1
|
Li R, Liu X, Wu G, Li G, Chen JH, Jiang H, Dong H. Pyrite stimulates the growth and sulfur oxidation capacity of anoxygenic phototrophic sulfur bacteria in euxinic environments. SCIENCE ADVANCES 2025; 11:eadu7080. [PMID: 40249799 PMCID: PMC12007567 DOI: 10.1126/sciadv.adu7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Anoxygenic phototrophic sulfur bacteria flourish in contemporary and ancient euxinic environments, driving the biogeochemical cycles of carbon and sulfur. However, it is unclear how these strict anaerobes meet their high demand for iron in iron-depleted environments. Here, we report that pyrite, a widespread and highly stable iron sulfide mineral in anoxic, low-temperature environments, can support the growth and metabolic activity of anoxygenic phototrophic sulfur bacteria by serving as the sole iron source under iron-depleted conditions. Transcriptomic and proteomic analyses revealed that pyrite addition substantially up-regulated genes and protein expression involved in photosynthesis, sulfur metabolism, and biosynthesis of organics. Anoxic microbial oxidation of pyritic sulfur and consequent destabilization of the pyrite structure were postulated to facilitate microbial iron acquisition. These findings advance our understanding of the survival strategies of anaerobes in iron-depleted environments and are important for revealing the previously underappreciated bioavailability of pyritic iron in anoxic environments and anoxic weathering of pyrite.
Collapse
Affiliation(s)
- Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaolei Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Geng Wu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
2
|
Kwon DY, Lee SH, Khim JS, Xu X, Kim B, Choi IG, Yoo Y, Kim JJ. Jannaschia ovalis sp. nov., a marine bacterium isolated from a tidal flat sediment in the Republic of Korea. Antonie Van Leeuwenhoek 2024; 118:36. [PMID: 39612060 DOI: 10.1007/s10482-024-02044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
A Gram-stain-negative, non-motile, aerobic, pale-yellow coloured and oval-shaped bacterium designated GRR-S6-38T was isolated from a tidal flat sediment that collected from Garorim Bay of the Yellow Sea, Republic of Korea. Strain GRR-S6-38T grew at 15-40 °C (optimum, 30 °C) at pH 6-9 (optimum, pH 7) and at 2-6% (w/v) NaCl (optimum, 2% NaCl). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain GRR-S6-38T was closely related to those of J. seosinensis CL-SP26T (98.1%), J. helgolandensis DSM 14858T (97.4%), J. rubra CECT 5088T (97.4%), J. faecimaris DSM 100420T (97.4%), J. marina SHC163T (97.3%), J. donghaensis CECT 7802T (97.2%) and J. pohangensis DSM 19073T (97.1%). The average nucleotide identity and digital DNA-DNA hybridization value between GRR-S6-38T and related type strains were 71.47-78.59% and 17.80-21.40%. Strain GRR-S6-38T was characterized as having Q-10 as the predominant respiratory quinone and the major principle fatty acids (> 10%) were SF 8 (C18:1 ω7c/C18:1 ω6c, 39.3%), C19:0 ω8c cyclo (13.2%) and C18:1 ω7c 11-methyl (10.6%). The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified lipid, two unidentified aminolipids and two unidentified phospholipids. The assembled genome of strain GRR-S6-38T has a total length of 3.32 Mbp, and a G + C content is 69.98%. Based on the polyphasic taxonomic evidence presented in this study, GRR-S6-38T is regarded to represent a novel species within the genus Jannaschia, for which name Jannaschia ovalis sp. nov. is proposed. The type strain is GRR-S6-38T (= KCTC 82518 = KACC 22240 = JCM 36187).
Collapse
Affiliation(s)
- Dae Young Kwon
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Hyun Lee
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science and Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Xiaoyue Xu
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Bogun Kim
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonjae Yoo
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Jae-Jin Kim
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, Zhou S. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nat Commun 2024; 15:4992. [PMID: 38862519 PMCID: PMC11166942 DOI: 10.1038/s41467-024-49429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qichang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
5
|
Giannakopoulos C, Panou M, Gkelis S. Phylogenetic analysis of Nostocales (Cyanobacteria) based on two novel molecular markers, implicated in the nitrogenase biosynthesis. FEMS Microbiol Lett 2024; 371:fnad136. [PMID: 38168702 DOI: 10.1093/femsle/fnad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
The characterization of cyanobacteria communities remains challenging, as taxonomy of several cyanobacterial genera is still unresolved, especially within Nostocales taxa. Nostocales cyanobacteria are capable of nitrogen fixation; nitrogenase genes are grouped into operons and are located in the same genetic locus. Structural nitrogenase genes (nifH, nifK and nifD) as well as 16S rRNA have been shown to be adequate genetic markers for distinguishing cyanobacterial genera. However, there is no available information regarding the phylogeny of regulatory genes of the nitrogenase cluster. Aiming to provide a more accurate overview of the evolution of nitrogen fixation, this study analyzed for the first time nifE and nifN genes, which regulate the production of nitrogenase, alongside nifH. Specific primers were designed to amplify nifE and nifN genes, previously not available in literature and phylogenetic analysis was carried out in 13 and 14 TAU-MAC culture collection strains, respectively, of ten Nostocales genera along with other sequences retrieved from cyanobacteria genomes. Phylogenetic analysis showed that these genes seem to follow a common evolutionary pattern with nitrogenase structural genes and 16S rRNA. The classification of cyanobacteria based on these molecular markers seems to distinguish Nostocales strains with common morphological, ecological, and physiological characteristics.
Collapse
Affiliation(s)
- Christos Giannakopoulos
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
6
|
Zhou A, Templeton AS, Johnson JE. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. GEOBIOLOGY 2024; 22:e12587. [PMID: 38385601 DOI: 10.1111/gbi.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical sedimentary deposits called Banded Iron Formations (BIFs) are one of the best surviving records of ancient marine (bio)geochemistry. Many BIF precursor sediments precipitated from ferruginous, silica-rich waters prior to the Great Oxidation Event at ~2.43 Ga. Reconstructing the mineralogy of BIF precursor phases is key to understanding the coevolution of seawater chemistry and early life. Many models of BIF deposition invoke the activity of Fe(II)-oxidizing photoautotrophic bacteria as a mechanism for precipitating mixed-valence Fe(II,III) and/or fully oxidized Fe(III) minerals in the absence of molecular oxygen. Although the identity of phases produced by ancient photoferrotrophs remains debated, laboratory experiments provide a means to explore what their mineral byproducts might have been. Few studies have thoroughly characterized precipitates produced by photoferrotrophs in settings representative of Archean oceans, including investigating how residual Fe(II)aq can affect the mineralogy of expected solid phases. The concentration of dissolved silica (Si) is also an important variable to consider, as silicate species may influence the identity and reactivity of Fe(III)-bearing phases. To address these uncertainties, we cultured Rhodopseudomonas palustris TIE-1 as a photoferrotroph in synthetic Archean seawater with an initial [Fe(II)aq ] of 1 mM and [Si] spanning 0-1.5 mM. Ferrihydrite was the dominant precipitate across all Si concentrations, even with substantial Fe(II) remaining in solution. Consistent with other studies of microbial iron oxidation, no Fe-silicates were observed across the silica gradient, although Si coprecipitated with ferrihydrite via surface adsorption. More crystalline phases such as lepidocrocite and goethite were only detected at low [Si] and are likely products of Fe(II)-catalyzed ferrihydrite transformation. Finally, we observed a substantial fraction of Fe(II) in precipitates, with the proportion of Fe(II) increasing as a function of [Si]. These experimental results suggest that photoferrotrophy in a Fe(II)-buffered ocean may have exported Fe(II,III)-oxide/silica admixtures to BIF sediments, providing a more chemically diverse substrate than previously hypothesized.
Collapse
Affiliation(s)
- Alice Zhou
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexis S Templeton
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Jena E Johnson
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y, Chen D, Wang J. Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2260. [PMID: 37570577 PMCID: PMC10421452 DOI: 10.3390/nano13152260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yu Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoli Bai
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Junyang Leng
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yi Zhao
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Vitukhnovskya LA, Zaspa AA, Semenov AY, Mamedov MD. Conversion of light into electricity in a semi-synthetic system based on photosynthetic bacterial chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 2023; 1864:148975. [PMID: 37001791 DOI: 10.1016/j.bbabio.2023.148975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Chromatophores (Chr) from photosynthetic nonsulfur purple bacterium Rhodobacter sphaeroides immobilized onto a Millipore membrane filter (MF) and sandwiched between two semiconductor indium tin oxide (ITO) electrodes (termed ITO|Chr - MF|ITO) have been used to measure voltage (ΔV) induced by continuous illumination. The maximum ΔV was detected in the presence of ascorbate / N,N,N'N'-tetramethyl-p-phenylenediamine couple, coenzyme UQ0, disaccaride trehalose and antimycin A, an inhibitor of cytochrome bc1 complex. In doing so, the light-induced electron transfer in the reaction centers was the major source of photovoltages. The stability of the voltage signal upon prolonged irradiation (>1 h) may be due to the maintenance of a conformation that is optimal for the functioning of integral protein complexes and stabilization of lipid bilayer membranes in the presence of trehalose. Retaining ∼70 % of the original photovoltage performance on the 30th day of storage at 23 °C in the dark under air was achieved after re-injection of fresh buffer (∼40 μL) containing redox mediators into the ITO|Chr - MF|ITO system. The approach we use is easy and can be extended to other biological intact systems (cells, thylakoid membranes) capable of converting energy of light.
Collapse
|
9
|
Arja K, Selegård R, Paloncýová M, Linares M, Lindgren M, Norman P, Aili D, Nilsson KPR. Self-Assembly of Chiro-Optical Materials from Nonchiral Oligothiophene-Porphyrin Derivatives and Random Coil Synthetic Peptides. Chempluschem 2023; 88:e202200262. [PMID: 36173143 DOI: 10.1002/cplu.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Indexed: 01/04/2023]
Abstract
Biomimetic chiral optoelectronic materials can be utilized in electronic devices, biosensors and artificial enzymes. Herein, this work reports the chiro-optical properties and architectural arrangement of optoelectronic materials generated from self-assembly of initially nonchiral oligothiophene-porphyrin derivatives and random coil synthetic peptides. The photo-physical- and structural properties of the materials were assessed by absorption-, fluorescence- and circular dichroism spectroscopy, as well as dynamic light scattering, scanning electron microscopy and theoretical calculations. The materials display a three-dimensional ordered helical structure and optical activity that are observed due to an induced chirality of the optoelectronic element upon interaction with the peptide. Both these properties are influenced by the chemical composition of the oligothiophene-porphyrin derivative, as well as the peptide sequence. We foresee that our findings will aid in developing self-assembled optoelectronic materials with dynamic architectonical accuracies, as well as offer the possibility to generate the next generation of materials for a variety of bioelectronic applications.
Collapse
Affiliation(s)
- Katriann Arja
- Division of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials Division of Biophysics and Bioengineering Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Markéta Paloncýová
- Division of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00, Olomouc, Czech Republic
| | - Mathieu Linares
- Laboratory of Organic Electronics and Group of Scientific Visualization Department of Science and Technology (ITN), Linköping University, 601 74, Norrköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Patrick Norman
- Division of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials Division of Biophysics and Bioengineering Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Division of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
10
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Boyd ES, Spietz RL, Kour M, Colman DR. A naturalist perspective of microbiology: Examples from methanogenic archaea. Environ Microbiol 2023; 25:184-198. [PMID: 36367391 DOI: 10.1111/1462-2920.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Storytelling has been the primary means of knowledge transfer over human history. The effectiveness and reach of stories are improved when the message is appropriate for the target audience. Oftentimes, the stories that are most well received and recounted are those that have a clear purpose and that are told from a variety of perspectives that touch on the varied interests of the target audience. Whether scientists realize or not, they are accustomed to telling stories of their own scientific discoveries through the preparation of manuscripts, presentations, and lectures. Perhaps less frequently, scientists prepare review articles or book chapters that summarize a body of knowledge on a given subject matter, meant to be more holistic recounts of a body of literature. Yet, by necessity, such summaries are often still narrow in their scope and are told from the perspective of a particular discipline. In other words, interdisciplinary reviews or book chapters tend to be the rarity rather than the norm. Here, we advocate for and highlight the benefits of interdisciplinary perspectives on microbiological subjects.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
12
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. Characterization of regioisomeric diterpenoid tails in bacteriochlorophylls produced by geranylgeranyl reductase from Halorhodospira halochloris and Blastochloris viridis. PHOTOSYNTHESIS RESEARCH 2022; 154:1-12. [PMID: 35852706 DOI: 10.1007/s11120-022-00938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Geranylgeranyl reductase (GGR) encoded by the bchP gene catalyzes the reductions of three unsaturated C = C double bonds (C6 = C7, C10 = C11, and C14 = C15) in a geranylgeranyl (GG) group of the esterifying moiety in 17-propionate residue of bacteriochlorophyll (BChl) molecules. It was recently reported that GGR in Halorhodospira halochloris potentially catalyzes two hydrogenations, yielding BChl with a tetrahydrogeranylgeranyl (THGG) tail. Furthermore, its engineered GGR, in which N-terminal insertion peptides characteristic for H. halochloris were deleted, performed single hydrogenation, producing BChl with a dihydrogeranylgeranyl (DHGG) tail. In some of these enzymatic reactions, it remained unclear in which order the C = C double bond in a GG group was first reduced. In this study, we demonstrated that the (variant) GGR from H. halochloris catalyzed an initial reduction of the C6 = C7 double bond to yield a 6,7-DHGG tail. The intact GGR of H. halochloris catalyzed the further hydrogenation of the C14 = C15 double bonds to give a 6,7,14,15-THGG group, whereas deleting the characteristic peptide region from the GGR suppressed the C14 = C15 reduction. We also verified that in a model bacterium, Blastochloris viridis producing standard BChl-b, the reduction of a GG to phytyl group occurred via 10,11-DHGG and 6,7,10,11-THGG. The high-performance liquid chromatographic elution profiles of BChls-a/b employed in this study are essential for identifying the regioisomeric diterpenoid tails in the BChls of phototrophic bacteria distributed in nature and elucidating GGR enzymatic reactions.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
13
|
Liu F, Gaul L, Shu F, Vitenson D, Wu M. Microscope-based light gradient generation for quantitative growth studies of photosynthetic micro-organisms. LAB ON A CHIP 2022; 22:3138-3146. [PMID: 35730387 DOI: 10.1039/d2lc00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthetic micro-organisms are equipped with molecular machineries that are designed to transform light into chemical or bioenergy, and help shape and balance the ecosystem of all life forms on earth. Recently, aquatic ecosystems have been disrupted by climate change, which leads to the frequent occurrence of harmful algal blooms (HABs). HABs endanger drinking water resources and harm the fishing and coastal recreation industries. Despite its urgency, mechanistic understanding of how key biophysical and biochemical parameters impact algal growth is largely unexplored. In this article, we developed a microscope-based light gradient generator for studies of photosynthetic micro-organisms under well-defined light intensity gradients. This technology utilized a commercially available microscope, allowed for controlled light exposure and imaging of cells on the same microscope platform, and can be integrated with any micrometer-scale device. Using this technology, we studied the role of light intensity in the growth of photosynthetic micro-organisms. A parallel study was also carried out using a 96-well plate. Our work revealed that the growth rate of the microalgae/cyanobacteria was significantly regulated by the light intensity and followed Monod or van Oorschot kinetic models. The measured half-saturation constants were compared with those obtained in macro-scale devices, and indicated that shading, light spectrum, and temperature may all play important roles in the light sensitivity of photosynthetic micro-organisms. This work highlighted the importance of analytical tools for quantitative understanding of biophysical parameters in the growth of photosynthetic micro-organisms, and knowledge learned will be critical in the design of future technologies for managing algal blooms or optimizing bioenergy production.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Larissa Gaul
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Fang Shu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Daniel Vitenson
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, Li Y, Konhauser KO. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat Commun 2021; 12:6611. [PMID: 34785682 PMCID: PMC8595356 DOI: 10.1038/s41467-021-26916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The evolution of oxygenic photosynthesis is a pivotal event in Earth's history because the O2 released fundamentally changed the planet's redox state and facilitated the emergence of multicellular life. An intriguing hypothesis proposes that hydrogen peroxide (H2O2) once acted as the electron donor prior to the evolution of oxygenic photosynthesis, but its abundance during the Archean would have been limited. Here, we report a previously unrecognized abiotic pathway for Archean H2O2 production that involves the abrasion of quartz surfaces and the subsequent generation of surface-bound radicals that can efficiently oxidize H2O to H2O2 and O2. We propose that in turbulent subaqueous environments, such as rivers, estuaries and deltas, this process could have provided a sufficient H2O2 source that led to the generation of biogenic O2, creating an evolutionary impetus for the origin of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China.
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xiao Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haiyang Xian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiping Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Lv
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, 999077, Hong Kong, China.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
17
|
Davankov VA. The Riddle of Atmospheric Oxygen: Photosynthesis or Photolysis? RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The stoichiometry of the photosynthetic reaction requires that the quantities of the end products (organic biomaterial and free oxygen) be equal. However, the correct balance of the amounts of oxygen and organic matter that could have been produced by green plants on the land and in the ocean since the emergence of unique oxygenic photosynthetic systems (no more than 2.7 billion years ago) is virtually impossible, since the vast majority of oxygen was lost in oxidizing the initially reducing matter of the planet, and the bulk of organic carbon is scattered in sedimentary rocks. In recent decades, convincing information has been obtained in favor of the large-scale photolysis of water molecules in the upper atmosphere with the scattering of light hydrogen into space and the retention of heavier oxygen by gravity. This process has been operating continuously since the formation of the Earth. It is accompanied by huge losses of water and the oxidation of salts of ferrous iron and sulfide sulfur in the oceans and methane in the atmosphere. The main stages of the evolution of the atmosphere and surface layers of the Earth’s crust are analyzed for the first time in this work by considering the parallel processes of photosynthesis and photolysis. Large-scale photolysis of water also provides consistent explanations for the main stages in the evolution of the nearest planets of our Solar System.
Collapse
|
18
|
Gisriel CJ, Azai C, Cardona T. Recent advances in the structural diversity of reaction centers. PHOTOSYNTHESIS RESEARCH 2021; 149:329-343. [PMID: 34173168 PMCID: PMC8452559 DOI: 10.1007/s11120-021-00857-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.
Collapse
Affiliation(s)
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
19
|
The Evolution of Molybdenum Dependent Nitrogenase in Cyanobacteria. BIOLOGY 2021; 10:biology10040329. [PMID: 33920032 PMCID: PMC8071049 DOI: 10.3390/biology10040329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Nitrogen fixation is the process by which nitrogen in the atmosphere is converted into ammonia and other nitrogen-containing organic compounds. It is carried out by a variety of bacteria, including Cyanobacteria. Previous studies have shown that several groups of Cyanobacteria have the ability to fix nitrogen; however, because these groups are scattered throughout the Cyanobacterial lineage, the evolutionary history of nitrogen fixation in these bacteria has not been clarified. In this study, we attempted to identify the origin of nitrogen fixation development in Cyanobacterium by focusing on molybdenum dependent nitrogenase, a major nitrogen fixing enzyme. We compared a phylogenetic tree from 179 species of Cyanobacteria to one generated from nitrogen fixation-related genes. We also compared the genomic locations of those genes. As a result, we found that nitrogen fixing genes were acquired in the Cyanobacterium common ancestor and subsequently lost in some lineages. The results demonstrate that inconsistencies between species phylogeny and organism characteristics can occur and be caused not only by horizontal gene transfer, but also by gene deletion. Abstract Nitrogen fixation plays a crucial role in the nitrogen cycle by helping to convert nitrogen into a form usable by other organisms. Bacteria capable of fixing nitrogen are found in six phyla including Cyanobacteria. Molybdenum dependent nitrogenase (nif) genes are thought to share a single origin as they have homologs in various phyla. However, diazotrophic bacteria have a mosaic distribution within the cyanobacterial lineage. Therefore, the aim of this study was to determine the cause of this mosaic distribution. We identified nif gene operon structures in the genomes of 85 of the 179 cyanobacterial strains for which whole genome sequences were available. Four nif operons were conserved in each diazotroph Cyanobacterium, although there were some gene translocations and insertions. Phylogenetic inference of these genes did not reveal horizontal gene transfer from outside the phylum Cyanobacteria. These results support the hypothesis that the mosaic distribution of diazotrophic bacteria in the cyanobacterial lineage is the result of the independent loss of nif genes inherited from common cyanobacterial ancestors in each lineage.
Collapse
|
20
|
Deryusheva E, Machulin A, Matyunin M, Galzitskaya O. Sequence and evolutionary analysis of bacterial ribosomal S1 proteins. Proteins 2021; 89:1111-1124. [PMID: 33843105 DOI: 10.1002/prot.26084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a "bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.
Collapse
Affiliation(s)
- Evgeniya Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Andrey Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Maxim Matyunin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Oxana Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
21
|
Ward LM, Shih PM. Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer. PLoS One 2021; 16:e0239248. [PMID: 33507911 PMCID: PMC7842958 DOI: 10.1371/journal.pone.0239248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis-both oxygenic and more ancient anoxygenic forms-has fueled the bulk of primary productivity on Earth since it first evolved more than 3.4 billion years ago. However, the early evolutionary history of photosynthesis has been challenging to interpret due to the sparse, scattered distribution of metabolic pathways associated with photosynthesis, long timescales of evolution, and poor sampling of the true environmental diversity of photosynthetic bacteria. Here, we reconsider longstanding hypotheses for the evolutionary history of phototrophy by leveraging recent advances in metagenomic sequencing and phylogenetics to analyze relationships among phototrophic organisms and components of their photosynthesis pathways, including reaction centers and individual proteins and complexes involved in the multi-step synthesis of (bacterio)-chlorophyll pigments. We demonstrate that components of the photosynthetic apparatus have undergone extensive, independent histories of horizontal gene transfer. This suggests an evolutionary mode by which modular components of phototrophy are exchanged between diverse taxa in a piecemeal process that has led to biochemical innovation. We hypothesize that the evolution of extant anoxygenic photosynthetic bacteria has been spurred by ecological competition and restricted niches following the evolution of oxygenic Cyanobacteria and the accumulation of O2 in the atmosphere, leading to the relatively late evolution of bacteriochlorophyll pigments and the radiation of diverse crown group anoxygenic phototrophs. This hypothesis expands on the classic "Granick hypothesis" for the stepwise evolution of biochemical pathways, synthesizing recent expansion in our understanding of the diversity of phototrophic organisms as well as their evolving ecological context through Earth history.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
22
|
Hirose M, Harada J, Tamiaki H. In Vitro Hydrolysis of Zinc Chlorophyllide a Homologues by a BciC Enzyme. Biochemistry 2020; 59:4622-4626. [PMID: 33258578 DOI: 10.1021/acs.biochem.0c00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps: (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
23
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
24
|
Fernandez L, Peura S, Eiler A, Linz AM, McMahon KD, Bertilsson S. Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake. Front Microbiol 2020; 11:1500. [PMID: 32714313 PMCID: PMC7341956 DOI: 10.3389/fmicb.2020.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Aquatic N-fixation is generally associated with the growth and mass development of Cyanobacteria in nitrogen-deprived photic zones. However, sequenced genomes and environmental surveys suggest active aquatic N-fixation also by many non-cyanobacterial groups. Here, we revealed the seasonal variation and genomic diversity of potential N-fixers in a humic bog lake using metagenomic data and nif gene clusters analysis. Groups with diazotrophic operons were functionally divergent and included Cholorobi, Geobacter, Desulfobacterales, Methylococcales, and Acidobacteria. In addition to nifH (a gene that encodes the dinitrogenase reductase component of the molybdenum nitrogenase), we also identified sequences corresponding to vanadium and iron-only nitrogenase genes. Within the Chlorobi population, the nitrogenase (nifH) cluster was included in a well-structured retrotransposon. Furthermore, the presence of light-harvesting photosynthesis genes implies that anoxygenic photosynthesis may fuel nitrogen fixation under the prevailing low-irradiance conditions. The presence of rnf genes (related to the expression of H+/Na+-translocating ferredoxin: NAD+ oxidoreductase) in Methylococcales and Desulfobacterales suggests that other energy-generating processes may drive the costly N-fixation in the absence of photosynthesis. The highly reducing environment of the anoxic bottom layer of Trout Bog Lake may thus also provide a suitable niche for active N-fixers and primary producers. While future studies on the activity of these potential N-fixers are needed to clarify their role in freshwater nitrogen cycling, the metagenomic data presented here enabled an initial characterization of previously overlooked diazotrophs in freshwater biomes.
Collapse
Affiliation(s)
- Leyden Fernandez
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Alexandra M. Linz
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI, United States
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
26
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
27
|
Sener M, Levy S, Stone JE, Christensen AJ, Isralewitz B, Patterson R, Borkiewicz K, Carpenter J, Hunter CN, Luthey-Schulten Z, Cox D. Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. PARALLEL COMPUTING 2020; 102:102698. [PMID: 34824485 PMCID: PMC8612599 DOI: 10.1016/j.parco.2020.102698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conversion of sunlight into chemical energy, namely photosynthesis, is the primary energy source of life on Earth. A visualization depicting this process, based on multiscale computational models from electronic to cell scales, is presented in the form of an excerpt from the fulldome show Birth of Planet Earth. This accessible visual narrative shows a lay audience, including children, how the energy of sunlight is captured, converted, and stored through a chain of proteins to power living cells. The visualization is the result of a multi-year collaboration among biophysicists, visualization scientists, and artists, which, in turn, is based on a decade-long experimental-computational collaboration on structural and functional modeling that produced an atomic detail description of a bacterial bioenergetic organelle, the chromatophore. Software advancements necessitated by this project have led to significant performance and feature advances, including hardware-accelerated cinematic ray tracing and instanced visualizations for efficient cell-scale modeling. The energy conversion steps depicted feature an integration of function from electronic to cell levels, spanning nearly 12 orders of magnitude in time scales. This atomic detail description uniquely enables a modern retelling of one of humanity's earliest stories-the interplay between light and life.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - Stuart Levy
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - John E. Stone
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - AJ Christensen
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | | | - Robert Patterson
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Kalina Borkiewicz
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Jeffrey Carpenter
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, U.K
| | | | - Donna Cox
- Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
28
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
29
|
Reinhard CT, Planavsky NJ, Ward BA, Love GD, Le Hir G, Ridgwell A. The impact of marine nutrient abundance on early eukaryotic ecosystems. GEOBIOLOGY 2020; 18:139-151. [PMID: 32065509 DOI: 10.1111/gbi.12384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The rise of eukaryotes to ecological prominence represents one of the most dramatic shifts in the history of Earth's biosphere. However, there is an enigmatic temporal lag between the emergence of eukaryotic organisms in the fossil record and their much later ecological expansion. In parallel, there is evidence for a secular increase in the availability of the key macronutrient phosphorus (P) in Earth's oceans. Here, we use an Earth system model equipped with a size-structured marine ecosystem to explore relationships between plankton size, trophic complexity, and the availability of marine nutrients. We find a strong dependence of planktonic ecosystem structure on ocean nutrient abundance, with a larger ocean nutrient inventory leading to greater overall biomass, broader size spectra, and increasing abundance of large Zooplankton. If existing estimates of Proterozoic marine nutrient levels are correct, our results suggest that increases in the ecological impact of eukaryotic algae and trophic complexity in eukaryotic ecosystems were directly linked to restructuring of the global P cycle associated with the protracted rise of surface oxygen levels. Our results thus suggest an indirect but potentially important mechanism by which ocean oxygenation may have acted to shape marine ecological function during late Proterozoic time.
Collapse
Affiliation(s)
- Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Noah J Planavsky
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Ben A Ward
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gordon D Love
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
| | | | - Andy Ridgwell
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
- School of Geographical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Taylor N, Kassal I. Why are photosynthetic reaction centres dimeric? Chem Sci 2019; 10:9576-9585. [PMID: 32055331 PMCID: PMC6993572 DOI: 10.1039/c9sc03712h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022] Open
Abstract
All photosynthetic organisms convert solar energy into chemical energy through charge separation in dimeric reaction centres. It is unknown why early reaction centres dimerised and completely displaced their monomeric ancestors. Here, we discuss several proposed explanations for reaction-centre dimerism and conclude-with only weak assumptions about the primordial dimerisation event-that the most probable explanation for the dimerism is that it arose because it enhanced light-harvesting efficiency by deepening the excitonic trap, i.e., by enhancing the rate of exciton transfer from an antenna complex and decreasing the rate of back transfer. This effect would have outweighed the negative effect dimerisation would have had on charge transfer within the reaction centre. Our argument implies that dimerisation likely occurred after the evolution of the first antennas, and it explains why the lower-energy state of the special pair is bright.
Collapse
Affiliation(s)
- Natasha Taylor
- School of Chemistry and University of Sydney Nano Institute , University of Queensland , QLD 4072 , Australia
| | - Ivan Kassal
- School of Chemistry , University of Sydney Nano Institute , University of Sydney , NSW 2006 , Australia .
| |
Collapse
|
31
|
Ward LM, Cardona T, Holland-Moritz H. Evolutionary Implications of Anoxygenic Phototrophy in the Bacterial Phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol 2019; 10:1658. [PMID: 31396180 PMCID: PMC6664022 DOI: 10.3389/fmicb.2019.01658] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Genome-resolved environmental metagenomic sequencing has uncovered substantial previously unrecognized microbial diversity relevant for understanding the ecology and evolution of the biosphere, providing a more nuanced view of the distribution and ecological significance of traits including phototrophy across diverse niches. Recently, the capacity for bacteriochlorophyll-based anoxygenic photosynthesis has been proposed in the uncultured bacterial WPS-2 phylum (recently proposed as Candidatus Eremiobacterota) that are in close association with boreal moss. Here, we use phylogenomic analysis to investigate the diversity and evolution of phototrophic WPS-2. We demonstrate that phototrophic WPS-2 show significant genetic and metabolic divergence from other phototrophic and non-phototrophic lineages. The genomes of these organisms encode a new family of anoxygenic Type II photochemical reaction centers and other phototrophy-related proteins that are both phylogenetically and structurally distinct from those found in previously described phototrophs. We propose the name Candidatus Baltobacterales for the order-level aerobic WPS-2 clade which contains phototrophic lineages, from the Greek for "bog" or "swamp," in reference to the typical habitat of phototrophic members of this clade.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
32
|
Ozaki K, Thompson KJ, Simister RL, Crowe SA, Reinhard CT. Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere. Nat Commun 2019; 10:3026. [PMID: 31289261 PMCID: PMC6616575 DOI: 10.1038/s41467-019-10872-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2019] [Indexed: 12/03/2022] Open
Abstract
The emergence of oxygenic photosynthesis created a new niche with dramatic potential to transform energy flow through Earth's biosphere. However, more primitive forms of photosynthesis that fix CO2 into biomass using electrons from reduced species like Fe(II) and H2 instead of water would have competed with Earth's early oxygenic biosphere for essential nutrients. Here, we combine experimental microbiology, genomic analyses, and Earth system modeling to demonstrate that competition for light and nutrients in the surface ocean between oxygenic phototrophs and Fe(II)-oxidizing, anoxygenic photosynthesizers (photoferrotrophs) translates into diminished global photosynthetic O2 release when the ocean interior is Fe(II)-rich. These results provide a simple ecophysiological mechanism for inhibiting atmospheric oxygenation during Earth's early history. We also find a novel positive feedback within the coupled C-P-O-Fe cycles that can lead to runaway planetary oxygenation as rising atmospheric pO2 sweeps the deep ocean of the ferrous iron substrate for photoferrotrophy.
Collapse
Affiliation(s)
- Kazumi Ozaki
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, 21046, USA
- Department of Environmental Science, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Katharine J Thompson
- Departments of Microbiology & Immunology and Earth, Ocean, & Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Rachel L Simister
- Departments of Microbiology & Immunology and Earth, Ocean, & Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sean A Crowe
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Departments of Microbiology & Immunology and Earth, Ocean, & Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA.
| |
Collapse
|
33
|
Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Sci Rep 2019; 9:3636. [PMID: 30842503 PMCID: PMC6403449 DOI: 10.1038/s41598-019-40082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Engineering chlorophyll (Chl) pigments that are bound to photosynthetic light-harvesting proteins is one promising strategy to regulate spectral coverage for photon capture and to improve the photosynthetic efficiency of these proteins. Conversion from the bacteriochlorophyll (BChl) skeleton (7,8,17,18-tetrahydroporphyrin) to the Chl skeleton (17,18-dihydroporphyrin) produces the most drastic change of the spectral range of absorption by light-harvesting proteins. We demonstrated in situ selective oxidation of B800 BChl a in light-harvesting protein LH2 from a purple bacterium Rhodoblastus acidophilus by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. The newly formed pigment, 3-acetyl Chl a, interacted with the LH2 polypeptides in the same manner as native B800. B850 BChl a was not oxidized in this reaction. CD spectroscopy indicated that the B850 orientation and the content of the α-helices were unchanged by the B800 oxidation. The nonameric circular arrangement of the oxidized LH2 protein was visualized by AFM; its diameter was almost the same as that of native LH2. The in situ oxidation of B800 BChl a in LH2 protein with no structural change will be useful not only for manipulation of the photofunctional properties of photosynthetic pigment-protein complexes but also for understanding the substitution of BChl to Chl pigments in the evolution from bacterial to oxygenic photosynthesis.
Collapse
|
34
|
Mallus MI, Shakya Y, Prajapati JD, Kleinekathöfer U. Environmental effects on the dynamics in the light-harvesting complexes LH2 and LH3 based on molecular simulations. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
36
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
37
|
Gérard E, De Goeyse S, Hugoni M, Agogué H, Richard L, Milesi V, Guyot F, Lecourt L, Borensztajn S, Joseph MB, Leclerc T, Sarazin G, Jézéquel D, Leboulanger C, Ader M. Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front Microbiol 2018; 9:796. [PMID: 29872424 PMCID: PMC5972316 DOI: 10.3389/fmicb.2018.00796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the "Petite Terre" Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM) analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira-dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM) and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA), is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite, respectively. These results point out the role of phototrophic Alphaproteobacteria in the formation of stromatolites, which may open new perspective for the analysis of the fossil record.
Collapse
Affiliation(s)
- Emmanuelle Gérard
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Siham De Goeyse
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Mylène Hugoni
- Université Lyon 1, UMR CNRS 5557 / INRA 1418, Ecologie Microbienne, Villeurbanne, France
| | - Hélène Agogué
- UMR 7266 CNRS-Université de la Rochelle, LIttoral ENvironnement Et Sociétés, La Rochelle, France
| | - Laurent Richard
- School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Vincent Milesi
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - François Guyot
- Museum National d’Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS Sorbonne Universités, Université Pierre et Marie Curie, Institut de Recherche pour le Développement UMR 206, Paris, France
| | - Léna Lecourt
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Stephan Borensztajn
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Béatrice Joseph
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Thomas Leclerc
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Gérard Sarazin
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Didier Jézéquel
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | | | - Magali Ader
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
38
|
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Front Microbiol 2018. [PMID: 29515543 PMCID: PMC5826079 DOI: 10.3389/fmicb.2018.00260] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.
Collapse
Affiliation(s)
- Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - James Hemp
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick M Shih
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
39
|
Deshmukh SS, Protheroe C, Ivanescu MA, Lag S, Kálmán L. Low potential manganese ions as efficient electron donors in native anoxygenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:227-233. [PMID: 29355486 DOI: 10.1016/j.bbabio.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.
Collapse
Affiliation(s)
| | | | | | - Sarah Lag
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Ngo AT, Skeini T, Iancu V, Redfern PC, Curtiss LA, Hla SW. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in β-Carotene and Chlorophyll-a/β-Carotene Clusters. ACS NANO 2018; 12:217-225. [PMID: 29236480 DOI: 10.1021/acsnano.7b05841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how β-carotene and chlorophyll-a form mixed molecular phases on a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five β-carotene conformations including a structure exhibiting a three-dimensional conformation. Furthermore, molecular resolution images enable direct visualization of β-carotene/chlorophyll-a clsuters, with intimate structural details highlighting how they pair: β-carotene preferentially positions next to chlorophyll-a and induces switching of chlorophyll-a from straight to several bent tail conformations in the molecular clusters.
Collapse
Affiliation(s)
| | - Timur Skeini
- Nanoscale & Quantum Phenomena Institute and Physics & Astronomy Department, Ohio University , Athens, Ohio 45701, United States
| | - Violeta Iancu
- Nanoscale & Quantum Phenomena Institute and Physics & Astronomy Department, Ohio University , Athens, Ohio 45701, United States
| | | | | | - Saw Wai Hla
- Nanoscale & Quantum Phenomena Institute and Physics & Astronomy Department, Ohio University , Athens, Ohio 45701, United States
| |
Collapse
|
41
|
Molecular structure of FoxE, the putative iron oxidase of Rhodobacter ferrooxidans SW2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:847-853. [DOI: 10.1016/j.bbabio.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/13/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022]
|
42
|
Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc Natl Acad Sci U S A 2017; 114:10749-10754. [PMID: 28923961 DOI: 10.1073/pnas.1710798114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Various lines of evidence from both comparative biology and the geologic record make it clear that the biochemical machinery for anoxygenic photosynthesis was present on early Earth and provided the evolutionary stock from which oxygenic photosynthesis evolved ca. 2.3 billion years ago. However, the taxonomic identity of these early anoxygenic phototrophs is uncertain, including whether or not they remain extant. Several phototrophic bacterial clades are thought to have evolved before oxygenic photosynthesis emerged, including the Chloroflexi, a phylum common across a wide range of modern environments. Although Chloroflexi have traditionally been thought to be an ancient phototrophic lineage, genomics has revealed a much greater metabolic diversity than previously appreciated. Here, using a combination of comparative genomics and molecular clock analyses, we show that phototrophic members of the Chloroflexi phylum are not particularly ancient, having evolved well after the rise of oxygen (ca. 867 million years ago), and thus cannot be progenitors of oxygenic photosynthesis. Similarly, results show that the carbon fixation pathway that defines this clade-the 3-hydroxypropionate bicycle-evolved late in Earth history as a result of a series of horizontal gene transfer events, explaining the lack of geological evidence for this pathway based on the carbon isotope record. These results demonstrate the role of horizontal gene transfer in the recent metabolic innovations expressed within this phylum, including its importance in the development of a novel carbon fixation pathway.
Collapse
|
43
|
Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat Ecol Evol 2017; 1:1502-1510. [DOI: 10.1038/s41559-017-0298-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023]
|
44
|
|
45
|
|
46
|
Thompson KJ, Simister RL, Hahn AS, Hallam SJ, Crowe SA. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi. Front Microbiol 2017; 8:1212. [PMID: 28729857 PMCID: PMC5498476 DOI: 10.3389/fmicb.2017.01212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Anoxygenic photosynthesis evolved prior to oxygenic photosynthesis and harnessed energy from sunlight to support biomass production on the early Earth. Models that consider the availability of electron donors predict that anoxygenic photosynthesis using Fe(II), known as photoferrotrophy, would have supported most global primary production before the proliferation of oxygenic phototrophs at approximately 2.3 billion years ago. These photoferrotrophs have also been implicated in the deposition of banded iron formations, the world's largest sedimentary iron ore deposits that formed mostly in late Archean and early Proterozoic Eons. In this work we present new data and analyses that illuminate the metabolic capacity of photoferrotrophy in the phylum Chlorobi. Our laboratory growth experiments and biochemical analyses demonstrate that photoferrotrophic Chlorobi are capable of assimilatory sulfate reduction and nitrogen fixation under sulfate and nitrogen limiting conditions, respectively. Furthermore, the evolutionary histories of key enzymes in both sulfur (CysH and CysD) and nitrogen fixation (NifDKH) pathways are convoluted; protein phylogenies, however, suggest that early Chlorobi could have had the capacity to assimilate sulfur and fix nitrogen. We argue, then, that the capacity for photoferrotrophic Chlorobi to acquire these key nutrients enabled them to support primary production and underpin global biogeochemical cycles in the Precambrian.
Collapse
Affiliation(s)
- Katharine J. Thompson
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Rachel L. Simister
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Aria S. Hahn
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
- Departments of Earth, Ocean and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada
| |
Collapse
|
47
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
48
|
Camacho A, Walter XA, Picazo A, Zopfi J. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Front Microbiol 2017; 8:323. [PMID: 28377745 PMCID: PMC5359306 DOI: 10.3389/fmicb.2017.00323] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest photoautotrophic metabolisms on Earth. Under the iron-rich (ferruginous) but sulfide poor conditions dominating the Archean ocean, this type of metabolism could have accounted for most of the primary production in the photic zone. Here we review the current knowledge of biogeochemical, microbial and phylogenetic aspects of photoferrotrophy, and evaluate the ecological significance of this process in ancient and modern environments. From the ferruginous conditions that prevailed during most of the Archean, the ancient ocean evolved toward euxinic (anoxic and sulfide rich) conditions and, finally, much after the advent of oxygenic photosynthesis, to a predominantly oxic environment. Under these new conditions photoferrotrophs lost importance as primary producers, and now photoferrotrophy remains as a vestige of a formerly relevant photosynthetic process. Apart from the geological record and other biogeochemical markers, modern environments resembling the redox conditions of these ancient oceans can offer insights into the past significance of photoferrotrophy and help to explain how this metabolism operated as an important source of organic carbon for the early biosphere. Iron-rich meromictic (permanently stratified) lakes can be considered as modern analogs of the ancient Archean ocean, as they present anoxic ferruginous water columns where light can still be available at the chemocline, thus offering suitable niches for photoferrotrophs. A few bacterial strains of purple bacteria as well as of green sulfur bacteria have been shown to possess photoferrotrophic capacities, and hence, could thrive in these modern Archean ocean analogs. Studies addressing the occurrence and the biogeochemical significance of photoferrotrophy in ferruginous environments have been conducted so far in lakes Matano, Pavin, La Cruz, and the Kabuno Bay of Lake Kivu. To date, only in the latter two lakes a biogeochemical role of photoferrotrophs has been confirmed. In this review we critically summarize the current knowledge on iron-driven photosynthesis, as a remains of ancient Earth biogeochemistry.
Collapse
Affiliation(s)
- Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Xavier A. Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of EnglandBristol, UK
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Jakob Zopfi
- Aquatic and Stable Isotope Biogeochemistry, Department of Environmental Sciences, University of BaselBasel, Switzerland
| |
Collapse
|
49
|
Hitchcock A, Hunter CN, Sener M. Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models. J Phys Chem B 2017; 121:3787-3797. [PMID: 28301162 DOI: 10.1021/acs.jpcb.6b12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5-2.6 h for a typical illumination range of 10-100 μmol photons m-2 s-1, respectively, with corresponding cell doubling times of 8.2-3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2-8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3-4 orders of magnitude shorter for the chromatophore than for synthetic systems.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, U.K
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Sinnecker S, Lubitz W. Probing the Electronic Structure of Bacteriochlorophyll Radical Ions-A Theoretical Study of the Effect of Substituents on Hyperfine Parameters. Photochem Photobiol 2017; 93:755-761. [PMID: 28120345 DOI: 10.1111/php.12724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
In reaction centers (RCs) of photosynthesis, a light-induced charge separation takes place creating radical cations and anions of the participating cofactors. In photosynthetic bacteria, different bacteriochlorophylls (BChl) are involved in this process. Information about the electronic structure of the BChl radical cations and anions can be obtained by measuring the electron spin density distribution via the electron-nuclear hyperfine interaction using EPR and ENDOR techniques. In this communication, we report isotropic hyperfine coupling constants (hfcs) of the BChl b and g radical cations and anions, calculated by density functional theory, and compare them with the more common radical ions of BChl a and with available experimental data. The observed differences in the computed hyperfine data are discussed in view of a possible distinction between these species by EPR/ENDOR methods. In addition, 14 N nuclear quadrupole coupling constants (nqcs) computed for BChl a, b, g, and also for Chl a in their charge neutral, radical cation and radical anion states are presented. These nqcs are compared with experimental values obtained by ESEEM spectroscopy on several different radical ions.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| |
Collapse
|