1
|
Wanniarachchi HI, Schuetze R, Deng Y, Hamal KB, Pavlich CI, Tankoano PEO, Tamminga C, Hammers H, Kapur P, Bueno LMA, Rayas R, Wang T, Liu L, Trawick ML, Pinney KG, Mason RP. Evaluating Therapeutic Efficacy of the Vascular Disrupting Agent OXi8007 Against Kidney Cancer in Mice. Cancers (Basel) 2025; 17:771. [PMID: 40075618 PMCID: PMC11898701 DOI: 10.3390/cancers17050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
There has been much progress in treating kidney cancer, with several new drugs being approved over the last few years [...].
Collapse
Affiliation(s)
- Hashini I. Wanniarachchi
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Regan Schuetze
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Khagendra B. Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Cyprian I. Pavlich
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Pouguiniseli E. O. Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Caleb Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Hans Hammers
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8837, USA;
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9234, USA;
| | - Lorena M. A. Bueno
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Ricardo Rayas
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Tianyuan Wang
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Li Liu
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| |
Collapse
|
2
|
Lee W, Kim D, Kim JM, Kim EY. Dramatic improvement of drug-resistant epilepsy following cerebral infarction: a case report. J Med Case Rep 2024; 18:509. [PMID: 39468672 PMCID: PMC11520484 DOI: 10.1186/s13256-024-04863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND An estimated 30% of patients with epilepsy experience drug-resistant epilepsy, which is the failure to control seizures despite the use of two or more antiseizure medications. Although other treatment options are considered, these alternatives often prove ineffective. CASE PRESENTATION A 60-year-old East Asian male patient diagnosed with drug-resistant epilepsy experienced several seizures daily despite being on eight different antiseizure medications. Seizures began at age 15. He underwent epilepsy surgery at age 34, yet the seizures persisted. An electroencephalogram revealed multifocal sharp waves in the left hemisphere. Cerebral hemorrhages at ages 47, 50, and 56 were caused by head trauma during seizures. The patient became wheelchair-bound and now resides in a nursing home. At age 58, after suffering an acute cerebral infarction due to occlusion of the left internal carotid artery, his daily seizures ceased entirely. Despite remaining wheelchair-bound, he did not experience a significant decline in his quality of life. The cessation of seizures has reduced his risk of further trauma, and he has remained seizure-free for 3 years on just one antiseizure medication. CONCLUSION Surgical treatments for epilepsy often fail, with insufficient resection being a leading cause of these failures. In some cases, extensive destruction from an ischemic stroke may be beneficial. Furthermore, this case suggests that infarction therapy could be a potential treatment for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Wankiun Lee
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, 20 Bodeum7-Ro, Sejong, 30099, Korea.
| |
Collapse
|
3
|
Moschovaki-Zeiger O, Arkoudis NA, Giannakis A, Grigoriadis S, Anagnostopoulos F, Spiliopoulos S. Biodegradable Microspheres for Transarterial Chemoembolization in Malignant Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:678. [PMID: 38674324 PMCID: PMC11051965 DOI: 10.3390/medicina60040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Transarterial chemoembolization (TACE) has revolutionized the treatment landscape for malignant liver disease, offering localized therapy with reduced systemic toxicity. This manuscript delves into the use of degradable microspheres (DMS) in TACE, exploring its potential advantages and clinical applications. DMS-TACE emerges as a promising strategy, offering temporary vessel occlusion and optimized drug delivery. The manuscript reviews the existing literature on DMS-TACE, emphasizing its tolerability, toxicity, and efficacy. Notably, DMS-TACE demonstrates versatility in patient selection, being suitable for both intermediate and advanced stages. The unique properties of DMS provide advantages over traditional embolic agents. The manuscript discusses the DMS-TACE procedure, adverse events, and tumor response rates in HCC, ICC, and metastases.
Collapse
Affiliation(s)
- Ornella Moschovaki-Zeiger
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
| | - Nikolaos-Achilleas Arkoudis
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, GR-115 28 Athens, Greece
| | - Athanasios Giannakis
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
| | - Stavros Grigoriadis
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
| | - Fotis Anagnostopoulos
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
| | - Stavros Spiliopoulos
- 2nd Department of Radiology, School of Medicine, “Attikon” University General Hospital, National and Kapodistrian University of Athens, GR-124 62 Chaidari, Greece; (O.M.-Z.); (N.-A.A.); (A.G.); (S.G.); (F.A.)
| |
Collapse
|
4
|
Zhang QD, Duan QY, Tu J, Wu FG. Thrombin and Thrombin-Incorporated Biomaterials for Disease Treatments. Adv Healthc Mater 2024; 13:e2302209. [PMID: 37897228 DOI: 10.1002/adhm.202302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Thrombin, a coagulation-inducing protease, has long been used in the hemostatic field. During the past decades, many other therapeutic uses of thrombin have been developed. For instance, burn treatment, pseudoaneurysm therapy, wound management, and tumor vascular infarction (or tumor vasculature blockade therapy) can all utilize the unique and powerful function of thrombin. Based on their therapeutic effects, many thrombin-associated products have been certificated by the Food and Drug Administration, including bovine thrombin, human thrombin, recombinant thrombin, fibrin glue, etc. Besides, several thrombin-based drugs are currently undergoing clinical trials. In this article, the therapeutic uses of thrombin (from the initial hemostasis to the latest cancer therapy), the commercially available drugs associated with thrombin, and the pros and cons of thrombin-based therapeutics (e.g., adverse immune responses related to bovine thrombin, thromboinflammation, and vasculogenic "rebounds") are summarized. Further, the current challenges and possible future research directions of thrombin-incorporated biomaterials and therapies are discussed. It is hoped that this review may provide a valuable reference for researchers in this field and help them to design safer and more effective thrombin-based drugs for fighting against various intractable diseases.
Collapse
Affiliation(s)
- Qiong-Dan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
5
|
Wang C, Xu J, Zhang Y, Nie G. Emerging nanotechnological approaches to regulating tumor vasculature for cancer therapy. J Control Release 2023; 362:647-666. [PMID: 37703928 DOI: 10.1016/j.jconrel.2023.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Abnormal angiogenesis stands for one of the most striking manifestations of malignant tumor. The pathologically and structurally abnormal tumor vasculature facilitates a hostile tumor microenvironment, providing an ideal refuge exclusively for cancer cells. The emergence of vascular regulation drugs has introduced a distinctive class of therapeutics capable of influencing nutrition supply and drug delivery efficacy without the need to penetrate a series of physical barriers to reach tumor cells. Nanomedicines have been further developed for more precise regulation of tumor vasculature with the capacity of co-delivering multiple active pharmaceutical ingredients, which overall reduces the systemic toxicity and boosts the therapeutic efficacy of free drugs. Additionally, precise structure design enables the integration of specific functional motifs, such as surface-targeting ligands, droppable shells, degradable framework, or stimuli-responsive components into nanomedicines, which can improve tissue-specific accumulation, enhance tissue penetration, and realize the controlled and stimulus-triggered release of the loaded cargo. This review describes the morphological and functional characteristics of tumor blood vessels and summarizes the pivotal molecular targets commonly used in nanomedicine design, and then highlights the recent cutting-edge advancements utilizing nanotechnologies for precise regulation of tumor vasculature. Finally, the challenges and future directions of this field are discussed.
Collapse
Affiliation(s)
- Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinlong Zhang
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; School of Nanoscience and Engineering, School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangzhou 510530, China.
| |
Collapse
|
6
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
7
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Muacevic A, Adler JR, Iizuka Y, Yamada Y, Mizowaki T. Anaplastic Transformation of Follicular Thyroid Carcinoma in Pulmonary Metastasis With Gradually Progressive Intra-tumoral Cavitation: A Case Report. Cureus 2022; 14:e31999. [PMID: 36589174 PMCID: PMC9797771 DOI: 10.7759/cureus.31999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Anaplastic transformation of differentiated thyroid cancer is rare but clinically important because of the dismal prognosis after anaplastic transformation. Therefore, cases and findings of anaplastic transformation must be accumulated, which could ultimately lead to an earlier diagnosis and an improved prognosis. Here, we present a case of anaplastic transformation of follicular thyroid carcinoma (FTC) in a pulmonary metastatic lesion associated with gradually progressive tumor cavitation. The patient with FTC was diagnosed with multiple lung metastases three years after surgery for the primary tumor and metastatic neck lymph nodes. Annual treatment with radioactive iodine resulted in disease stability for 10 years. However, one lung metastasis in the left lower lobe gradually enlarged and was associated with intra-tumoral cavitation. The growing lung nodule was resected and pathologically diagnosed as an anaplastic transformation of FTC. Fourteen months after diagnosis, the patient died of pneumothorax caused by pleural dissemination despite multiple treatment interventions. This case highlights pulmonary metastasis with progressive cavitary lesions as a potential early sign of the anaplastic transformation of differentiated thyroid cancer.
Collapse
|
9
|
Faqihi F, Stoodley MA, McRobb LS. Externalization of Mitochondrial PDCE2 on Irradiated Endothelium as a Target for Radiation-Guided Drug Delivery and Precision Thrombosis of Pathological Vasculature. Int J Mol Sci 2022; 23:ijms23168908. [PMID: 36012169 PMCID: PMC9408815 DOI: 10.3390/ijms23168908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells are highly sensitive to ionizing radiation, and exposure leads to multiple adaptive changes. Remarkably, part of this response is the translocation of normally intracellular proteins to the cell surface. It is unclear whether this ectopic expression has a protective or deleterious function, but, regardless, these surface-exposed proteins may provide unique discriminatory targets for radiation-guided drug delivery to vascular malformations or tumor vasculature. We investigated the ability of an antibody–thrombin conjugate targeting mitochondrial PDCE2 (E2 subunit of pyruvate dehydrogenase) to induce precision thrombosis on irradiated endothelial cells in a parallel-plate flow system. Click-chemistry was used to create antibody–thrombin conjugates targeting PDCE2 as the vascular targeting agent (VTA). VTAs were injected into the parallel-plate flow system with whole human blood circulating over irradiated cells. The efficacy and specificity of fibrin-thrombus formation was assessed relative to non-irradiated controls. The PDCE2-targeting VTA dose-dependently increased thrombus formation: minimal thrombosis was induced in response to 5 Gy radiation; doses of 15 and 25 Gy induced significant thrombosis with equivalent efficacy. Negligible VTA binding or thrombosis was demonstrated in the absence of radiation or with non-targeted thrombin. PDCE2 represents a unique discriminatory target for radiation-guided drug delivery and precision thrombosis in pathological vasculature.
Collapse
|
10
|
Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology 2022; 20:337. [PMID: 35858896 PMCID: PMC9301833 DOI: 10.1186/s12951-022-01548-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Tumor embolization therapy has attracted great attention due to its high efficiency in inhibiting tumor growth by cutting off tumor nutrition and oxygen supply by the embolic agent. Although transcatheter arterial embolization (TAE) is the mainstream technique in the clinic, there are still some limitations to be considered, especially the existence of high risks and complications. Recently, nanomaterials have drawn wide attention in disease diagnosis, drug delivery, and new types of therapies, such as photothermal therapy and photodynamic therapy, owing to their unique optical, thermal, convertible and in vivo transport properties. Furthermore, the utilization of nanoplatforms in tumor non-interventional embolization therapy has attracted the attention of researchers. Herein, the recent advances in this area are summarized in this review, which revealed three different types of nanoparticle strategies: (1) nanoparticles with active targeting effects or stimuli responsiveness (ultrasound and photothermal) for the safe delivery and responsive release of thrombin; (2) tumor microenvironment (copper and phosphate, acidity and GSH/H2O2)-responsive nanoparticles for embolization therapy with high specificity; and (3) peptide-based nanoparticles with mimic functions and excellent biocompatibility for tumor embolization therapy. The benefits and limitations of each kind of nanoparticle in tumor non-interventional embolization therapy will be highlighted. Investigations of nanoplatforms are undoubtedly of great significance, and some advanced nanoplatform systems have arrived at a new height and show potential applications in practical applications.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological Hospital, Medical School of Nanjing University Jiangsu, 30 Zhongyang Road, 210008, Nanjing, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yanling Hu
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
- Nanjing Polytechnic Institute, 210048, Nanjing, China.
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
| |
Collapse
|
11
|
Xie H, Li W, Liu H, Chen Y, Ma M, Wang Y, Luo Y, Song D, Hou Q, Lu W, Bai Y, Li B, Ma J, Huang C, Yang T, Liu Z, Zhao X, Ding P. Erythrocyte Membrane-Coated Invisible Acoustic-Sensitive Nanoparticle for Inducing Tumor Thrombotic Infarction by Precisely Damaging Tumor Vascular Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201933. [PMID: 35789094 DOI: 10.1002/smll.202201933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.
Collapse
Affiliation(s)
- Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Di Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chi Huang
- Ultrasound Department of Shengjing Hospital, China Medical University, Shenyang, 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, 04401, USA
| | - Zhining Liu
- Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
12
|
Tong S, Zhao W, Zhao D, Zhang W, Zhang Z. Biomaterials-Mediated Tumor Infarction Therapy. Front Bioeng Biotechnol 2022; 10:916926. [PMID: 35757801 PMCID: PMC9218593 DOI: 10.3389/fbioe.2022.916926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Agents for tumor vascular infarction are recently developed therapeutic agents for the vascular destruction of tumors. They can suppress the progression of the tumor by preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular infarction can be divided into three categories according to the differences in their pathways of action: those that use the thrombin-activating pathway, fibrin-activating pathway, and platelet-activating pathway. However, poor targeting ability, low permeation, and potential side-effects restrict the development of the corresponding drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this article, the authors summarize currently used biomaterials for tumor infarction therapy with the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of this kind.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Murayama D, Yamamoto Y, Matsui A, Yasukawa M, Okamoto S, Toda S, Iwasaki H. Lung cavitation in patients with anaplastic thyroid cancer treated with lenvatinib. Gland Surg 2022; 11:963-969. [PMID: 35800737 PMCID: PMC9253189 DOI: 10.21037/gs-22-71] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 07/27/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare malignancy with a poor prognosis. It accounts for 1-2% of all thyroid cancers. Lenvatinib is an orally administered inhibitor of vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, fibroblast growth factor receptor (FGFR)-1 to -4, platelet-derived growth factor receptor (PDGFR)-α, rearranged during transfection (RET), and KIT. There have been cases of pneumothorax caused by lung cavitation and collapse after administration of lenvatinib in ATC with lung metastasis. In this study, we investigate lung cavitation during treatment with lenvatinib in ATC patients with lung metastasis. METHODS All ATC patients with lung metastasis treated at our hospital with lenvatinib between November 2015 and May 2021 were selected from our electronic medical records. The primary objective was to determine the incidence of cavitation of lung metastasis of ATC in patients treated with lenvatinib. The secondary objective was to evaluate prognostic factors in ATC patients with lung metastasis treated with lenvatinib. RESULTS We identified 26 patients treated with lenvatinib for ATC with lung metastasis. Of these, 12 (46.2%) had cavitation with lung metastasis during lenvatinib treatment. The median overall survival (OS) was 128 days (79-228 days), and the cavitation (+) group had significantly longer OS than the cavitation (-) group [186 days (117-355 days) vs. 89 days (59-179 days), P=0.033]. Kaplan-Meier survival curves indicated a significant difference in OS was observed between the two groups (P=0.0293). Univariate analysis demonstrated lung cavitation was a significant prognostic factor (hazard ratio: 0.38, 95% CI: 0.16-0.93). CONCLUSIONS Lung cavitation occurred in 46.2% of patients treated with lenvatinib for ATC with lung metastasis. Patients who developed lung cavitation had a significantly better prognosis than those who did not.
Collapse
Affiliation(s)
- Daisuke Murayama
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yayoi Yamamoto
- Department of Diagnostic and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ai Matsui
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Mio Yasukawa
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Saki Okamoto
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Soji Toda
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Iwasaki
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
14
|
Zong X, Liu L, Yang H, Wu J, Yuan P, Chen X, Yang C, Li X, Li Y, Ji X, Shi C, Xue W, Dai J. Artificial Nanoplatelets Depend on Size for Precisely Inducing Thrombosis in Tumor Vessels. SMALL METHODS 2022; 6:e2101474. [PMID: 35344282 DOI: 10.1002/smtd.202101474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Due to the heterogeneity of a tumor, the tumor vascular interruption-based therapy has become an ideal treatment strategy. Herein, artificial nanoplatelets are reported to induce selective thrombosis in tumor vessels, which can achieve rapid and large-scale necrosis of tumor cells. For one, the nanoplatelets are exploited to specially release thrombin into target regions without affecting the established coagulation factors system. For another, the thrombin elicits vascular infarction to provide tumor-ablation effects. More importantly, the size-dependent effect of nanoplatelets (with diameters of 200, 400, and 800 nm) in vivo on blocking the tumor vessels is evaluated. The results show that the nanoplatelets from nanometer to submicron have achieved different biodistribution and therapeutic effects through the vascular transport. Notably, 400 nm scale nanoplatelets can induce thrombosis in tumor vessels and achieve 83% of the tumor elimination rate, thus manifesting the effectiveness of anti-tumor strategy compared with the other two scales of nanoplatelets (200 and 800 nm). These findings highlight the need of concern about nanoparticle size, providing a promising strategy for the future design of advanced vascular targeting reagents and the clinical translation of tumor vascular interruption-based therapy.
Collapse
Affiliation(s)
- Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Lamei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Changzheng Shi
- Department of Medical Imaging, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Wang L, Wang L, Xu P, Liu C, Wang S, Luo X, Li M, Liu J, Zhao Z, Lai W, Luo F, Yan J. pH-Responsive Liposomes Loaded with Targeting Procoagulant Proteins as Potential Embolic Agents for Solid Tumor-Targeted Therapy. Mol Pharm 2022; 19:1356-1367. [PMID: 35420039 DOI: 10.1021/acs.molpharmaceut.1c00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selectively inducing tumor thrombosis and subsequent necrosis is a novel and promising antitumor strategy. We have previously designed a targeting procoagulant protein, called tTF-EG3287, which is a fusion of a truncated tissue factor (tTF) with EG3287, a short peptide against the neuropilin-1 (NRP1) binding site of vascular endothelial growth factor-A 165 (VEGF-A 165). However, off-target effects and high-dose requirements limit the further use of tTF-EG3287 in antitumor therapy. Therefore, we encapsulated tTF-EG3287 into poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine (PEOz-DSPE)-modified liposomes to construct pH-responsive liposomes as a novel vascular embolization agent, called tTF-EG3287@Liposomes. The liposomes had an average particle size of about 100 nm and showed considerable drug-loading capacity, encapsulation efficiency, and biocompatibility. Under the stimulation of acidic microenvironments (pH 6.5), the lipid membrane of tTF-EG3287@Liposomes collapsed, and the cumulative drug release rate within 72 h was 83 ± 1.26%. When administered to a mouse model of hepatocellular carcinoma (HCC), tTF-EG3287@Liposomes showed prolonged retention and enhanced accumulation in the tumor as well as a superior antitumor effec, compared with tTF-EG3287. This study demonstrates the potential of tTF-EG3287@Liposomes as a novel embolic agent for solid tumors and provides a new strategy for tumor-targeted infarction therapy.
Collapse
Affiliation(s)
- Li Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Lanlan Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Peilan Xu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Cong Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Mengqi Li
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Zhiyu Zhao
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Weisong Lai
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
Sharma D, Hussein F, Law N, Farhat G, Tarapacki C, Sannachi L, Giles A, Czarnota GJ. Focused Ultrasound Stimulation of Microbubbles in Combination With Radiotherapy for Acute Damage of Breast Cancer Xenograft Model. Technol Cancer Res Treat 2022; 21:15330338221132925. [DOI: 10.1177/15330338221132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: Several studies have focused on the use of ultrasound-stimulated microbubbles (USMB) to induce vascular damage in order to enhance tumor response to radiation. Methods: In this study, power Doppler imaging was used along with immunohistochemistry to investigate the effects of combining radiation therapy (XRT) and USMB using an ultrasound-guided focused ultrasound (FUS) therapy system in a breast cancer xenograft model. Specifically, MDA-MB-231 breast cancer xenograft tumors were induced in severe combined immuno-deficient female mice. The mice were treated with FUS alone, ultrasound and microbubbles (FUS + MB) alone, 8 Gy XRT alone, or a combined treatment consisting of ultrasound, microbubbles, and XRT (FUS + MB + XRT). Power Doppler imaging was conducted before and 24 h after treatment, at which time mice were sacrificed and tumors assessed histologically. The immunohistochemical analysis included terminal deoxynucleotidyl transferase dUTP nick end labeling, hematoxylin and eosin, cluster of differentiation-31 (CD31), Ki-67, carbonic anhydrase (CA-9), and ceramide labeling. Results: Tumors receiving treatment of FUS + MB combined with XRT demonstrated significant increase in cell death (p = 0.0006) compared to control group. Furthermore, CD31 and Power Doppler analysis revealed reduced tumor vascularization with combined treatment indicating ( P < .0001) and ( P = .0001), respectively compared to the control group. Additionally, lesser number of proliferating cells with enhanced tumor hypoxia, and ceramide content were also reported in group receiving a treatment of FUS + MB + XRT. Conclusion: The study results demonstrate that the combination of USMB with XRT enhances treatment outcomes.
Collapse
Affiliation(s)
- Deepa Sharma
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Farah Hussein
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Niki Law
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Golnaz Farhat
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Lakshmanan Sannachi
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Anoja Giles
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Zhu D, Li Y, Zhang Z, Xue Z, Hua Z, Luo X, Zhao T, Lu C, Liu Y. Recent advances of nanotechnology-based tumor vessel-targeting strategies. J Nanobiotechnology 2021; 19:435. [PMID: 34930293 PMCID: PMC8686559 DOI: 10.1186/s12951-021-01190-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects. ![]()
Collapse
Affiliation(s)
- Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
18
|
Chen Y, Tian R, Shang Y, Jiang Q, Ding B. Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yongjian Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences 100049 Beijing China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
19
|
Zhang Y, He J. Tumor vasculature-targeting nanomedicines. Acta Biomater 2021; 134:1-12. [PMID: 34271167 DOI: 10.1016/j.actbio.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Uncontrolled tumor growth and subsequent distant metastasis are highly dependent on an adequate nutrient supply from tumor blood vessels, which have relatively different pathophysiological characteristics from those of normal vasculature. Obviously, strategies targeting tumor vasculature, such as anti-angiogenic drugs and vascular disrupting agents, are attractive methods for cancer therapy. However, the off-target effects and high dose administration of these drug regimens critically restrict their clinical applications. In recent years, nanomedicines focused on tumor vasculature have been shown to be superior to traditional therapeutic methods and do not induce side effects. This review will first highlight the recent development of tumor vasculature-targeting nanomedicines from the following four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature-regulating nanomedicines (VRNs). Furthermore, the design principles, limitations, and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Based on the essential roles of tumor blood vessels, the therapeutic strategies targeting tumor vasculature have exhibited good clinical therapeutic outcomes. However, poor patient adherence to free drug administration limits their clinical usage. Nanomedicines have great potential to overcome the abovementioned obstacle. This review summarizes the tumor-vasculature targeting nanomedicines from four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature regulating nanomedicines (VRNs). In addition, this review provides perspectives on this research field.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, PR China.
| |
Collapse
|
20
|
Ma Z, Zhang Y, Dai X, Zhang W, Foda MF, Zhang J, Zhao Y, Han H. Selective Thrombosis of Tumor for Enhanced Hypoxia-Activated Prodrug Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104504. [PMID: 34436814 DOI: 10.1002/adma.202104504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
One of the main challenges for tumor vascular infarction in combating cancer lies in failing to produce sustained complete thrombosis. Inspired by the capability of vascular infarction in blocking the delivery of oxygen to aggravate tumor hypoxia, the performance of selective tumor thrombus inducing hypoxia activation therapy to improve the therapeutic index of coagulation-based tumor therapy is presented. By encapsulating coagulation-inducing protease thrombin and a hypoxia-activated prodrug (HAP) tirapazamine into metal-organic framework nanoparticles with a tumor-homing ligand, the obtained nanoplatform selectively activates platelet aggregation at the tumor to induce thrombosis and vascular obstruction therapy by the exposed thrombin. Meanwhile, the thrombus can cut off the blood oxygen supply and potentiate the hypoxia levels to enhance the HAP therapy. This strategy not only addresses the dissatisfaction of vascular therapy, but also conquers the dilemma of inadequate hypoxia in HAP treatment. Since clinical operations such as surgery can be used to induce coagulation, coagulation-based synergistic therapy is promising for translation into a clinical combination regimen.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yifan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xinxin Dai
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Jin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
21
|
Huang L, Chen F, Lai Y, Xu Z, Yu H. Engineering Nanorobots for Tumor-Targeting Drug Delivery: From Dynamic Control to Stimuli-Responsive Strategy. Chembiochem 2021; 22:3369-3380. [PMID: 34411411 DOI: 10.1002/cbic.202100347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/08/2021] [Indexed: 12/15/2022]
Abstract
Nanotechnology has been widely applied to the fabrication of drug delivery systems in the past decades. Recently, with the progress made in microfabrication approaches, nanorobots are steadily becoming a promising means for tumor-targeting drug delivery. In general, nanorobots can be divided into two categories: nanomotors and stimuli-responsive nanorobots. Nanomotors are nanoscale systems with the ability to convert surrounding energies into mechanical motion, whereas stimuli-responsive nanorobots are featured with activatable capacity in response to various endogenous and exogenous stimulations. In this minireview, the dynamic control of nanomotors and the rational design of stimuli-responsive nanorobots are overviewed, with particular emphasis on their contribution to tumor-targeting therapy. Moreover, challenges and perspectives associated with the future development of nanorobots are presented.
Collapse
Affiliation(s)
- Lujia Huang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Lai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Hisada Y, Mackman N. Tissue Factor and Extracellular Vesicles: Activation of Coagulation and Impact on Survival in Cancer. Cancers (Basel) 2021; 13:cancers13153839. [PMID: 34359742 PMCID: PMC8345123 DOI: 10.3390/cancers13153839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The tissue factor (TF)-factor VIIa complex is the major physiological initiator of blood coagulation. Tumors express TF and release TF-positive extracellular vesicles (EVs) into the circulation, and this is associated with the activation of coagulation. Circulating levels of EVTF activity may be a useful biomarker to identify patients at risk for thrombosis. Tumor TF and TF-positive EVs are also associated with reduced survival. Abstract Tissue factor (TF) is a transmembrane glycoprotein that functions as a receptor for FVII/FVIIa and initiates the extrinsic coagulation pathway. Tumors and cancer cells express TF that can be released in the form of TF positive (TF+) extracellular vesicles (EVs). In this review, we summarize the studies of tumor TF and TF + EVs, and their association with activation of coagulation and survival in cancer patients. We also summarize the role of tumor-derived TF + EVs in venous thrombosis in mouse models. Levels of tumor TF and TF + EVs are associated with venous thromboembolism in pancreatic cancer patients. In addition, levels of EVTF activity are associated with disseminated intravascular coagulation in cancer patients. Furthermore, tumor-derived TF + EVs enhance venous thrombosis in mice. Tumor TF and TF + EVs are also associated with worse survival in cancer patients, particularly in pancreatic cancer patients. These studies indicate that EVTF activity could be used as a biomarker to identify pancreatic cancer patients at risk for venous thrombosis and cancer patients at risk for disseminated intravascular coagulation. EVTF activity may also be a useful prognostic biomarker in cancer patients.
Collapse
|
23
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
24
|
Li B, Wei J, Di C, Lu Z, Qi F, Zhang Y, Leong WS, Li L, Nie G, Li S. Molecularly engineered truncated tissue factor with therapeutic aptamers for tumor-targeted delivery and vascular infarction. Acta Pharm Sin B 2021; 11:2059-2069. [PMID: 34386338 PMCID: PMC8343113 DOI: 10.1016/j.apsb.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Selective occlusion of tumor vasculature has proven to be an effective strategy for cancer therapy. Among vascular coagulation agents, the extracellular domain of coagulation-inducing protein tissue factor, truncated tissue factor (tTF), is the most widely used. Since the truncated protein exhibits no coagulation activity and is rapidly cleared in the circulation, free tTF cannot be used for cancer treatment on its own but must be combined with other moieties. We here developed a novel, tumor-specific tTF delivery system through coupling tTF with the DNA aptamer, AS1411, which selectively binds to nucleolin receptors overexpressing on the surface of tumor vascular endothelial cells and is specifically cytotoxic to target cells. Systemic administration of the tTF-AS1411 conjugates into tumor-bearing animals induced intravascular thrombosis solely in tumors, thus reducing tumor blood supply and inducing tumor necrosis without apparent side effects. This conjugate represents a uniquely attractive candidate for the clinical translation of vessel occlusion agent for cancer therapy.
Collapse
|
25
|
Targeting Tissue Factor to Tumor Vasculature to Induce Tumor Infarction. Cancers (Basel) 2021; 13:cancers13112841. [PMID: 34200318 PMCID: PMC8201357 DOI: 10.3390/cancers13112841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Among multiple other functional roles of tissue factor (TF) and other coagulation proteins in the development and targeting of malignant disease, some scientific groups are attempting to modify TF and target the molecule or truncated forms of the molecule to tumor vasculature to selectively induce local blood vessel thromboembolic occlusion resulting in tumor infarction. This review briefly describes the characteristics and development of some of these proteins and structures, including tTF-NGR, which as the first drug candidate from this class has entered clinical trials in cancer patients. Abstract Besides its central functional role in coagulation, TF has been described as being operational in the development of malignancies and is currently being studied as a possible therapeutic tool against cancer. One of the avenues being explored is retargeting TF or its truncated extracellular part (tTF) to the tumor vasculature to induce tumor vessel occlusion and tumor infarction. To this end, multiple structures on tumor vascular wall cells have been studied at which tTF has been aimed via antibodies, derivatives, or as bifunctional fusion protein through targeting peptides. Among these targets were vascular adhesion molecules, oncofetal variants of fibronectin, prostate-specific membrane antigens, vascular endothelial growth factor receptors and co-receptors, integrins, fibroblast activation proteins, NG2 proteoglycan, microthrombus-associated fibrin-fibronectin, and aminopeptidase N. Targeting was also attempted toward cellular membranes within an acidic milieu or toward necrotic tumor areas. tTF-NGR, targeting tTF primarily at aminopeptidase N on angiogenic endothelial cells, was the first drug candidate from this emerging class of coaguligands translated to clinical studies in cancer patients. Upon completion of a phase I study, tTF-NGR entered randomized studies in oncology to test the therapeutic impact of this novel therapeutic modality.
Collapse
|
26
|
Sindhu RK, Kaur H, Kumar M, Sofat M, Yapar EA, Esenturk I, Kara BA, Kumar P, Keshavarzi Z. The ameliorating approach of nanorobotics in the novel drug delivery systems: a mechanistic review. J Drug Target 2021; 29:822-833. [PMID: 33641551 DOI: 10.1080/1061186x.2021.1892122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoscale robotics have the ability that it can productively transform multiple energy sources into motion and strength which reflects an expeditiously appearing and captivating area for research of robotics. In today's plethora, biomedical nanorobotics played an intricate character with numerous units of robots working at the pathological site in a coordinated manner. The synergistic action of the several nanorobotics has been employed for the fulfilment of the task such as large-scale detoxification, delivery of the large pharmacological/therapeutic efficacious payloads, etc. that is nearly unfeasible or unalterable practically by using single nanorobot. The collective intelligence of the nanorobot is advancing progressively at the nanoscale to reinforce their precision treatment potentially. Conclusively, after obtaining certain consideration regarding the nanorobotics sciences, many professionals are compendiously involving in the emerging highly efficacious therapeutic technology that encourages the scientist or designing of the tissues specific for the site-specific nanorobotic diagnostic devices. As a result, the closed and professional type between the field of Nanotechnology and Medical Sciences will provide another new highly oriented level to the domain of nanorobotics.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Moksha Sofat
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Evren Algın Yapar
- Analysis and Control Laboratories Department, Turkish Medicines and Medical Devices Agency, MoH, Ankara, Turkey
| | - Imren Esenturk
- Hamidiye Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | | | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
27
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
28
|
Zhao D, Huang X, Zhang Z, Ding J, Cui Y, Chen X. Engineered nanomedicines for tumor vasculature blockade therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1691. [PMID: 33480163 DOI: 10.1002/wnan.1691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Tumor vasculature blockade therapy (TVBT), including angiogenesis inhibition, vascular disruption, and vascular infarction, provides a promising treatment modality for solid tumors. However, low selectivity, drug resistance, and possible severe side effects have limited the clinical transformation of TVBT. Engineered nanoparticles offer potential solutions, including prolonged circulation time, targeted transportation, and controlled release of TVBT agents. Moreover, engineered nanomedicines provide a promising combination platform of TVBT with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, ultrasound therapy, and gene therapy. In this article, we offer a comprehensive summary of the current progress of engineered nanomedicines for TVBT and also discuss current deficiencies and future directions for TVBT development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
29
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
30
|
Preparation of truncated tissue factor antineuropilin-1 monoclonal antibody conjugate and identification of its selective thrombosis in tumor blood vessels. Anticancer Drugs 2020; 30:441-450. [PMID: 30807552 DOI: 10.1097/cad.0000000000000767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent decades, selectively inducing tumor vascular thrombosis, followed by necrosis of tumor tissues has been a promising and potential anticancer strategy. In this report, we prepared a kind of vascular targeting drug that consists of anti-neuropilin-1 monoclonal antibody (anti-NRP-1 mAb) and truncated tissue factor (tTF). Anti-NRP-1 mAb could guide tTF to the surface of tumor vascular endothelial cells and lead to subsequent vascular embolization. This vascular targeting drug, which is also one of the antibody drug conjugates, was generated using a coupling method with water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccimide. Afterwards, in-vitro and in-vivo assays were performed to characterize its potential coagulation ability and antitumor activity. In-vitro experiments indicated that tTF-anti-NRP-1 monoclonal antibody (tTF-mAb) retained both the targeting activity of anti-NRP-1 mAb and the procoagulant activity of tTF. Live imaging system was used to assess its biodistribution and tumor-binding capability, which also yielded promising results. Furthermore, in-vivo studies showed that tTF-mAb was capable of significantly inducing tumor vascular thrombosis and inhibiting tumor growth in nude mice bearing subcutaneous xenografts, and histopathologic changes were rarely observed in normal organs.
Collapse
|
31
|
Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nat Biomed Eng 2020; 4:732-742. [PMID: 32572197 DOI: 10.1038/s41551-020-0573-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Drugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity. The co-administration of a cytotoxic payload and a protease to elicit vascular infarction in tumours with biodegradable tumour-targeted nanoparticles represents a promising strategy for improving the therapeutic index of coagulation-based tumour therapy.
Collapse
|
32
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
33
|
First-In-Class CD13-Targeted Tissue Factor tTF-NGR in Patients with Recurrent or Refractory Malignant Tumors: Results of a Phase I Dose-Escalation Study. Cancers (Basel) 2020; 12:cancers12061488. [PMID: 32517329 PMCID: PMC7352358 DOI: 10.3390/cancers12061488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Aminopeptidase N (CD13) is present on tumor vasculature cells and some tumor cells. Truncated tissue factor (tTF) with a C-terminal NGR-peptide (tTF-NGR) binds to CD13 and causes tumor vascular thrombosis with infarction. Methods: We treated 17 patients with advanced cancer beyond standard therapies in a phase I study with tTF-NGR (1-h infusion, central venous access, 5 consecutive days, and rest periods of 2 weeks). The study allowed intraindividual dose escalations between cycles and established Maximum Tolerated Dose (MTD) and Dose-Limiting Toxicity (DLT) by verification cohorts. Results: MTD was 3 mg/m2 tTF-NGR/day × 5, q day 22. DLT was an isolated and reversible elevation of high sensitivity (hs) Troponin T hs without clinical sequelae. Three thromboembolic events (grade 2), tTF-NGR-related besides other relevant risk factors, were reversible upon anticoagulation. Imaging by contrast-enhanced ultrasound (CEUS) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) showed major tumor-specific reduction of blood flow in all measurable lesions as proof of principle for the mode of action of tTF-NGR. There were no responses as defined by Response Evaluation Criteria in Solid Tumors (RECIST), although some lesions showed intratumoral hemorrhage and necrosis after tTF-NGR application. Pharmacokinetic analysis showed a t1/2(terminal) of 8 to 9 h without accumulation in daily administrations. Conclusion: tTF-NGR is safely applicable with this regimen. Imaging showed selective reduction of tumor blood flow and intratumoral hemorrhage and necrosis.
Collapse
|
34
|
Zou M, Xu P, Wang L, Wang L, Li T, Liu C, Shi L, Xie J, Li W, Wang S, Wu G, Luo F, Wu T, Yan J. Design and construction of a magnetic targeting pro-coagulant protein for embolic therapy of solid tumors. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:116-128. [PMID: 31852257 DOI: 10.1080/21691401.2019.1699817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we have designed a magnetic targeting pro-coagulant protein (MTPCP) for the embolic therapy of solid tumours. The MTPCP consists of a magnetic carrier and a pro-coagulant protein. The pro-coagulant protein used in this study is the fusion protein tTF-EG3287 which is not pro-coagulant when free in the blood circulation, but presents strong pro-coagulant ability once bound to the Neuropilin-1(NRP-1) that is highly expressed on tumour-associated vascular endothelial cells. And the magnetic carrier is O-Carboxymethyl chitosan-coated iron oxide nanoparticles (OCMC/Fe3O4). In vitro, we assessed the NRP-1 targeting ability of the MTPCP using confocal microscopy and flow cytometry, and evaluated the potential pro-coagulant activity of the MTPCP using the Spectozyme FXa assay. In vivo, the magnetic targeting ability of the MTPCP was detected using a living imaging system. At last, we assessed the anticancer activity of the MTPCP on HepG2 tumour bearing BALB/c nude mice models including subcutaneous transplantation and orthotopic transplantation. HepG2 tumour bearing mice models revealed that after intravenous administration of the MTPCP, thrombosis specifically occurs on tumour-associated blood vessels, and resulting in tumour growth retardation. No apparent side effects, such as thrombosis in other organs or other treatment-related toxicity, were observed during the treatment. Our data showed that the MTPCP may be a promising embolic agent for the embolic therapy of solid tumours.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Peilan Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jun Xie
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanyun Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
35
|
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Farajzadeh D, Behzadi R, Zarghami N. Co-Administration of Vadimezan and Recombinant Coagulase-NGR Inhibits Growth of Melanoma Tumor in Mice. Adv Pharm Bull 2020; 11:385-392. [PMID: 33880362 PMCID: PMC8046391 DOI: 10.34172/apb.2021.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: Tumor vascular targeting appeared as an appealing approach to fight cancer, though, the results from the clinical trials and drugs in the market were proved otherwise. The promise of anti-angiogenic therapy as the leading tumor vascular targeting strategy was negatively affected with the discovery that tumor vascularization can occur non-angiogenic mechanisms such as co-option. An additional strategy is induction of tumor vascular infarction and ischemia. Methods: Such that we used truncated coagulase (tCoa) coupled to tumor endothelial targeting moieties to produce tCoa-NGR fusion proteins. We showed that tCoa-NGR can bypass coagulation cascade to induce selective vascular thrombosis and infarction of mild and highly proliferative solid tumors in mice. Moreover, combination therapy can be used to improve the potential of cancer vascular targeting modalities. Herein, we report combination of tCoa-NGR with vascular disrupting agent (VDA), vadimezan. Results: Our results show that synergistic work of these two agents can significantly suppress growth of B16-F10 melanoma tumors in C57/BL6 mice. Conclusion: For the first time, we used the simultaneous benefits of two strategies for inducing thrombosis and destruction of tumor vasculature as spatial co-operation. The tCoa-NGR induce thrombosis which reduces blood flow in the peripheral tumor region. And combined with the action of DMXAA, which target inner tumor mass, growth and proliferation of melanoma tumors can be significantly suppressed.
Collapse
Affiliation(s)
- Amir Daei Farshchi Adli
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ramezan Behzadi
- North Research Center, Pasture Institute of Iran, Tehran, Amol, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Zheng K, Kros JM, Li J, Zheng PP. DNA-nanorobot-guided thrombin-inducing tumor infarction: raising new potential clinical concerns. Drug Discov Today 2020; 25:951-955. [PMID: 32205200 DOI: 10.1016/j.drudis.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022]
Abstract
DNA-nanorobot-guided thrombin-inducing tumor infarction (DNA NanorobotTh-ITI) is emerging as a powerful therapeutic strategy for treatment of solid cancers. The technology represents a major advance in the application of DNA nanotechnology for anticancer therapy. More importantly, the technology is being translated from preclinical studies to the clinic owing to its promising anticancer effects with fewer toxicities demonstrated in preclinical settings. However, despite these beneficial effects of the technology, it is important to point out that some important potential clinical concerns remain to be addressed. Here, we raise these clinical concerns along with these beneficial effects of the technology. Hopefully, these newly raised potential clinical concerns could drive forward research in this field to expedite its clinical translation.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Orthopedics, Ningbo Medical Center Li Hui Li Hospital, Ningbo, Zhejiang, China
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Pin Zheng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Targeting of externalized αB-crystallin on irradiated endothelial cells with pro-thrombotic vascular targeting agents: Potential applications for brain arteriovenous malformations. Thromb Res 2020; 189:119-127. [PMID: 32208214 DOI: 10.1016/j.thromres.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular targeting uses molecular markers on the surface of diseased vasculature for ligand-directed drug delivery to induce vessel occlusion or destruction. In the absence of discriminatory markers, such as in brain arteriovenous malformations (AVMs), stereotactic radiosurgery may be used to prime molecular changes on the endothelial surface. This study explored αB-crystallin (CRYAB) as a radiation induced target and pre-tested the specificity and efficacy of a CRYAB-targeting coaguligand for in vitro thrombus induction. METHODS A parallel-plate flow system was established to circulate human whole blood over a layer of human brain endothelial cells. A conjugate of anti-CRYAB antibody and thrombin was injected into the circuit to compare binding and thrombus formation on cells with or without prior radiation treatment (0-25 Gy). RESULTS Radiation increased CRYAB expression and surface exposure in human brain endothelial cells. In the parallel-plate flow system, the targeted anti-CRYAB-thrombin conjugate increased thrombus formation on the surface of irradiated cells relative to non-irradiated cells and to a non-targeting IgG-thrombin conjugate. Fibrin deposition and accumulation of fibrinogen degradation products increased significantly at radiation doses at or above 15 Gy with conjugate concentrations of 1.25 and 2.5 μg/mL. CONCLUSIONS CRYAB exposure can be detected at the surface of human brain endothelial cells in response to irradiation. Pro-thrombotic CRYAB-targeting conjugates can bind under high flow conditions and in the presence of whole blood induce stable thrombus formation with high specificity and efficacy on irradiated surfaces. CRYAB provides a novel radiation marker for potential vascular targeting in irradiated brain AVMs.
Collapse
|
38
|
Brand C, Greve B, Bölling T, Eich HT, Willich N, Harrach S, Hintelmann H, Lenz G, Mesters RM, Kessler T, Schliemann C, Berdel WE, Schwöppe C. Radiation synergizes with antitumor activity of CD13-targeted tissue factor in a HT1080 xenograft model of human soft tissue sarcoma. PLoS One 2020; 15:e0229271. [PMID: 32084238 PMCID: PMC7034830 DOI: 10.1371/journal.pone.0229271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Truncated tissue factor (tTF) retargeted by NGR-peptides to aminopeptidase N (CD13) in tumor vasculature is effective in experimental tumor therapy. tTF-NGR induces tumor growth inhibition in a variety of human tumor xenografts of different histology. To improve on the therapeutic efficacy we have combined tTF-NGR with radiotherapy. METHODS Serum-stimulated human umbilical vein endothelial cells (HUVEC) and human HT1080 sarcoma cells were irradiated in vitro, and upregulated early-apoptotic phosphatidylserine (PS) on the cell surface was measured by standard flow cytometry. Increase of cellular procoagulant function in relation to irradiation and PS cell surface concentration was measured in a tTF-NGR-dependent Factor X activation assay. In vivo experiments with CD-1 athymic mice bearing human HT1080 sarcoma xenotransplants were performed to test the systemic therapeutic effects of tTF-NGR on tumor growth alone or in combination with regional tumor ionizing radiotherapy. RESULTS As shown by flow cytometry with HUVEC and HT1080 sarcoma cells in vitro, irradiation with 4 and 6 Gy in the process of apoptosis induced upregulation of PS presence on the outer surface of both cell types. Proapoptotic HUVEC and HT1080 cells both showed significantly higher procoagulant efficacy on the basis of equimolar concentrations of tTF-NGR as measured by FX activation. This effect can be reverted by masking of PS with Annexin V. HT1080 human sarcoma xenografted tumors showed shrinkage induced by combined regional radiotherapy and systemic tTF-NGR as compared to growth inhibition achieved by either of the treatment modalities alone. CONCLUSIONS Irradiation renders tumor and tumor vascular cells procoagulant by PS upregulation on their outer surface and radiotherapy can significantly improve the therapeutic antitumor efficacy of tTF-NGR in the xenograft model used. This synergistic effect will influence design of future clinical combination studies.
Collapse
Affiliation(s)
- Caroline Brand
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation-Oncology, University Hospital Muenster, Muenster, Germany
| | - Tobias Bölling
- Department of Radiation Therapy and Radiation-Oncology, University Hospital Muenster, Muenster, Germany
| | - Hans T. Eich
- Department of Radiation Therapy and Radiation-Oncology, University Hospital Muenster, Muenster, Germany
| | - Normann Willich
- Department of Radiation Therapy and Radiation-Oncology, University Hospital Muenster, Muenster, Germany
| | - Saliha Harrach
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Heike Hintelmann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Rolf M. Mesters
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
- * E-mail: (CSch); (WEB)
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
- * E-mail: (CSch); (WEB)
| |
Collapse
|
39
|
Gauden AJ, McRobb LS, Lee VS, Subramanian S, Moutrie V, Zhao Z, Stoodley MA. Occlusion of Animal Model Arteriovenous Malformations Using Vascular Targeting. Transl Stroke Res 2019; 11:689-699. [PMID: 31802427 DOI: 10.1007/s12975-019-00759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a significant cause of intracerebral hemorrhage in children and young adults. Currently, one third of patients have no viable treatment options. Vascular targeting agents (VTAs) are being designed to deliver pro-thrombotic molecules to the abnormal AVM vessels for rapid occlusion and cure. This study assessed the efficacy of a pro-thrombotic VTA targeting phosphatidylserine (PS) in a radiation-primed AVM animal model. The model AVM was surgically created in rats by anastomosis of the left external jugular vein to the adjacent common carotid artery. After 6 weeks, the AVM was irradiated (20 Gy) using gamma knife surgery (GKS). A PS-targeting VTA was created by conjugation of annexin V with human thrombin and administered intravenously 3 weeks post-GKS or sham. Unconjugated thrombin was used as a non-targeting control. AVM thrombosis and occlusion was monitored 3 weeks later by angiography and histology. Preliminary experiments established a safe dose of active thrombin for systemic administration. Subsequently, a single dose of annexin V-thrombin conjugate (0.77 mg/kg) resulted in angiographic AVM occlusion in sham (75%) and irradiated (63%) animals, while non-targeted thrombin did not. Lowering the conjugate dose (0.38 mg/kg) decreased angiographic AVM occlusion in sham (13%) relative to irradiated (80%) animals (p = 0.03) as did delivery of two consecutive doses of 0.38 mg/kg, 2 days apart (sham (0%); irradiated (78%); p = 0.003). These findings demonstrate efficacy of the PS-targeting VTA and the feasibility of a vascular targeting approach for occlusion of high-flow AVMs. Targeting specificity can be enhanced by radiation-sensitization and VTA dose modification.
Collapse
Affiliation(s)
- Andrew J Gauden
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Lucinda S McRobb
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Vivienne S Lee
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Sinduja Subramanian
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Vaughan Moutrie
- Genesis Cancer Care, Macquarie University Hospital, Sydney, 2109, Australia
| | - Zhenjun Zhao
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Marcus A Stoodley
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia.
| |
Collapse
|
40
|
Radiation-Stimulated Translocation of CD166 and CRYAB to the Endothelial Surface Provides Potential Vascular Targets on Irradiated Brain Arteriovenous Malformations. Int J Mol Sci 2019; 20:ijms20235830. [PMID: 31757032 PMCID: PMC6929092 DOI: 10.3390/ijms20235830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Vascular targeting with pro-thrombotic antibody-conjugates is a promising biological treatment for brain arteriovenous malformations (bAVMs). However, targeted drug delivery relies on the identification of unique or overexpressed markers on the surface of a target cell. In the absence of inherent biological markers, stereotactic radiosurgery may be used to prime induction of site-specific and targetable molecular changes on the endothelial surface. To investigate lumen-accessible, endothelial targets induced by radiation, we combined Gamma knife surgery in an AVM animal model with in vivo biotin-labeling and comparative proteomics. Two proteins, αB-crystallin (CRYAB)-a small heat shock protein that normally acts as an intracellular chaperone to misfolded proteins-and activated leukocyte cell adhesion molecule CD166, were further validated for endothelial surface expression after irradiation. Immunostaining of endothelial cells in vitro and rat AVM tissue ex vivo confirmed de novo induction of CRYAB following irradiation (20 Gy). Western analysis demonstrated that CRYAB accumulated intracellularly as a 20 kDa monomer, but, at the cell surface, a novel 65 kDa protein was observed, suggesting radiation stimulates translocation of an atypical CRYAB isoform. In contrast, CD166 had relatively high expression in non-irradiated cells, localized predominantly to the lateral surfaces. Radiation increased CD166 surface exposure by inducing translocation from intercellular junctions to the apical surface without significantly altering total protein levels. These findings reinforce the dynamic molecular changes induced by radiation exposure, particularly at the cell surface, and support further investigation of radiation as a priming mechanism and these molecules as putative targets for focused drug delivery in irradiated tissue.
Collapse
|
41
|
Zhang Y, Ho S, Li B, Nie G, Li S. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Med Res Rev 2019; 40:1084-1102. [DOI: 10.1002/med.21644] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Shih‐Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of EnvironmentHarbin Institute of Technology Harbin China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane Australia
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
42
|
Ding L, Zhang C, Liu Z, Huang Q, Zhang Y, Li S, Nie G, Tang H, Wang Y. Metabonomic Investigation of Biological Effects of a New Vessel Target Protein tTF-pHLIP in a Mouse Model. J Proteome Res 2019; 19:238-247. [DOI: 10.1021/acs.jproteome.9b00507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laifeng Ding
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Congcong Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhigang Liu
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
43
|
Abstract
The past decades have witnessed the development of a field dedicated to targeting tumor vasculature for cancer therapy. In contrast to conventional chemotherapeutics that need to penetrate into tumor tissues for killing tumor cells, the agents targeting tumor vascular system have two major advantages: direct contact with vascular endothelial cells or the blood and less possibility to induce drug resistance because of high gene stability of endothelial cells. More specifically, various angiogenesis inhibitors (AIs) and vascular disrupting agents (VDAs) that block tumor blood supply to inhibit tumor progression, some of which have been applied clinically, have been described. However, off-target effects and high effective doses limit the utility of these formulations in cancer patients. Thus, new strategies with improved therapeutic efficacy and safety are needed for tumor vessel targeting therapy. With the burgeoning developments in nanotechnology, smart nanotherapeutics now offer unprecedented potential for targeting tumor vasculature. Based on specific structural and functional features of the tumor vasculature, a number of different nanoscale delivery systems have been proposed for cancer therapy. In this Account, we summarize several distinct strategies to modulate tumor vasculature with various smart nanotherapeutics for safe and effective tumor therapy developed by our research programs. Inspired by the blood coagulation cascade, we generated nanoparticle-mediated tumor vessel infarction strategies that selectively block tumor blood supply to starve the tumor to death. By specifically delivering thrombin loaded DNA nanorobots (Nanorobot-Th) into tumor vessels, an intratumoral thrombosis is triggered to induce vascular infarction and, ultimately, tumor necrosis. Mimicking the coagulation cascade, a smart polymeric nanogel achieves permanent and peripheral embolization of liver tumors. Considering the critical role of platelets in maintaining tumor vessel integrity, a hybrid (PLP-D-R) nanoparticle selectively depleting tumor-associated platelets (TAP) to boost tumor vessel permeability was developed for enhancing intratumoral drug accumulation. In addition, benefiting from a better understanding of the molecular and cellular underpinnings of vascular normalization, several tumor acidity responsive nanotherapeutics, encapsulating therapeutic peptides, and small interfering RNA were developed to correct the abnormal features of the tumor vasculature. This made the tumor vessels more efficient for drug delivery. While we are still exploring the mechanisms of action of these novel nanoformulations, we expect that the strategies summarized here will offer a promising platform to design effective next-generation nanotherapeutics against cancer and facilitate the clinical translation of smart nanotherapeutics that target tumor vasculature.
Collapse
Affiliation(s)
- Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Chunzhi Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
44
|
Wu W, Klockow JL, Mohanty S, Ku KS, Aghighi M, Melemenidis S, Chen Z, Li K, Morais GR, Zhao N, Schlegel J, Graves EE, Rao J, Loadman PM, Falconer RA, Mukherjee S, Chin FT, Daldrup-Link HE. Theranostic nanoparticles enhance the response of glioblastomas to radiation. Nanotheranostics 2019; 3:299-310. [PMID: 31723547 PMCID: PMC6838141 DOI: 10.7150/ntno.35342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/14/2019] [Indexed: 01/03/2023] Open
Abstract
Despite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation. Methods: NSG™ mice bearing human GBMs and C57BL/6J mice bearing murine GBMs received CLIO-ICT, radiation, or combination treatment. The mice underwent pre- and post-treatment magnetic resonance imaging (MRI) scans, bioluminescence imaging (BLI), and histological analysis. Tumor nanoparticle enhancement, tumor flux, microvessel density, GIC, and apoptosis markers were compared between different groups using a one-way ANOVA and two-tailed Mann-Whitney test. Additional NSG™ mice underwent survival analyses with Kaplan-Meier curves and a log rank (Mantel-Cox) test. Results: At 2 weeks post-treatment, BLI and MRI scans revealed significant reduction in tumor size for CLIO-ICT plus radiation treated tumors compared to monotherapy or vehicle-treated tumors. Combining CLIO-ICT with radiation therapy significantly decreased microvessel density, decreased GICs, increased caspase-3 expression, and prolonged the survival of GBM-bearing mice. CLIO-ICT delivery to GBM could be monitored with MRI. and was not significantly different before and after radiation. There was no significant caspase-3 expression in normal brain at therapeutic doses of CLIO-ICT administered. Conclusion: Our data shows additive anti-tumor effects of CLIO-ICT nanoparticles in combination with radiotherapy. The combination therapy proposed here could potentially be a clinically translatable strategy for treating GBMs.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jessica L Klockow
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kimberly S Ku
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Maryam Aghighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | | | - Zixin Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kai Li
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Ning Zhao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Edward E Graves
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA.,Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Sudip Mukherjee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Shan L, Fan W, Wang W, Tang W, Yang Z, Wang Z, Liu Y, Shen Z, Dai Y, Cheng S, Jacobson O, Zhai K, Hu J, Ma Y, Kiesewetter DO, Gao G, Chen X. Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy. ACS NANO 2019; 13:8903-8916. [PMID: 31374171 DOI: 10.1021/acsnano.9b02477] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major concern about glucose oxidase (GOx)-mediated cancer starvation therapy is its ability to induce serious oxidative damage to normal tissues through the massive production of H2O2 byproducts in the oxygen-involved glucose decomposition reaction, which may be addressed by using a H2O2 scavenger, known as an antioxidation agent. Surprisingly, H2O2 removal accelerates the aerobic glycometabolism of tumors by activating the H2O2-dependent "redox signaling" pathway of cancer cells. Simultaneous oxygen depletion further aggravates tumor hypoxia to increase the toxicity of a bioreductive prodrug, such as tirapazamine (TPZ), thereby improving the effectiveness of cancer starvation therapy and bioreductive chemotherapy. Herein, a "nitrogen-protected silica template" method is proposed to design a nanoantioxidant called an organosilica-based hollow mesoporous bilirubin nanoparticle (HMBRN), which can act as an excellent nanocarrier to codeliver GOx and TPZ. In addition to efficient removal of H2O2 for self-protection of normal tissues via antioxidation, GOx/TPZ-coloaded HMBRN can also rapidly deplete intratumoral glucose/oxygen to promote a synergistic starvation-enhanced bioreductive chemotherapeutic effect for the substantial suppression of solid tumor growth. Distinct from the simple combination of two treatments, this study introduces antioxidation-activated self-protection nanotechnology for the significant improvement of tumor-specific deoxygenation-driven synergistic treatment efficacy without additional external energy input, thus realizing the renaissance of precise endogenous cancer therapy with negligible side effects.
Collapse
Affiliation(s)
- Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Siyuan Cheng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Kefeng Zhai
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Junkai Hu
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Guizhen Gao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
46
|
Xu P, Zou M, Wang S, Li T, Liu C, Wang L, Wang L, Luo F, Wu T, Yan J. Construction and characterization of a truncated tissue factor‑coagulation‑based composite system for selective thrombosis in tumor blood vessels. Int J Oncol 2019; 55:823-832. [PMID: 31432158 PMCID: PMC6741845 DOI: 10.3892/ijo.2019.4855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
The selective induction of tumor vascular thrombosis using truncated tissue factor (tTF) delivered via a target ligand is a promising novel antitumor strategy. In the present study, an anti-neuropilin-1 (NRP-1) monoclonal antibody (mAb)-streptavidin (SA):tTF-biotin (B) composite system was established. In this system, anti-NRP-1-mAb located tTF to the tumor vascular endothelial cell surface and induced vascular embolization. Due to their high binding affinity, SA and B were used to enhance thrombogenic activity. mAb was conjugated with SA using a coupling method with water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. Biotinylated tTF (tTF-B) was prepared using a B-labeling kit subsequent to the generation and purification of fusion protein tTF. Confocal microscopy and flow cytometry indicated that the anti-NRP-1-mAb-SA conjugate retained mAb targeting activity. The preservation of B-conjugate binding capacity was confirmed using a competitive ELISA, and factor X-activation analysis revealed that tTF-B retained the procoagulant activity exhibited by tTF. Live imaging was performed to assess mAb-SA distribution and tumor-targeting capability, and this yielded promising results. The results of in vivo studies in mice with subcutaneous xenografts demonstrated that this composite system significantly induced tumor vascular thrombosis and inhibited tumor growth, whereas these histological changes were not observed in normal organs.
Collapse
Affiliation(s)
- Peilan Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyuan Zou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
47
|
Hisada Y, Mackman N. Tissue Factor and Cancer: Regulation, Tumor Growth, and Metastasis. Semin Thromb Hemost 2019; 45:385-395. [PMID: 31096306 DOI: 10.1055/s-0039-1687894] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a strong relationship between tissue factor (TF) and cancer. Many cancer cells express high levels of both full-length TF and alternatively spliced (as) TF. TF expression in cancer is associated with poor prognosis. In this review, the authors summarize the regulation of TF expression in cancer cells and the roles of TF and asTF in tumor growth and metastasis. A variety of different signaling pathways, transcription factors and micro ribonucleic acids regulate TF gene expression in cancer cells. The TF/factor VIIa complex enhances tumor growth by activating protease-activated receptor 2 signaling and by increasing the expression of angiogenic factors, such as vascular endothelial growth factor. AsTF increases tumor growth by enhancing integrin β1 signaling. TF and asTF also contribute to metastasis via multiple thrombin-dependent and independent mechanisms that include protecting tumor cells from natural killer cells. Finally, a novel anticancer therapy is using tumor TF as a target to deliver cytotoxic drugs to the tumor. TF may be useful in diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Lizneva D, Rahimova A, Kim SM, Atabiekov I, Javaid S, Alamoush B, Taneja C, Khan A, Sun L, Azziz R, Yuen T, Zaidi M. FSH Beyond Fertility. Front Endocrinol (Lausanne) 2019; 10:136. [PMID: 30941099 PMCID: PMC6433784 DOI: 10.3389/fendo.2019.00136] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
The traditional view of follicle-stimulating hormone (FSH) as a reproductive hormone is changing. It has been shown that FSH receptors (FSHRs) are expressed in various extra-gonadal tissues and mediate the biological effects of FSH at those sites. Molecular, animal, epidemiologic, and clinical data suggest that elevated serum FSH may play a significant role in the evolution of bone loss and obesity, as well as contributing to cardiovascular and cancer risk. This review summarizes recent data on FSH action beyond reproduction.
Collapse
Affiliation(s)
- Daria Lizneva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alina Rahimova
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ihor Atabiekov
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Seher Javaid
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bateel Alamoush
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charit Taneja
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ayesha Khan
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ricardo Azziz
- Academic Health and Hospital Affairs, State University of New York, Albany, NY, United States
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Voss NCS, Kold-Petersen H, Boedtkjer E. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am J Physiol Heart Circ Physiol 2019; 316:H245-H254. [DOI: 10.1152/ajpheart.00368.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.
Collapse
Affiliation(s)
- Ninna C. S. Voss
- Research Unit, Regional Hospital Randers, Randers, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
50
|
Kessler T, Baumeier A, Brand C, Grau M, Angenendt L, Harrach S, Stalmann U, Schmidt LH, Gosheger G, Hardes J, Andreou D, Dreischalück J, Lenz G, Wardelmann E, Mesters RM, Schwöppe C, Berdel WE, Hartmann W, Schliemann C. Aminopeptidase N (CD13): Expression, Prognostic Impact, and Use as Therapeutic Target for Tissue Factor Induced Tumor Vascular Infarction in Soft Tissue Sarcoma. Transl Oncol 2018; 11:1271-1282. [PMID: 30125801 PMCID: PMC6113655 DOI: 10.1016/j.tranon.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Aminopeptidase N (CD13) is expressed on tumor vasculature and tumor cells. It represents a candidate for targeted therapy, e.g., by truncated tissue factor (tTF)-NGR, binding to CD13, and causing tumor vascular thrombosis. We analyzed CD13 expression by immunohistochemistry in 97 patients with STS who were treated by wide resection and uniform chemo-radio-chemotherapy. Using a semiquantitative score with four intensity levels, CD13 was expressed by tumor vasculature, or tumor cells, or both (composite value, intensity scores 1-3) in 93.9% of the STS. In 49.5% tumor cells, in 48.5% vascular/perivascular cells, and in 58.8%, composite value showed strong intensity score 3 staining. Leiomyosarcoma and synovial sarcoma showed low expression; fibrosarcoma and undifferentiated pleomorphic sarcoma showed high expression. We found a significant prognostic impact of CD13, as high expression in tumor cells or vascular/perivascular cells correlated with better relapse-free survival and overall survival. CD13 retained prognostic significance in multivariable analyses. Systemic tTF-NGR resulted in significant growth reduction of CD13-positive human HT1080 sarcoma cell line xenografts. Our results recommend further investigation of tTF-NGR in STS patients. CD13 might be a suitable predictive biomarker for patient selection.
Collapse
Affiliation(s)
- Torsten Kessler
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany.
| | - Ariane Baumeier
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Caroline Brand
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Saliha Harrach
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Ursula Stalmann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Georg Gosheger
- Department of Orthopedics and Tumor-Orthopedics, University Hospital Muenster, Germany
| | - Jendrik Hardes
- Department of Orthopedics and Tumor-Orthopedics, University Hospital Muenster, Germany
| | - Dimosthenis Andreou
- Department of Orthopedics and Tumor-Orthopedics, University Hospital Muenster, Germany
| | - Johannes Dreischalück
- Department of Orthopedics and Trauma Surgery, Sankt Elisabeth Hospital Guetersloh, Guetersloh
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany; Translational Oncology, University Hospital Muenster, Muenster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Rolf M Mesters
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Muenster, Germany.
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|