1
|
Policia R, Brito-Pereira R, Costa CM, Lanceros-Méndez S, Crespilho FN. Sustainable Power Generation with an All-Silk Electronics-Based Yeast Wearable Biobattery. ACS OMEGA 2025; 10:12522-12529. [PMID: 40191368 PMCID: PMC11966269 DOI: 10.1021/acsomega.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
Transient electronics, designed to disintegrate in a controlled manner after their useful life, have been proposed as a solution to mitigate the ecological and health impacts of electronic waste (e-waste). Despite this innovative approach, which has seen significant application in biologically integrated sensors and therapeutic devices, it still results in the accumulation of different materials and nanomaterials for the powering systems often based on batteries, which themselves contribute to the e-waste problem. Here, we explore the use of the silk cocoon from Bombyx mori as a key component in the development of environmentally friendly all-silk electronics-based biobatteries. The approach focuses on employing Saccharomyces cerevisiae to generate electroactive extracellular polymeric substances, which serve as the anode material within the biobattery. The silk cocoon's natural properties are utilized for the membrane in both anodic and cathodic compartments, with potassium ferricyanide embedded within the silk fibroin acting as the cathode. By coupling three modules in series, ohmic loss is minimized, preserving the voltages of each module. This setup allows a biobattery with discharge at a voltage over 1.1 V, demonstrating its potential to deliver stable and sufficient power for applications. The biobattery demonstrated a 95.2% utilization of recyclable materials for housing, membrane, and electrode components and a 95.6% utilization of biodegradable components for the electrolyte, offering a promising pathway for the advancement of eco-friendly energy storage solutions.
Collapse
Affiliation(s)
- Rita Policia
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga 4710-053, Portugal
| | - Ricardo Brito-Pereira
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU,Science Park, Leioa 48940, Spain
| | - Carlos M. Costa
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Méndez
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU,Science Park, Leioa 48940, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Frank N. Crespilho
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13560-970, Brazil
| |
Collapse
|
2
|
Stergiou Y, Perrakis A, De Wit A, Schwarzenberger K. Flow-driven pattern formation during coacervation of xanthan gum with a cationic surfactant. Phys Chem Chem Phys 2025; 27:2920-2926. [PMID: 39688445 DOI: 10.1039/d4cp01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We experimentally demonstrate that the coacervation of a biopolymer can trigger a hydrodynamic instability when a coacervate is formed upon injection of a xanthan gum dispersion into a cationic surfactant (C14TAB) solution. The local increase of the viscosity due to the coacervate formation induces a viscous fingering instability. Three characteristic displacement regimes were observed: a viscous fingering dominated regime, a buoyancy-controlled "volcano" regime and a "fan"-like regime determined by the coacervate membrane dynamics. The dependence of the spatial properties of the viscous fingering pattern on the Péclet and Rayleigh numbers is investigated.
Collapse
Affiliation(s)
- Y Stergiou
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - A Perrakis
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 231, 1050 Brussels, Belgium
| | - K Schwarzenberger
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Engelberg D, Baskin A, Ben Zaken S, Marbach I. The Saccharomyces cerevisiae ∑1278b strain is sensitive to NaCl because of mutations in its ENA1 gene. FEMS Yeast Res 2025; 25:foaf021. [PMID: 40317084 PMCID: PMC12091097 DOI: 10.1093/femsyr/foaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/24/2025] [Accepted: 05/01/2025] [Indexed: 05/04/2025] Open
Abstract
Most laboratory strains of the yeast Saccharomyces cerevisiae are incapable of invading agar, to form large colonies (mats), and to develop filament-like structures (pseudohyphae). A prominent strain that manifests these morphologies is ∑1278b. While induced transcription of the FLO11 gene is critical for executing invasive growth, mat formation, and pseudohyphal growth, downregulation of the 'general stress response' also seems to be required. As this response is weak in ∑1278b cells, we assumed that they may be sensitives to stresses. We report, however, that they are resistant to various stressors, but severely sensitive specifically to NaCl. We found that this sensitivity is a result of mutations in the single ∑1278b's ENA gene, encoding P-type sodium ATPase. Other laboratory strains harbor three to five copies of ENA, suggesting that ∑1278b was selected against Ena activity. Obtaining ∑1278b cells that can grow on NaCl allows checking its effect on colony morphologies. In the presence of NaCl, ∑1278b/ENA1+ cells do not invade agar, and do not form pseudohyphae or mats. Thus, we have found the following: (i) The ∑1278b strain differs from other laboratory strains with respect to sensitivity to NaCl, because it has no active Na+ ATPase exporter. (ii) NaCl is a suppressor of invasiveness, filamentous growth, and mat formation.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore–HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shelly Ben Zaken
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Irit Marbach
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Cromie GA, Tan Z, Hays M, Sirr A, Dudley AM. Spatiotemporal patterns of gene expression during development of a complex colony morphology. PLoS One 2024; 19:e0311061. [PMID: 39637084 PMCID: PMC11620645 DOI: 10.1371/journal.pone.0311061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Clonal communities of single celled organisms, such as bacterial or fungal colonies and biofilms, are spatially structured, with subdomains of cells experiencing differing environmental conditions. In the development of such communities, cell specialization is not only important to respond and adapt to the local environment but has the potential to increase the fitness of the clonal community through division of labor. Here, we examine colony development in a yeast strain (F13) that produces colonies with a highly structured "ruffled" phenotype in the colony periphery and an unstructured "smooth" phenotype in the colony center. We demonstrate that in the F13 genetic background deletions of transcription factors can either increase (dig1D, sfl1D) or decrease (tec1D) the degree of colony structure. To investigate the development of colony structure, we carried out gene expression analysis on F13 and the three deletion strains using RNA-seq. Samples were taken early in colony growth (day2), which precedes ruffled phenotype development in F13, and from the peripheral and central regions of colonies later in development (day5), at which time these regions are structured and unstructured (respectively) in F13. We identify genes responding additively and non-additively to the genotype and spatiotemporal factors and cluster these genes into a number of different expression patterns. We identify clusters whose expression correlates closely with the degree of colony structure in each sample and include genes with known roles in the development of colony structure. Individual deletion of 26 genes sampled from different clusters identified 5 with strong effects on colony morphology (BUD8, CIS3, FLO11, MSB2 and SFG1), all of which eliminated or greatly reduced the structure of the F13 outer region.
Collapse
Affiliation(s)
- Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Zhihao Tan
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Michelle Hays
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Stanford School of Medicine, Stanford, California, United States of America
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Kuhn A, Krüger T, Schüttler M, Engstler M, Fischer SC. Quantification of Trypanosoma brucei social motility indicates different colony growth phases. J R Soc Interface 2024; 21:20240469. [PMID: 39691086 PMCID: PMC11653114 DOI: 10.1098/rsif.2024.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
In vitro colonies of the flagellated parasite Trypanosoma brucei exhibit characteristic fingering instability patterns. To enable data-driven and data-validated mechanistic modelling of these complex growth processes, it is crucial to first establish appropriate quantitative metrics beyond qualitative image comparisons. We present a quantification approach based on two scale-free metrics designed to characterize the shape of two-dimensional colonies. Originally developed for yeast colonies, we adapted, modified and extended this analysis pipeline for the Trypanosoma system. By combining these quantitative measurements with colony growth simulations based on the Eden model, we identified two distinct growth phases in social motility-exhibiting colonies: an initial phase of mainly circular expansion, followed by a transition to an almost exclusive finger-growing phase. These phases remain robust with increasing cell numbers and upon partial inhibition of finger formation. A newly developed anisotropy index reveals that partial inhibition leads to increased colony anisotropy over time. Our results provide objective measurements that advance the understanding of social motility and serve as a foundation for future mechanistic modelling efforts. Furthermore, our approach offers a blueprint for investigations of other colony-forming microorganisms, such as yeast or bacteria, emphasizing the broader applicability of developing appropriate metrics for complex biological phenomena.
Collapse
Affiliation(s)
- Andreas Kuhn
- Center for Computational and Theoretical Biology, Julius-Maximilians-Universität Würzburg, Biocenter, Klara-Oppenheimer-Weg 32, Würzburg97074, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Julius-Maximilians-Universität Würzburg, Biocenter, Am Hubland, Würzburg97074, Germany
| | - Magdalena Schüttler
- Center for Computational and Theoretical Biology, Julius-Maximilians-Universität Würzburg, Biocenter, Klara-Oppenheimer-Weg 32, Würzburg97074, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Julius-Maximilians-Universität Würzburg, Biocenter, Am Hubland, Würzburg97074, Germany
| | - Sabine C. Fischer
- Center for Computational and Theoretical Biology, Julius-Maximilians-Universität Würzburg, Biocenter, Klara-Oppenheimer-Weg 32, Würzburg97074, Germany
| |
Collapse
|
6
|
Wang B, Tan H, Sun X, Lin Z, Chen X, Han H, Wang M, Wang Z, Chen X, Deng Y, Song S. Inhibition of Candida albicans virulence by moscatin from Dendrobium nobile lindl. Microb Pathog 2024; 197:107089. [PMID: 39477034 DOI: 10.1016/j.micpath.2024.107089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Candida albicans infection poses a significant global health threat. It is imperative to exploit new antifungal agents against C. albicans infections without leading to drug resistance, so that these potential agents can complement or combine with current medications to effectively treat diseases caused by C. albicans. We screened moscatin, and assessed the inhibitory effectiveness against C. albicans SC5314 on hyphae production and biofilm formation. It was revealed that moscatin exhibited significant effects on morphological transition and biofilm formation in C. albicans SC5314. It also lowered the pathogenicity of C. albicans SC5314 in a concentration-dependent way in both A549 cells and mice fungal infection models, but had no cytotoxicity to A549 cells. In addition, moscatin attenuated the virulence of clinical fluconazole-resistant C. albicans and exhibited synergistic activity with fluconazole. It could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. These findings indicate that these moscatin has great potential to be developed as a new therapeutic drug against C. albicans infection.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiuyun Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Hongguang Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; Hunan Children's Hospital, Changsha 410007, China
| | - Xiangxiu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Bandara A, Li E, Charlebois DA. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations. BIOPHYSICAL REPORTS 2024; 4:100165. [PMID: 38897412 PMCID: PMC11276921 DOI: 10.1016/j.bpr.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Magnetic fields have been shown to affect sensing, migration, and navigation in living organisms. However, the effects of magnetic fields on microorganisms largely remain to be elucidated. We develop an open-source, 3D-printed magnetic field exposure device to perform experiments on well-mixed and spatially structured microbial populations. This device is designed in AutoCAD, modeled in COMSOL, and validated using a Gaussmeter and experiments on the budding yeast Saccharomyces cerevisiae. We find that static magnetic field exposure slows the spatially structured expansion of yeast mats that expand in two dimensions, but not yeast mats that expand in three dimensions, across the surface of semi-solid yeast extract-peptone-dextrose agar media. We also find that magnetic fields do not affect the growth of planktonic yeast cells in well-mixed liquid yeast extract-peptone-dextrose media. This study provides an adaptable device for performing controlled magnetic field experiments on microbes and advances our understanding of the effects of magnetic fields on fungi.
Collapse
Affiliation(s)
- Akila Bandara
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Enoki Li
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Sobieh SS, Elshazly RG, Tawab SA, Zaki SS. Estimating the expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:49. [DOI: 10.1186/s43088-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.
Results
Four Candida albicans and two Saccharomyces cerevisiae strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only C. albicans (1), C. albicans (2) and S. cerevisiae 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. Candida albicans biofilm production was more significant than that of S. cerevisiae 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of S. cerevisiae 44 was higher than that of C. albicans. The expression levels of EFG1 and ZAP1 (transcription factors); ALS3, HWP1and YWP1 (adhesion genes); SAP1 and SAP4 (aspartic proteinase) in C. albicans (1); and FLO11 (adhesion gene) and YPS3 (aspartic proteinase) in S. cerevisiae 43 were quantified during biofilm development at different time intervals. The expression levels of EFG1, ALS3, YWP1, SAP1, SAP4, FLO11 and YPS3 were upregulated at 8 h, while that of ZAP1 was upregulated at 48 h. Only HWP1 was downregulated.
Conclusions
The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal S. cerevisiae, which may take the pathogenicity direction as C. albicans.
Collapse
|
10
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
11
|
Radojević I, Jakovljević V, Grujić S, Ostojić A, Ćirković K. Biofilm formation by selected microbial strains isolated from wastewater and their consortia: mercury resistance and removal potential. Res Microbiol 2024; 175:104092. [PMID: 37331492 DOI: 10.1016/j.resmic.2023.104092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Wastewater often contains an increased amount of mercury and, at the same time, resistant microorganisms. During wastewater treatment, a biofilm of indigenous microorganisms is often unavoidable. Therefore, the objective of this research is to isolate and identify microorganisms from wastewater and investigate their ability to form biofilms for possible application in mercury removal processes. The resistance of planktonic cells and their biofilms to the effects of mercury was investigated using Minimum Biofilm Eradication Concentration-High Throughput Plates. The formation of biofilms and the degree of resistance to mercury were confirmed in polystyrene microtiter plates with 96 wells. Biofilm on AMB Media carriers (Assisting Moving Bad Media) was quantified using the Bradford protein assay. The removal of mercury ions by biofilms formed on AMB Media carriers of selected isolates and their consortia was determined by a removal test in Erlenmeyer flasks simulating MBBR. All isolates in planktonic form showed some degree of resistance to mercury. The most resistant microorganisms (Enterobacter cloacae, Klebsiella oxytoca, Serratia odorifera, and Saccharomyces cerevisiae) were tested for their ability to form biofilms in the presence and absence of mercury, both in polystyrene plates and on ABM carriers. The results showed that among planktonic forms, K. oxytoca was the most resistant. A biofilm of the same microorganisms was more than 10-fold resistant. Most consortia biofilms had MBEC values > 100,000 μg/mL. Among individual biofilms, E. cloacae showed the highest mercury removal efficiency (97.81% for 10 days). Biofilm consortia composed of three species showed the best ability to remove mercury (96.64%-99.03% for 10 days). This study points to the importance of consortia of different types of wastewater microorganisms in the form of biofilms and suggests that they can be used to remove mercury in wastewater treatment bioreactors.
Collapse
Affiliation(s)
- Ivana Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Violeta Jakovljević
- State University of Novi Pazar, Department of Natural-Mathematical Sciences, Vuka Karadžića 9, 36300 Novi Pazar, Republic of Serbia.
| | - Sandra Grujić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Aleksandar Ostojić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Katarina Ćirković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| |
Collapse
|
12
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
13
|
Palud A, Roullier-Gall C, Alexandre H, Weidmann S. Mixed biofilm formation by Oenococcus oeni and Saccharomyces cerevisiae: A new strategy for the wine fermentation process. Food Microbiol 2024; 117:104386. [PMID: 37919010 DOI: 10.1016/j.fm.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Bacterial biofilms have attracted much attention in the food industry since this phenotype increases microbial resistance to environmental stresses. In wine-making, the biofilm produced by Oenococcus oeni is able to persist in this harsh environment and perform malolactic fermentations. Certain viticultural practices are interested in the simultaneous triggering of alcoholic fermentation by yeasts of the species Saccharomyces cerevisiae and malolactic fermentation by lactic acid bacteria. As yet, no data is available on the ability of these micro-organisms to produce mixed biofilms and promote fermentations. Here, the ability of S. cerevisiae and O. oeni to form mixed biofilms on different surfaces found in vinification was observed and analyzed using scanning electron microscopy experiments. Then, following co-inoculation with biofilm or planktonic cells microvinifications were carried out to demonstrate that the mixed biofilms developed on oak allow the efficient completion of fermentations because of their high resistance to stress. Finally, comparisons of the different metabolic profiles obtained by LC-MS were made to assess the impact of the mode of life of biofilms on wine composition.
Collapse
Affiliation(s)
- Aurore Palud
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Chloé Roullier-Gall
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Hervé Alexandre
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
14
|
Hall R, Bandara A, Charlebois DA. Fitness effects of a demography-dispersal trade-off in expanding Saccharomyces cerevisiaemats. Phys Biol 2024; 21:026001. [PMID: 38194907 DOI: 10.1088/1478-3975/ad1ccd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Fungi expand in space and time to form complex multicellular communities. The mechanisms by which they do so can vary dramatically and determine the life-history and dispersal traits of expanding populations. These traits influence deterministic and stochastic components of evolution, resulting in complex eco-evolutionary dynamics during colony expansion. We perform experiments on budding yeast strains genetically engineered to display rough-surface and smooth-surface phenotypes in colony-like structures called 'mats'. Previously, it was shown that the rough-surface strain has a competitive advantage over the smooth-surface strain when grown on semi-solid media. We experimentally observe the emergence and expansion of segments with a distinct smooth-surface phenotype during rough-surface mat development. We propose a trade-off between dispersal and local carrying capacity to explain the relative fitness of these two phenotypes. Using a modified stepping-stone model, we demonstrate that this trade-off gives the high-dispersing, rough-surface phenotype a competitive advantage from standing variation, but that it inhibits this phenotype's ability to invade a resident smooth-surface population via mutation. However, the trade-off improves the ability of the smooth-surface phenotype to invade in rough-surface mats, replicating the frequent emergence of smooth-surface segments in experiments. Together, these computational and experimental findings advance our understanding of the complex eco-evolutionary dynamics of fungal mat expansion.
Collapse
Affiliation(s)
- Rebekah Hall
- Department of Mathematical and Statistical Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Akila Bandara
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive NW, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Song S, Zhao S, Sun X, Meng L, Wang Z, Tan H, Liu J, Zhang M, Deng Y. Anti-virulence strategy of diaryl chalcogenide compounds against Candida albicans infection. Virulence 2023; 14:2265012. [PMID: 37771181 PMCID: PMC10549196 DOI: 10.1080/21505594.2023.2265012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Candida albicans is an important opportunistic pathogenic fungus that frequently causes serious systemic infection in humans. Due to the vital roles of biofilm formation and the yeast-to-hypha transition in the infection process, we have selected a series of diaryl chalcogenides and tested their efficacy against C. albicans SC5314 pathogenicity by the inhibition of biofilm formation and the yeast-to-hypha transition. The compounds 5-sulfenylindole and 5-selenylindole were found to have excellent abilities to inhibit both biofilm formation and hyphal formation in C. albicans SC5314. Intriguingly, the two leading compounds also markedly attenuated C. albicans SC5314 virulence in human cell lines and mouse infection models at micromolar levels. Furthermore, our results showed that the presence of the compounds at 100 µM resulted in a marked decrease in the expression of genes involved in the cAMP-PKA and MAPK pathways in C. albicans SC5314. Intriguingly, the compounds 5-sulfenylindole and 5-selenylindole not only attenuated the cytotoxicity of Candida species strains but also showed excellent synergistic effects with antifungal agents against the clinical drug-resistant C. albicans strain HCH12. The compound 5-sulfenylindole showed an obvious advantage over fluconazole as it could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. Together, these results suggest that diaryl chalcogenides can potentially be designed as novel clinical therapeutic agents against C. albicans infection. The diaryl chalcogenides of 5-sulfenylindole and 5-selenylindole discovered in this study can provide new direction for developing antifungal agents against C. albicans infection.
Collapse
Affiliation(s)
- Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuo Zhao
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiuyun Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lili Meng
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zijie Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Hunan Children’s Hospital, Changsha, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jingyun Liu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yinyue Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
16
|
Ekdahl LI, Salcedo JA, Dungan MM, Mason DV, Myagmarsuren D, Murphy HA. Selection on plastic adherence leads to hyper-multicellular strains and incidental virulence in the budding yeast. eLife 2023; 12:e81056. [PMID: 37916911 PMCID: PMC10764007 DOI: 10.7554/elife.81056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/01/2023] [Indexed: 11/03/2023] Open
Abstract
Many disease-causing microbes are not obligate pathogens; rather, they are environmental microbes taking advantage of an ecological opportunity. The existence of microbes whose life cycle does not require a host and are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary puzzle. One hypothesis posits that selection in the environment may favor traits that incidentally lead to pathogenicity and virulence, or serve as pre-adaptations for survival in a host. An example of such a trait is surface adherence. To experimentally test the idea of 'accidental virulence', replicate populations of Saccharomyces cerevisiae were evolved to attach to a plastic bead for hundreds of generations. Along with plastic adherence, two multicellular phenotypes- biofilm formation and flor formation- increased; another phenotype, pseudohyphal growth, responded to the nutrient limitation. Thus, experimental selection led to the evolution of highly-adherent, hyper-multicellular strains. Wax moth larvae injected with evolved hyper-multicellular strains were significantly more likely to die than those injected with evolved non-multicellular strains. Hence, selection on plastic adherence incidentally led to the evolution of enhanced multicellularity and increased virulence. Our results support the idea that selection for a trait beneficial in the open environment can inadvertently generate opportunistic, 'accidental' pathogens.
Collapse
Affiliation(s)
- Luke I Ekdahl
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Juliana A Salcedo
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Matthew M Dungan
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Despina V Mason
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | | | - Helen A Murphy
- Department of Biology, College of William and MaryWilliamsburgUnited States
| |
Collapse
|
17
|
Mohammadi K, Saris PEJ. Antibiofilm Effect of Curcumin on Saccharomyces boulardii during Beer Fermentation and Bottle Aging. Biomolecules 2023; 13:1367. [PMID: 37759767 PMCID: PMC10526157 DOI: 10.3390/biom13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In a prior study, we elucidated the biofilm formation of Saccharomyces boulardii on glass surfaces during beer bottle aging. Here, we supplemented brewing wort with curcumin at 25 μg/mL concentration to mitigate S. boulardii biofilm and enhance beer's functional and sensory attributes. An assessment encompassing biofilm growth and development, fermentation performance, FLO gene expression, yeast ultrastructure, bioactive content, and consumer acceptance of the beer was conducted throughout fermentation and aging. Crystal violet (CV) and XTT reduction assays unveiled a significant (p < 0.05) reduction in biofilm formation and development. Fluorescent staining (FITC-conA) and imaging with confocal laser scanning microscopy provided visual evidence regarding reduced exopolysaccharide content and biofilm thickness. Transcriptional analyses showed that key adhesins (FLO1, FLO5, FLO9, and FLO10) were downregulated, whereas FLO11 expression remained relatively stable. Although there were initial variations in terms of yeast population and fermentation performance, by day 6, the number of S. boulardii in the test group had almost reached the level of the control group (8.3 log CFU/mL) and remained stable thereafter. The supplementation of brewing wort with curcumin led to a significant (p < 0.05) increase in the beer's total phenolic and flavonoid content. In conclusion, curcumin shows promising potential for use as an additive in beer, offering potential antibiofilm and health benefits without compromising the beer's overall characteristics.
Collapse
Affiliation(s)
- Khosrow Mohammadi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland;
| | | |
Collapse
|
18
|
Serafino G, Di Gianvito P, Giacosa S, Škrab D, Cocolin L, Englezos V, Rantsiou K. Survey of the yeast ecology of dehydrated grapes and strain selection for wine fermentation. Food Res Int 2023; 170:113005. [PMID: 37316074 DOI: 10.1016/j.foodres.2023.113005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
In this study we investigated the yeast population present on partially dehydrated Nebbiolo grapes destined for 'Sforzato di Valtellina', with the aim to select indigenous starters suitable for the production of this wine. Yeasts were enumerated, isolated, and identified by molecular methods (5.8S-ITS-RFLP and D1/D2 domain sequencing). A genetic, physiological (ethanol and sulphur dioxide tolerance, potentially useful enzymatic activities, hydrogen sulphide production, adhesive properties, and killer activity) and oenological (laboratory pure micro-fermentations) characterization was also carried out. Based on relevant physiological features, seven non-Saccharomyces strains were chosen for laboratory-scale fermentations, either in pure or in mixed-culture (simultaneous and sequential inoculum) with a commercial Saccharomyces cerevisiae strain. Finally, the best couples and inoculation strategy were further tested in mixed fermentations in winery. In both laboratory and winery, microbiological and chemical analyses were conducted during fermentation. The most abundant species on grapes were Hanseniaspora uvarum (27.4 % of the isolates), followed by Metschnikowia spp. (21.0 %) and Starmerella bacillaris (12.9 %). Technological characterization highlighted several inter- and intra-species differences. The best oenological aptitude was highlighted for species Starm. bacillaris, Metschnikowia spp., Pichia kluyveri and Zygosaccharomyces bailli. The best fermentation performances in laboratory-scale fermentations were found for Starm. bacillaris and P. kluyveri, due to their ability to reduce ethanol (-0.34 % v/v) and enhance glycerol production (+0.46 g/L). This behavior was further confirmed in winery. Results of this study contribute to the knowledge of yeast communities associated with a specific environment, like those of Valtellina wine region.
Collapse
Affiliation(s)
- Gabriele Serafino
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Domen Škrab
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
19
|
Barili S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters. ENVIRONMENTAL RESEARCH 2023; 229:115891. [PMID: 37059323 DOI: 10.1016/j.envres.2023.115891] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.
Collapse
Affiliation(s)
- Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Alessandro Bernetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy.
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| |
Collapse
|
20
|
Pang C, Chen J, Yang L, Yang Y, Qi H, Li R, Cao Y, Miao H. Shikonin Inhibits Candida albicans Biofilms via the Ras1-cAMP-Efg1 Signalling Pathway. Int J Gen Med 2023; 16:2653-2662. [PMID: 37384115 PMCID: PMC10296564 DOI: 10.2147/ijgm.s417327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Objective To investigate the influence of shikonin (SK) on the formation of Candida albicans biofilms and discuss the possible mechanism. Methods The inhibition of the formation of C. albicans biofilms by SK was observed by scanning electron microscopy. A silicone film method and a water-hydrocarbon two-phase assay were performed to investigate the effects of SK on cell adhesion. Real-time reverse-transcription polymerase chain reaction was used to analyse the expression of genes related to cell adhesion and Ras1-cyclic adenosine monophosphate (cAMP) - enhanced filamentous growth protein 1 (Efg1) signalling pathway. Finally, the level of cAMP in C. albicans was detected and exogenous cAMP rescue experiment was conducted. Results The results showed that SK could destroy the typical three-dimensional structure of the biofilms, inhibit cell surface hydrophobicity and cell adhesion, downregulate the expression of Ras1-cAMP-Efg1 signalling pathway-related genes (ECE1, HWP1, ALS3, RAS1, CYR1, EFG1 and TEC1) and effectively reduce the production of key messenger cAMP in the Ras1-cAMP-Efg1 pathway. Meanwhile, exogenous cAMP reversed the inhibitory effect of SK on biofilms formation. Conclusion Our results suggest that SK exhibits potential anti-C. albicans biofilms effects related to the inhibition of Ras1-cAMP-Efg1 pathway.
Collapse
Affiliation(s)
- Chong Pang
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei, People’s Republic of China
| | - Jianshuang Chen
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei, People’s Republic of China
| | - Lan Yang
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Yang Yang
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Haihua Qi
- Department of Dermatology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Ran Li
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Yingying Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hao Miao
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| |
Collapse
|
21
|
Tian J, Lin Y, Su X, Tan H, Gan C, Ragauskas AJ. Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process. Microbiol Res 2023; 271:127367. [PMID: 36989758 DOI: 10.1016/j.micres.2023.127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
In this study, the concentrations of Saccharomyces cerevisiae quorum sensing signal molecules (QSMs) were determined, not to mention the exploration of the effects of exogenous S. cerevisiae QSMs on the sole fermentation of S. cerevisiae and co-fermentation of S. cerevisiae and Lactobacillus plantarum. The results showed that the concentrations of three signal molecules (2-phenylethanol (2-PE), tyrosol and tryptophan) produced by S. cerevisiae increased with a higher bacteria density, which tends to become stable up to 118.02, 32.05 and 1.93 mg/L respectively when cultivating for 144 h. Among the three signaling molecules, only 2-PE promoted the ethanol production capacity of S. cerevisiae. The ethanol concentration of the sole fermentation of S. cerevisiae loaded with 120 mg/L 2-PE reached 3.2 g/L in 9 h, which was 58.7% higher than that of the group without 2-PE addition. Moreover, 2-PE reduced the negative impact of L. plantarum on S. cerevisiae. Within 12 h of the co-fermentation of L. plantarum and S. cerevisiae, the ethanol concentration in the co-fermentation group loaded with 2-PE reached 5.6 g/L, similar to that in the group fermenting with sole S. cerevisiae, and the yeast budding rate was also restored to 28.51%. qRT-PCR results of S. cerevisiae which was in sole fermentation with 2-PE addition for 9 h showed that the relative expression levels of ethanol dehydrogenase gene ADH1 in S. cerevisiae decreased by 25% and the relative expression levels of MLS1, CIT2, IDH1,CIT1 decreased by 26%, 30%, 22%,18%, respectively, meant that the glyoxylic and tricarboxylic acid cycles were greatly inhibited, which promotes the accumulation of ethanol. The results of this study provide basic data for using QSMs more than antibiotics in the the prevention of contamination during the industrialized bioethanol production.
Collapse
Affiliation(s)
- Jun Tian
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yunqin Lin
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Xiaoying Su
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Honghao Tan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Chaoyi Gan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
22
|
Le Montagner P, Guilbaud M, Miot-Sertier C, Brocard L, Albertin W, Ballestra P, Dols-Lafargue M, Renouf V, Moine V, Bellon-Fontaine MN, Masneuf-Pomarède I. High intraspecific variation of the cell surface physico-chemical and bioadhesion properties in Brettanomyces bruxellensis. Food Microbiol 2023; 112:104217. [PMID: 36906300 DOI: 10.1016/j.fm.2023.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.
Collapse
Affiliation(s)
- Paul Le Montagner
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Laboratoire EXCELL, Floirac, France; Biolaffort, Floirac, France.
| | - Morgan Guilbaud
- Univ. Paris-Saclay, SayFood, AgroParisTech, INRAE UMR 782, 91300, Massy, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420, CNRS, 33000, Bordeaux, France
| | - Warren Albertin
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Patricia Ballestra
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | | | | | | | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Bordeaux Sciences Agro, 33175, Gradignan, France
| |
Collapse
|
23
|
Andreu C, Del Olmo ML. Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12589-y. [PMID: 37233754 DOI: 10.1007/s00253-023-12589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Many microorganisms are capable of developing biofilms under adverse conditions usually related to nutrient limitation. They are complex structures in which cells (in many cases of different species) are embedded in the material that they secrete, the extracellular matrix (ECM), which is composed of proteins, carbohydrates, lipids, and nucleic acids. The ECM has several functions including adhesion, cellular communication, nutrient distribution, and increased community resistance, this being the main drawback when these microorganisms are pathogenic. However, these structures have also proven useful in many biotechnological applications. Until now, the most interest shown in these regards has focused on bacterial biofilms, and the literature describing yeast biofilms is scarce, except for pathological strains. Oceans and other saline reservoirs are full of microorganisms adapted to extreme conditions, and the discovery and knowledge of their properties can be very interesting to explore new uses. Halotolerant and osmotolerant biofilm-forming yeasts have been employed for many years in the food and wine industry, with very few applications in other areas. The experience gained in bioremediation, food production and biocatalysis with bacterial biofilms can be inspiring to find new uses for halotolerant yeast biofilms. In this review, we focus on the biofilms formed by halotolerant and osmotolerant yeasts such as those belonging to Candida, Saccharomyces flor yeasts, Schwannyomyces or Debaryomyces, and their actual or potential biotechnological applications. KEY POINTS: • Biofilm formation by halotolerant and osmotolerant yeasts is reviewed. • Yeasts biofilms have been widely used in food and wine production. • The use of bacterial biofilms in bioremediation can be expanded to halotolerant yeast counterparts.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés S/N, 46100, València, Burjassot, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, 46100, València, Burjassot, Spain.
| |
Collapse
|
24
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
25
|
Selection of Autochthonous Yeasts Isolated from the Intestinal Tracts of Cobia Fish ( Rachycentron canadum) with Probiotic Potential. J Fungi (Basel) 2023; 9:jof9020274. [PMID: 36836388 PMCID: PMC9966584 DOI: 10.3390/jof9020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Some yeast strains have been proposed as probiotics to improve the health of cultured fish. Cobia is a tropical benthopelagic fish species with potential for marine aquaculture; however, one of the main limitations to its large-scale production is the high mortality of fish larvae. In this study, we evaluated the probiotic potential of autochthonous yeasts from the intestines of cobia. Thirty-nine yeast isolates were recovered from the intestinal mucosa of 37 adult healthy cobia by culture methods. Yeasts were identified by sequencing of the ITS and D1/D2 regions of the 28S rRNA gene and typed by RAPD-PCR using the M13 primer. Yeast strains with unique RAPD patterns were characterized in terms of their cell biomass production ability; anti-Vibrio, enzymatic, and hemolytic activity; biofilm production; hydrophobicity; autoaggregation; polyamine production; safety; and protection of cobia larvae against saline stress. Candida haemuloni C27 and Debaryomyces hansenii C10 and C28 were selected as potential probiotics. They did not affect the survival of larvae and showed biomass production >1 g L-1, hydrophobicity >41.47%, hemolytic activity γ, and activity in more than 8 hydrolytic enzymes. The results suggest that the selected yeast strains could be considered as potential probiotic candidates and should be evaluated in cobia larvae.
Collapse
|
26
|
Biofilm Formation of Probiotic Saccharomyces cerevisiae var. boulardii on Glass Surface during Beer Bottle Ageing. BEVERAGES 2022. [DOI: 10.3390/beverages8040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
While brewing probiotic beer using Saccharomyces cerevisiae var. boulardii, we noticed the yeast potentially makes biofilm in glass bottles as the bottles get hazy. In this study, S. cerevisiae var. boulardii CNCM I-745 was used as a starter culture to produce probiotic beer. We studied the biofilm parameters combined with FLO11 mRNA expression and used light and scanning electron microscopy to document biofilm formation and structure. Our results revealed that ageing the beer and maturing from a sugar-rich to a sugar-limited beer, along with the stress factors from the brewing process (pH reduction and produced metabolites), led to an increase in biofilm mass; however, the viable count remained relatively stable (approximately 7.1 log10 cells/mL). Biofilm S. boulardii cells showed significantly higher FLO11 mRNA expression in the exponential and stationary phase compared to the planktonic cells. This study, therefore, provides evidence that S. cerevisiae var. boulardii makes biofilm on glass surfaces during beer bottle ageing. The impact of complications caused by formed biofilms on returnable bottles emphasizes the significance of this study.
Collapse
|
27
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
28
|
Perpetuini G, Tittarelli F, Perla C, Tofalo R. Influence of Different Aggregation States on Volatile Organic Compounds Released by Dairy Kluyveromyces marxianus Strains. Foods 2022; 11:foods11182910. [PMID: 36141037 PMCID: PMC9498923 DOI: 10.3390/foods11182910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Kluyveromyces marxianus has the ability to contribute to the aroma profile of foods and beverages since it is able to produce several volatile organic compounds (VOCs). In this study, 8 dairy K. marxianus strains, previously selected for their adhesion properties, were tested for VOCs production when grown in different conditions: planktonic, biofilm-detached, and MATS forming-cells. It was shown that biofilm-detached cells were mainly able to produce higher alcohols (64.57 mg/L), while esters were mainly produced by planktonic and MATS forming-cells (117.86 and 94.90 mg/L, respectively). Moreover, K. marxianus biofilm-detached cells were able to produce VOCs with flavor and odor impacts, such as ketons, phenols, and terpenes, which were not produced by planktonic cells. In addition, specific unique compounds were associated to the different conditions tested. Biofilm-detached cells were characterized by the production of 9 unique compounds, while planktonic and MATS forming-cells by 7 and 12, respectively. The obtained results should be exploited to modulate the volatilome of foods and beverages and improve the production of certain compounds at the industrial level. Further studies will be carried out to better understand the genetic mechanisms underlying the metabolic pathways activated under different conditions.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Fabrizia Tittarelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Carlo Perla
- Dalton Biotecnologie s.r.l., 65010 Spoltore, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861266943
| |
Collapse
|
29
|
Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manufacturing of sherry wines is a unique, carefully regulated process, from harvesting to quality control of the finished product, involving dynamic biological aging in a “criadera-solera” system or some other techniques. Specialized “flor” strains of the yeast Saccharomyces cerevisiae play the central role in the sherry manufacturing process. As a result, sherry wines have a characteristic and unique chemical composition that determines their organoleptic properties (such as color, odor, and taste) and distinguishes them from all other types of wine. The use of modern methods of genetics and biotechnology contributes to a deep understanding of the microbiology of sherry production and allows us to define a new methodology for breeding valuable flor strains. This review discusses the main sherry-producing regions and the chemical composition of sherry wines, as well as genetic, oenological, and other selective markers for flor strains that can be used for screening novel candidates that are promising for sherry production among environmental isolates.
Collapse
|
30
|
Nishimura A, Nakagami K, Kan K, Morita F, Takagi H. Arginine inhibits Saccharomyces cerevisiae biofilm formation by inducing endocytosis of the arginine transporter Can1. Biosci Biotechnol Biochem 2022; 86:1300-1307. [PMID: 35749478 DOI: 10.1093/bbb/zbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022]
Abstract
Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Biofilm formation by yeast is a critical issue in clinical and industrial fields because of the strong adhesion of yeast biofilm to abiotic surfaces and tissues. Here, we clarified the arginine-mediated inhibition of biofilm formation by yeast. First, we showed that arginine inhibits biofilm formation in fungi such as Saccharomyces cerevisiae, Candida glabrata, and Cladosporium cladosporioides, but not in bacteria. In regard to the underlying mechanism, biochemical analysis indicated that arginine inhibits biofilm formation by suppressing Flo11-dependent flocculation. Intriguingly, a strain with deletion of the arginine transporter-encoding CAN1 was insensitive to arginine-mediated inhibition of biofilm formation. Finally, Can1 endocytosis appeared to be required for the inhibitory mechanism of biofilm formation by arginine. The present results could help to elucidate the molecular mechanism of yeast biofilm formation and its control.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kazuki Nakagami
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kyoyuki Kan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Fumika Morita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| |
Collapse
|
31
|
Cell Cycle Progression Influences Biofilm Formation in Saccharomyces cerevisiae 1308. Microbiol Spectr 2022; 10:e0276521. [PMID: 35670600 PMCID: PMC9241733 DOI: 10.1128/spectrum.02765-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm-immobilized continuous fermentation is a novel fermentation strategy that has been utilized in ethanol fermentation. Continuous fermentation contributes to the self-proliferation of Saccharomyces cerevisiae biofilms. Previously, we successfully described the cell cycle differences between biofilm-immobilized fermentation and calcium alginate-immobilized fermentation. In the present study, we investigated the relationship between biofilm formation and the cell cycle. We knocked down CLN3, SIC1, and ACE2 and found that Δcln3 and Δsic1 exhibited a predominance of G2/M phase cells, increased biofilm formation, and significantly increased extracellular polysaccharide formation and expression of genes in the FLO gene family during immobilisation fermentation. Δace2 exhibited a contrasting performance. These findings suggest that the increase in the proportion of cells in the G2/M phase of the cell cycle facilitates biofilm formation and that the cell cycle influences biofilm formation by regulating cell adhesion and polysaccharide formation. This opens new avenues for basic research and may also help to provide new ideas for biofilm prevention and optimization. IMPORTANCE Immobilised fermentation can be achieved using biofilm resistance, resulting in improved fermentation efficiency and yield. The link between the cell cycle and biofilms deserves further study since reports are lacking in this area. This study showed that the ability of Saccharomyces cerevisiae to produce biofilm differed when cell cycle progression was altered. Further studies suggested that cell cycle regulatory genes influenced biofilm formation by regulating cell adhesion and polysaccharide formation. Findings related to cell cycle regulation of biofilm formation set the stage for biofilm in Saccharomyces cerevisiae and provide a theoretical basis for the development of a new method to improve biofilm-based industrial fermentation.
Collapse
|
32
|
Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nat Ecol Evol 2022; 6:763-773. [PMID: 35484218 DOI: 10.1038/s41559-022-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.
Collapse
|
33
|
Miranda ACV, Leães GF, Copetti MV. FUNGAL BIOFILMS: INSIGHTS FOR THE FOOD INDUSTRY. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Commun Biol 2022; 5:292. [PMID: 35361876 PMCID: PMC8971432 DOI: 10.1038/s42003-022-03228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Microbial drug resistance is an emerging global challenge. Current drug resistance assays tend to be simplistic, ignoring complexities of resistance manifestations and mechanisms, such as multicellularity. Here, we characterize multicellular and molecular sources of drug resistance upon deleting the AMN1 gene responsible for clumping multicellularity in a budding yeast strain, causing it to become unicellular. Computational analysis of growth curve changes upon drug treatment indicates that the unicellular strain is more sensitive to four common antifungals. Quantitative models uncover entwined multicellular and molecular processes underlying these differences in sensitivity and suggest AMN1 as an antifungal target in clumping pathogenic yeasts. Similar experimental and mathematical modeling pipelines could reveal multicellular and molecular drug resistance mechanisms, leading to more effective treatments against various microbial infections and possibly even cancers. Combined growth curve experiments and quantitative modeling reveal antifungal responses of planktonic yeast, providing a future framework to examine antimicrobial drug resistance.
Collapse
|
35
|
Forehand AL, Myagmarsuren D, Chen Z, Murphy HA. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1277. [PMID: 35478280 PMCID: PMC9059236 DOI: 10.1002/mbo3.1277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae produces a multicellular phenotype, known as a mat, on a semi-solid medium. This biofilm phenotype was first described in the lab strain Σ1278b and has been analyzed mostly in this same background. Yeast cells form a mat by spreading across the medium and adhering to each other and the surface, in part through the variegated expression of the cell adhesion, FLO11. This process creates a characteristic floral pattern and generates pH and glucose gradients outward from the center of the mat. Mats are encapsulated in a liquid which may aid in surface spreading and diffusion. Here, we examine thirteen environmental isolates that vary visually in the phenotype. We predicted that mat properties were universal and increased morphological complexity would be associated with more extreme trait values. Our results showed that pH varied significantly among strains, but was not correlated to mat complexity. Only two isolates generated significant liquid boundaries and neither produced visually complex mats. In five isolates, we tracked the initiation of FLO11 using green fluorescent protein (GFP) under the control of the endogenous promoter. Strains varied in when and how much GFP was detected, with increased signal associated with increased morphological complexity. Generally, the signal was strongest in the center of the mat and absent at the expanding edge. Our results show that traits discovered in one background vary and exist independently of mat complexity in natural isolates. The environment may favor different sets of traits, which could have implications for how this yeast adapts to its many ecological niches.
Collapse
Affiliation(s)
- Amy L. Forehand
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Amy L. Forehand, Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Ziyan Chen
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Ziyan Chen, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | |
Collapse
|
36
|
Function of the phosphatidylinositol synthase Pis1 in maintenance of endoplasmic reticulum function and pathogenicity in Candida albicans. Fungal Genet Biol 2022; 160:103674. [DOI: 10.1016/j.fgb.2022.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
|
37
|
Cells under pressure: how yeast cells respond to mechanical forces. Trends Microbiol 2022; 30:495-510. [PMID: 35000797 DOI: 10.1016/j.tim.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
In their natural habitats, unicellular fungal microbes are exposed to a myriad of mechanical cues such as shear forces from fluid flow, osmotic changes, and contact forces arising from microbial expansion in confined niches. While the rigidity of the cell wall is critical to withstand such external forces and balance high internal turgor pressure, it poses mechanical challenges during physiological processes such as cell growth, division, and mating that require cell wall remodeling. Thus, even organisms as simple as yeast have evolved complex signaling networks to sense and respond to intrinsic and extrinsic mechanical forces. In this review, we summarize the type and origin of mechanical forces experienced by unicellular yeast and discuss how these forces reorganize cell polarity and how pathogenic fungi exploit polarized assemblies to track weak spots in host tissues for successful penetration. We then describe mechanisms of force-sensing by conserved sets of mechanosensors. Finally, we elaborate downstream mechanotransduction mechanisms that orchestrate appropriate cellular responses, leading to improved mechanical fitness.
Collapse
|
38
|
Tam AKY, Harding B, Green JEF, Balasuriya S, Binder BJ. Thin-film lubrication model for biofilm expansion under strong adhesion. Phys Rev E 2022; 105:014408. [PMID: 35193209 DOI: 10.1103/physreve.105.014408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Understanding microbial biofilm growth is important to public health because biofilms are a leading cause of persistent clinical infections. In this paper, we develop a thin-film model for microbial biofilm growth on a solid substratum to which it adheres strongly. We model biofilms as two-phase viscous fluid mixtures of living cells and extracellular fluid. The model explicitly tracks the movement, depletion, and uptake of nutrients and incorporates cell proliferation via a nutrient-dependent source term. Notably, our thin-film reduction is two dimensional and includes the vertical dependence of cell volume fraction. Numerical solutions show that this vertical dependence is weak for biologically feasible parameters, reinforcing results from previous models in which this dependence was neglected. We exploit this weak dependence by writing and solving a simplified one-dimensional model that is computationally more efficient than the full model. We use both the one- and two-dimensional models to predict how model parameters affect expansion speed and biofilm thickness. This analysis reveals that expansion speed depends on cell proliferation, nutrient availability, cell-cell adhesion on the upper surface, and slip on the biofilm-substratum interface. Our numerical solutions provide a means to qualitatively distinguish between the extensional flow and lubrication regimes, and quantitative predictions that can be tested in future experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Queensland 4000, Australia
- School of Mathematics and Physics, The University of Queensland, St. Lucia Queensland 4072, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Brendan Harding
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - J Edward F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Sanjeeva Balasuriya
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Benjamin J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
39
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
40
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
41
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
42
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
43
|
Palková Z, Váchová L. Spatially structured yeast communities: Understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J 2021; 19:5613-5621. [PMID: 34712401 PMCID: PMC8529026 DOI: 10.1016/j.csbj.2021.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
| |
Collapse
|
44
|
Varahan S, Laxman S. Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics 2021; 219:iyab109. [PMID: 34849891 PMCID: PMC8633146 DOI: 10.1093/genetics/iyab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
In fluctuating nutrient environments, isogenic microbial cells transition into "multicellular" communities composed of phenotypically heterogeneous cells, showing functional specialization. In fungi (such as budding yeast), phenotypic heterogeneity is often described in the context of cells switching between different morphotypes (e.g., yeast to hyphae/pseudohyphae or white/opaque transitions in Candida albicans). However, more fundamental forms of metabolic heterogeneity are seen in clonal Saccharomyces cerevisiae communities growing in nutrient-limited conditions. Cells within such communities exhibit contrasting, specialized metabolic states, and are arranged in distinct, spatially organized groups. In this study, we explain how such an organization can stem from self-organizing biochemical reactions that depend on special metabolites. These metabolites exhibit plasticity in function, wherein the same metabolites are metabolized and utilized for distinct purposes by different cells. This in turn allows cell groups to function as specialized, interdependent cross-feeding systems which support distinct metabolic processes. Exemplifying a system where cells exhibit either gluconeogenic or glycolytic states, we highlight how available metabolites can drive favored biochemical pathways to produce new, limiting resources. These new resources can themselves be consumed or utilized distinctly by cells in different metabolic states. This thereby enables cell groups to sustain contrasting, even apparently impossible metabolic states with stable transcriptional and metabolic signatures for a given environment, and divide labor in order to increase community fitness or survival. We speculate on possible evolutionary implications of such metabolic specialization and division of labor in isogenic microbial communities.
Collapse
Affiliation(s)
- Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| |
Collapse
|
45
|
Sedenho GC, Modenez I, Mendes GR, Crespilho FN. The role of extracellular polymeric substance matrix on Saccharomyces cerevisiae bioelectricity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Castillo C, Masi MF, Mishko A, Sheltzer A, Speer A, Tran H, Vlahovic TC. Biofilms and the Nail Unit. Clin Podiatr Med Surg 2021; 38:529-533. [PMID: 34538430 DOI: 10.1016/j.cpm.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent studies have shown that a superficial fungal infection such as onychomycosis may form complex biofilms. Although most individuals susceptible to documented fungal biofilm infections are immunocompromised, physical damage to the nail or concurrent infection with other organisms is also a common risk factor in developing nail biofilm. The complex nature of the biofilm, which includes efflux pumps and the formation of a virulent extracellular matrix, helps it evade the immune system. Although there is no standardized treatment for fungal biofilms in onychomycosis, various studies using antimicrobials and lasers have shown some efficacy in treating human fingernails.
Collapse
Affiliation(s)
- Corinna Castillo
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Michael F Masi
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Austin Mishko
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Alex Sheltzer
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Alex Speer
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Heather Tran
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA
| | - Tracey C Vlahovic
- Temple University School of Podiatric Medicine, 148 North 8th Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
47
|
Stress Resistance and Adhesive Properties of Commercial Flor and Wine Strains, and Environmental Isolates of Saccharomyces cerevisiae. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flor strains of Saccharomyces cerevisiae represent a special group of yeasts used for producing biologically aged wines. We analyzed the collection of commercial wine and flor yeast strains, as well as environmental strains isolated from the surface of grapes growing in vineyards, for resistance to abiotic stresses, adhesive properties, and the ability to form a floating flor. The degree of resistance of commercial strains to ethanol, acetaldehyde, and hydrogen peroxide was generally not higher than that of environmental isolates, some of which had high resistance to the tested stress agents. The relatively low degree of stress resistance of flor strains can be explained both by the peculiarities of their adaptive mechanisms and by differences in the nature of their exposure to various types of stress in the course of biological wine aging and under the experimental conditions we used. The hydrophobicity and adhesive properties of cells were determined by the efficiency of adsorption to polystyrene and the distribution of cells between the aqueous and organic phases. Flor strains were distinguished by a higher degree of hydrophobicity of the cell surface and an increased ability to adhere to polystyrene. A clear correlation between biofilm formation and adhesive properties was also observed for environmental yeast isolates. The overall results of this study indicate that relatively simple tests for cell hydrophobicity can be used for the rapid screening of new candidate flor strains in yeast culture collections and among environmental isolates.
Collapse
|
48
|
Bouyx C, Schiavone M, Teste MA, Dague E, Sieczkowski N, Julien A, François JM. The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. eLife 2021; 10:e68592. [PMID: 34467855 PMCID: PMC8457840 DOI: 10.7554/elife.68592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.
Collapse
Affiliation(s)
- Clara Bouyx
- Toulouse Biotechnology Institute, INSAToulouseFrance
| | - Marion Schiavone
- Toulouse Biotechnology Institute, INSAToulouseFrance
- Lallemand, Lallemand SASBlagnacFrance
| | | | | | | | | | | |
Collapse
|
49
|
High Foam Phenotypic Diversity and Variability in Flocculant Gene Observed for Various Yeast Cell Surfaces Present as Industrial Contaminants. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many contaminant yeast strains that survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes. These harmful effects may include filamentation, invasive growth, flocculation, biofilm formation, and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of Saccharomyces cerevisiae from Brazilian fuel ethanol distilleries showing vigorous foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation, and highly foaming phenotypes in these yeast strains. Our results also showed that deleting the primary activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids complex foam formation, flocculation, invasive growth, and biofilm production by the engineered (flo8∆::BleR/flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype open new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Collapse
|
50
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|