-characterized temperature-sensitive cdc13-1 mutation and its effects on GAA repeat instability in yeast. We found that in-line with the screen results, this mutation leads to ∼10-fold increase in the rate of large-scale expansions of the (GAA)100 repeat at semi-permissive temperature. Unexpectedly, the hyper-expansion phenotype of the cdc13-1 mutant largely depends on activation of the G2/M checkpoint, as deletions of individual genes RAD9, MEC1, RAD53, and EXO1 belonging to this pathway rescued the increased GAA expansions. Furthermore, the hyper-expansion phenotype of the cdc13-1 mutant depended on the subunit of DNA polymerase δ, Pol32. We hypothesize, therefore, that increased repeat expansions in the cdc13-1 mutant happen during post-replicative repair of nicks or small gaps within repetitive tracts during the G2 phase of the cell cycle upon activation of the G2/M checkpoint.
Collapse
Affiliation(s)
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jorge Cebrian
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Madrid 28040, Spain
| | - Adrian M Molina-Vargas
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
26
|
Par S, Vaides S, VanderVere-Carozza PS, Pawelczak KS, Stewart J, Turchi JJ. OB-Folds and Genome Maintenance: Targeting Protein-DNA Interactions for Cancer Therapy. Cancers (Basel) 2021; 13:3346. [PMID: 34283091 PMCID: PMC8269290 DOI: 10.3390/cancers13133346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Genome stability and maintenance pathways along with their requisite proteins are critical for the accurate duplication of genetic material, mutation avoidance, and suppression of human diseases including cancer. Many of these proteins participate in these pathways by binding directly to DNA, and a subset employ oligonucleotide/oligosaccharide binding folds (OB-fold) to facilitate the protein-DNA interactions. OB-fold motifs allow for sequence independent binding to single-stranded DNA (ssDNA) and can serve to position specific proteins at specific DNA structures and then, via protein-protein interaction motifs, assemble the machinery to catalyze the replication, repair, or recombination of DNA. This review provides an overview of the OB-fold structural organization of some of the most relevant OB-fold containing proteins for oncology and drug discovery. We discuss their individual roles in DNA metabolism, progress toward drugging these motifs and their utility as potential cancer therapeutics. While protein-DNA interactions were initially thought to be undruggable, recent reports of success with molecules targeting OB-fold containing proteins suggest otherwise. The potential for the development of agents targeting OB-folds is in its infancy, but if successful, would expand the opportunities to impinge on genome stability and maintenance pathways for more effective cancer treatment.
Collapse
Affiliation(s)
- Sui Par
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | - Sofia Vaides
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | | | | | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - John J. Turchi
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- NERx Biosciences, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Lin YY, Li MH, Chang YC, Fu PY, Ohniwa RL, Li HW, Lin JJ. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13. J Am Chem Soc 2021; 143:5815-5825. [PMID: 33831300 DOI: 10.1021/jacs.1c00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosome maintenance. Cdc13 is a single-stranded telomeric DNA binding protein that caps telomeres and regulates telomerase function in yeast. Although specific binding of Cdc13 to telomeric DNA is critical for telomere protection, the detail mechanism how Cdc13-DNA complex protects telomere is unclear. Using two single-molecule methods, tethered particle motion and atomic force microscopy, we demonstrate that specific binding of Cdc13 on single-stranded telomeric DNA shortens duplex DNA into distinct states differed by ∼70-80 base pairs. DNA shortening by Cdc13 is dynamic and independent of duplex DNA sequences or length. Significantly, we found that Pif1 helicase is incapable of removing Cdc13 from the shortened DNA-Cdc13 complex, suggesting that Cdc13 forms structurally stable complex by shortening of the bound DNA. Together our data identified shortening of DNA by Cdc13 and provided an indication for efficient protection of telomere ends by the shortened DNA-Cdc13 complex.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Min-Hsuan Li
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Yen-Chan Chang
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Peng-Yu Fu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan.,Center for Biotechnology, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan.,Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| |
Collapse
|
28
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Sir4 Deficiency Reverses Cell Senescence by Sub-Telomere Recombination. Cells 2021; 10:cells10040778. [PMID: 33915984 PMCID: PMC8066019 DOI: 10.3390/cells10040778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Telomere shortening results in cellular senescence and the regulatory mechanisms remain unclear. Here, we report that the sub-telomere regions facilitate telomere lengthening by homologous recombination, thereby attenuating senescence in yeast Saccharomyces cerevisiae. The telomere protein complex Sir3/4 represses, whereas Rif1 promotes, the sub-telomere Y' element recombination. Genetic disruption of SIR4 increases Y' element abundance and rescues telomere-shortening-induced senescence in a Rad51-dependent manner, indicating a sub-telomere regulatory switch in regulating organismal senescence by DNA recombination. Inhibition of the sub-telomere recombination requires Sir4 binding to perinuclear protein Mps3 for telomere perinuclear localization and transcriptional repression of the telomeric repeat-containing RNA TERRA. Furthermore, Sir4 repression of Y' element recombination is negatively regulated by Rif1 that mediates senescence-evasion induced by Sir4 deficiency. Thus, our results demonstrate a dual opposing control mechanism of sub-telomeric Y' element recombination by Sir3/4 and Rif1 in the regulation of telomere shortening and cell senescence.
Collapse
|
30
|
Liu JC, Li QJ, He MH, Hu C, Dai P, Meng FL, Zhou BO, Zhou JQ. Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Res 2021; 48:12792-12803. [PMID: 33270890 PMCID: PMC7736797 DOI: 10.1093/nar/gkaa1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Jin Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
31
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
32
|
Single-stranded DNA-binding proteins in plant telomeres. Int J Biol Macromol 2020; 165:1463-1467. [PMID: 32998016 DOI: 10.1016/j.ijbiomac.2020.09.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022]
Abstract
Telomere single-stranded DNA-binding proteins bind to the terminal single-stranded DNA of telomeres, maintaining and protecting the chromosomal end in eukaryotes. This paper focuses on the protective mechanism of single-stranded DNA-binding proteins in plant telomeres. This review summarizes the roles of plant single-stranded DNA-binding proteins and their influence on telomere length and telomerase. This review provides insights into the mechanism and development of single-stranded DNA-binding proteins in plants.
Collapse
|
33
|
Liu J, Hong X, Liang CY, Liu JP. Simultaneous visualisation of the complete sets of telomeres from the MmeI generated terminal restriction fragments in yeasts. Yeast 2020; 37:585-595. [PMID: 32776370 DOI: 10.1002/yea.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022] Open
Abstract
Telomere length is measured using Southern blotting of the chromosomal terminal restriction fragments (TRFs) released by endonuclease digestion in cells from yeast to human. In the budding yeast Saccharomyces cerevisiae, XhoI or PstI is applied to cut the subtelomere Y' element and release TRFs from the 17 subtelomeres. However, telomeres from other 15 X-element-only subtelomeres are omitted from analysis. Here, we report a method for measuring all 32 telomeres in S. cerevisiae using the endonuclease MmeI. Based on analyses of the endonuclease cleavage sites, we found that the TRFs generated by MmeI displayed two distinguishable bands in the sizes of ~500 and ~700 bp comprising telomeres (300 bp) and subtelomeres (200-400 bp). The modified MmeI-restricted TRF (mTRF) method recapitulated telomere shortening and lengthening caused by deficiencies of YKu and Rif1 respectively in S. cerevisiae. Furthermore, we found that mTRF was also applicable to telomere length analysis in S. paradoxus strains. These results demonstrate a useful tool for simultaneous detection of telomeres from all chromosomal ends with both X-element-only and Y'-element subtelomeres in S. cerevisiae species.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chao-Ya Liang
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
35
|
Jurikova K, Gajarsky M, Hajikazemi M, Nosek J, Prochazkova K, Paeschke K, Trantirek L, Tomaska L. Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. J Biol Chem 2020; 295:8958-8971. [PMID: 32385108 PMCID: PMC7335780 DOI: 10.1074/jbc.ra120.012914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.
Collapse
Affiliation(s)
- Katarina Jurikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Gajarsky
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Prochazkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
36
|
Ngo K, Epum EA, Friedman KL. Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast. Curr Genet 2020; 66:917-926. [PMID: 32399607 DOI: 10.1007/s00294-020-01081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
DNA double-strand break repair allows cells to survive both exogenous and endogenous insults to the genome. In yeast, the recombinases Rad51 and Rad52 are central to multiple forms of homology-dependent repair. Classically, Rad51 and Rad52 are thought to act cooperatively, with formation of the functional Rad51 nucleofilament facilitated by the mediator function of Rad52. Several studies have now identified functions for the interaction between Rad51 and Rad52 that are independent of the mediator function of Rad52 and affect a seemingly diverse array of functions in de novo telomere addition, global chromosome mobility following DNA damage, Rad51 nucleofilament stability, checkpoint adaptation, and microhomology-mediated chromosome rearrangements. Here, we review these functions with an emphasis on our recent discovery that the Rad51-Rad52 interaction influences the probability of de novo telomere addition at sites preferentially targeted by telomerase following a double-strand break (DSB). We present data addressing the prevalence of sites within the yeast genome that are capable of stimulating de novo telomere addition following a DSB and speculate about the potential role such sites may play in genome stability.
Collapse
Affiliation(s)
- Katrina Ngo
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Esther A Epum
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
37
|
Saini N, Sterling JF, Sakofsky CJ, Giacobone CK, Klimczak LJ, Burkholder AB, Malc EP, Mieczkowski PA, Gordenin DA. Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Res 2020; 48:3692-3707. [PMID: 32133535 PMCID: PMC7144945 DOI: 10.1093/nar/gkaa150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
Alkylation is one of the most ubiquitous forms of DNA lesions. However, the motif preferences and substrates for the activity of the major types of alkylating agents defined by their nucleophilic substitution reactions (SN1 and SN2) are still unclear. Utilizing yeast strains engineered for large-scale production of single-stranded DNA (ssDNA), we probed the substrate specificity, mutation spectra and signatures associated with DNA alkylating agents. We determined that SN1-type agents preferably mutagenize double-stranded DNA (dsDNA), and the mutation signature characteristic of the activity of SN1-type agents was conserved across yeast, mice and human cancers. Conversely, SN2-type agents preferably mutagenize ssDNA in yeast. Moreover, the spectra and signatures derived from yeast were detectable in lung cancers, head and neck cancers and tumors from patients exposed to SN2-type alkylating chemicals. The estimates of mutation loads associated with the SN2-type alkylation signature were higher in lung tumors from smokers than never-smokers, pointing toward the mutagenic activity of the SN2-type alkylating carcinogens in cigarettes. In summary, our analysis of mutations in yeast strains treated with alkylating agents, as well as in whole-exome and whole-genome-sequenced tumors identified signatures highly specific to alkylation mutagenesis and indicate the pervasive nature of alkylation-induced mutagenesis in cancers.
Collapse
Affiliation(s)
- Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Camille K Giacobone
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ewa P Malc
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Piotr A Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
38
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
39
|
Epum EA, Mohan MJ, Ruppe NP, Friedman KL. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition. PLoS Genet 2020; 16:e1008608. [PMID: 32012161 PMCID: PMC7018233 DOI: 10.1371/journal.pgen.1008608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/13/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) are toxic forms of DNA damage that must be repaired to maintain genome integrity. Telomerase can act upon a DSB to create a de novo telomere, a process that interferes with normal repair and creates terminal deletions. We previously identified sequences in Saccharomyces cerevisiae (SiRTAs; Sites of Repair-associated Telomere Addition) that undergo unusually high frequencies of de novo telomere addition, even when the original chromosome break is several kilobases distal to the eventual site of telomerase action. Association of the single-stranded telomere binding protein Cdc13 with a SiRTA is required to stimulate de novo telomere addition. Because extensive resection must occur prior to Cdc13 binding, we utilized these sites to monitor the effect of proteins involved in homologous recombination. We find that telomere addition is significantly reduced in the absence of the Rad51 recombinase, while loss of Rad52, required for Rad51 nucleoprotein filament formation, has no effect. Deletion of RAD52 suppresses the defect of the rad51Δ strain, suggesting that Rad52 inhibits de novo telomere addition in the absence of Rad51. The ability of Rad51 to counteract this effect of Rad52 does not require DNA binding by Rad51, but does require interaction between the two proteins, while the inhibitory effect of Rad52 depends on its interaction with Replication Protein A (RPA). Intriguingly, the genetic interactions we report between RAD51 and RAD52 are similar to those previously observed in the context of checkpoint adaptation. Forced recruitment of Cdc13 fully restores telomere addition in the absence of Rad51, suggesting that Rad52, through its interaction with RPA-coated single-stranded DNA, inhibits the ability of Cdc13 to bind and stimulate telomere addition. Loss of the Rad51-Rad52 interaction also stimulates a subset of Rad52-dependent microhomology-mediated repair (MHMR) events, consistent with the known ability of Rad51 to prevent single-strand annealing. DNA double-strand breaks (DSBs) can lead to chromosome loss and rearrangement associated with cancer and genetic disease, so understanding how the cell coordinates multiple possible repair pathways is of critical importance. Telomerase is a ribonucleoprotein enzyme that uses an intrinsic RNA component as a template for the addition of highly repetitive, protective sequences (called telomeres) at normal chromosome ends. Rarely, telomerase acts upon a DSB to create a new or de novo telomere with resultant loss of sequences distal to the site of telomere addition. Here, we show that interactions between proteins with known roles during DSB repair modulate the probability of telomerase action at hotspots of de novo telomere addition in the yeast genome by influencing the association of Cdc13, a protein required for telomerase recruitment, with sites of telomere addition. Intriguingly, the same interactions that facilitate telomere addition prevent other types of rearrangements in response to chromosome breaks.
Collapse
Affiliation(s)
- Esther A. Epum
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael J. Mohan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicholas P. Ruppe
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine L. Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Telomeres are special structures at the ends of chromosomes that play an
important role in the protection of the genetic material. Telomere composition
is very diverse; noticeable differences can often be observed even among
closely related species. Here, we identify the homolog of telomeric protein
Cdc13 in the thermotolerant yeast Hansenula polymorpha. We
show that it can specifically bind single-stranded telomeric DNA, as well as
interact with the Stn1 protein. In addition, we have uncovered an interaction
between Cdc13 and TERT (one of the core components of the telomerase complex),
which suggests that Cdc13 is potentially involved in telomerase recruitment to
telomeres in H. polymorpha.
Collapse
Affiliation(s)
- A. N. Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - O. A. Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
41
|
Either Rap1 or Cdc13 can protect telomeric single-stranded 3' overhangs from degradation in vitro. Sci Rep 2019; 9:19181. [PMID: 31844093 PMCID: PMC6915718 DOI: 10.1038/s41598-019-55482-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Telomeres, the DNA-protein structures capping the ends of linear chromosomes, are important for regulating replicative senescence and maintaining genome stability. Telomeres consist of G-rich repetitive sequences that end in a G-rich single-stranded (ss) 3′ overhang, which is vital for telomere function. It is largely unknown how the 3′ overhang is protected against exonucleases. In budding yeast, double-stranded (ds) telomeric DNA is bound by Rap1, while ssDNA is bound by Cdc13. Here, we developed an in vitro DNA 3′end protection assay to gain mechanistic insight into how Naumovozyma castellii Cdc13 and Rap1 may protect against 3′ exonucleolytic degradation by Exonuclease T. Our results show that Cdc13 protects the 3′ overhang at least 5 nucleotides (nt) beyond its binding site, when bound directly adjacent to the ds-ss junction. Rap1 protects 1–2 nt of the 3′ overhang when bound to dsDNA adjacent to the ds-ss junction. Remarkably, when Rap1 is bound across the ds-ss junction, the protection of the 3′ overhang is extended to 6 nt. This shows that binding by either Cdc13 or Rap1 can protect telomeric overhangs from 3′ exonucleolytic degradation, and suggests a new important role for Rap1 in protecting short overhangs under circumstances when Cdc13 cannot bind the telomere.
Collapse
|
42
|
Jones RD, Enam C, Ibarra R, Borror HR, Mostoller KE, Fredrickson EK, Lin J, Chuang E, March Z, Shorter J, Ravid T, Kleiger G, Gardner RG. The extent of Ssa1/Ssa2 Hsp70 chaperone involvement in nuclear protein quality control degradation varies with the substrate. Mol Biol Cell 2019; 31:221-233. [PMID: 31825716 PMCID: PMC7001477 DOI: 10.1091/mbc.e18-02-0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein misfolding is a recurring phenomenon that cells must manage; otherwise misfolded proteins can aggregate and become toxic should they persist. To counter this burden, cells have evolved protein quality control (PQC) mechanisms that manage misfolded proteins. Two classes of systems that function in PQC are chaperones that aid in protein folding and ubiquitin-protein ligases that ubiquitinate misfolded proteins for proteasomal degradation. How folding and degradative PQC systems interact and coordinate their respective functions is not yet fully understood. Previous studies of PQC degradation pathways in the endoplasmic reticulum and cytosol have led to the prevailing idea that these pathways require the activity of Hsp70 chaperones. Here, we find that involvement of the budding yeast Hsp70 chaperones Ssa1 and Ssa2 in nuclear PQC degradation varies with the substrate. In particular, nuclear PQC degradation mediated by the yeast ubiquitin-protein ligase San1 often involves Ssa1/Ssa2, but San1 substrate recognition and ubiquitination can proceed without these Hsp70 chaperone functions in vivo and in vitro. Our studies provide new insights into the variability of Hsp70 chaperone involvement with a nuclear PQC degradation pathway.
Collapse
Affiliation(s)
- Ramon D Jones
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Charisma Enam
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rebeca Ibarra
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154
| | - Heather R Borror
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | | | | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zachary March
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, -Jerusalem 91904, Israel
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Chen Y. The structural biology of the shelterin complex. Biol Chem 2019; 400:457-466. [PMID: 30352022 DOI: 10.1515/hsz-2018-0368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
The shelterin complex protects telomeric DNA and plays critical roles in maintaining chromosome stability. The structures and functions of the shelterin complex have been extensively explored in the past decades. This review summarizes the current progress on structural studies of shelterin complexes from different species. It focuses on the structural features and assembly of common structural domains, highlighting the evolutionary plasticity and conserved roles of shelterin proteins in telomere homeostasis and protection.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
44
|
Xu Z, Teixeira MT. The many types of heterogeneity in replicative senescence. Yeast 2019; 36:637-648. [PMID: 31306505 PMCID: PMC6900063 DOI: 10.1002/yea.3433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/10/2022] Open
Abstract
Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.
Collapse
Affiliation(s)
- Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative BiologySorbonne UniversitéParisFrance
| | - Maria Teresa Teixeira
- CNRS, UMR8226, Institut de Biologie Physico‐Chimique, Laboratory of Molecular and Cell Biology of EukaryotesSorbonne Université, PSL Research UniversityParisFrance
| |
Collapse
|
45
|
Ueda S, Ozaki R, Kaneko A, Akizuki R, Katsuta H, Miura A, Matsuura A, Ushimaru T. TORC1, Tel1/Mec1, and Mpk1 regulate autophagy induction after DNA damage in budding yeast. Cell Signal 2019; 62:109344. [DOI: 10.1016/j.cellsig.2019.109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
46
|
Abstract
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
47
|
Lemon LD, Morris DK, Bertuch AA. Loss of Ku's DNA end binding activity affects telomere length via destabilizing telomere-bound Est1 rather than altering TLC1 homeostasis. Sci Rep 2019; 9:10607. [PMID: 31337791 PMCID: PMC6650470 DOI: 10.1038/s41598-019-46840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae telomerase, which maintains telomere length, is comprised of an RNA component, TLC1, the reverse transcriptase, Est2, and regulatory subunits, including Est1. The Yku70/Yku80 (Ku) heterodimer, a DNA end binding (DEB) protein, also contributes to telomere length maintenance. Ku binds TLC1 and telomere ends in a mutually exclusive fashion, and is required to maintain levels and nuclear localization of TLC1. Ku also interacts with Sir4, which localizes to telomeres. Here we sought to determine the role of Ku's DEB activity in telomere length maintenance by utilizing yku70-R456E mutant strains, in which Ku has reduced DEB and telomere association but proficiency in TLC1 and Sir4 binding, and TLC1 nuclear retention. Telomere lengths in a yku70-R456E strain were nearly as short as those in yku∆ strains and shorter than in strains lacking either Sir4, Ku:Sir4 interaction, or Ku:TLC1 interaction. TLC1 levels were decreased in the yku70-R456E mutant, yet overexpression of TLC1 failed to restore telomere length. Reduced DEB activity did not impact Est1's ability to associate with telomerase but did result in decreased association of Est1 with the telomere. These findings suggest Ku's DEB activity maintains telomere length homeostasis by preserving Est1's interaction at the telomere rather than altering TLC1 levels.
Collapse
Affiliation(s)
- Laramie D Lemon
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danna K Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Mersaoui SY, Bonnell E, Wellinger RJ. Nuclear import of Cdc13 limits chromosomal capping. Nucleic Acids Res 2019; 46:2975-2989. [PMID: 29432594 PMCID: PMC5887288 DOI: 10.1093/nar/gky085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cdc13 is an essential protein involved in telomere maintenance and chromosome capping. Individual domain analyses on Cdc13 suggest the presence of four distinct OB-fold domains and one recruitment domain. However, it remained unclear how these sub-domains function in the context of the whole protein in vivo. Here, we use individual single domain deletions to address their roles in telomere capping. We find that the OB2 domain contains a nuclear localization signal that is essential for nuclear import of Cdc13 and therefore is required for chromosome capping. The karyopherin Msn5 is important for nuclear localization, and retention of Cdc13 in the nucleus also requires its binding to telomeres. Moreover, Cdc13 homodimerization occurs even if the protein is not bound to DNA and is in the cytoplasm. Hence, Cdc13 abundance in the nucleus and, in consequence, its capping function is strongly affected by nucleo-cytoplasmic transport as well as nuclear retention by DNA binding.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
49
|
Liu J, Wang L, Wang Z, Liu JP. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019; 8:E54. [PMID: 30650660 PMCID: PMC6356700 DOI: 10.3390/cells8010054] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
Telomeres with G-rich repetitive DNA and particular proteins as special heterochromatin structures at the termini of eukaryotic chromosomes are tightly maintained to safeguard genetic integrity and functionality. Telomerase as a specialized reverse transcriptase uses its intrinsic RNA template to lengthen telomeric G-rich strand in yeast and human cells. Cells sense telomere length shortening and respond with cell cycle arrest at a certain size of telomeres referring to the "Hayflick limit." In addition to regulating the cell replicative senescence, telomere biology plays a fundamental role in regulating the chronological post-mitotic cell ageing. In this review, we summarize the current understandings of telomere regulation of cell replicative and chronological ageing in the pioneer model system Saccharomyces cerevisiae and provide an overview on telomere regulation of animal lifespans. We focus on the mechanisms of survivals by telomere elongation, DNA damage response and environmental factors in the absence of telomerase maintenance of telomeres in the yeast and mammals.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Vitoria 3004, Australia.
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
50
|
Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proc Natl Acad Sci U S A 2018; 115:10315-10320. [PMID: 30249661 PMCID: PMC6187146 DOI: 10.1073/pnas.1722147115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins that bind nucleic acids are frequently categorized as being either specific or nonspecific, with interfaces to match that activity. In this study, we have found that a telomere-binding protein exhibits a degree of specificity for ssDNA that is finely tuned for its function, which includes specificity for G-rich sequences with some tolerance for substitution. Mutations of the protein that dramatically impact its affinity for single-stranded telomeric DNA are lethal, as expected; however, mutations that alter specificity also impact biological function. Unexpectedly, we found mutations that make the protein more specific are also deleterious, suggesting that specificity and nonspecificity in nucleic acid recognition may be achieved through more nuanced mechanisms than currently recognized. ssDNA, which is involved in numerous aspects of chromosome biology, is managed by a suite of proteins with tailored activities. The majority of these proteins bind ssDNA indiscriminately, exhibiting little apparent sequence preference. However, there are several notable exceptions, including the Saccharomyces cerevisiae Cdc13 protein, which is vital for yeast telomere maintenance. Cdc13 is one of the tightest known binders of ssDNA and is specific for G-rich telomeric sequences. To investigate how these two different biochemical features, affinity and specificity, contribute to function, we created an unbiased panel of alanine mutations across the Cdc13 DNA-binding interface, including several aromatic amino acids that play critical roles in binding activity. A subset of mutant proteins exhibited significant loss in affinity in vitro that, as expected, conferred a profound loss of viability in vivo. Unexpectedly, a second category of mutant proteins displayed an increase in specificity, manifested as an inability to accommodate changes in ssDNA sequence. Yeast strains with specificity-enhanced mutations displayed a gradient of viability in vivo that paralleled the loss in sequence tolerance in vitro, arguing that binding specificity can be fine-tuned to ensure optimal function. We propose that DNA binding by Cdc13 employs a highly cooperative interface whereby sequence diversity is accommodated through plastic binding modes. This suggests that sequence specificity is not a binary choice but rather is a continuum. Even in proteins that are thought to be specific nucleic acid binders, sequence tolerance through the utilization of multiple binding modes may be a broader phenomenon than previously appreciated.
Collapse
|