1
|
Deng Z, Fei X, Zhang S, Xu M. A time window for memory consolidation during NREM sleep revealed by cAMP oscillation. Neuron 2025:S0896-6273(25)00220-X. [PMID: 40233747 DOI: 10.1016/j.neuron.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Memory formation requires specific neural activity in coordination with intracellular signaling mediated by second messengers such as cyclic adenosine monophosphate (cAMP). However, the real-time dynamics of cAMP remain largely unknown. Here, using a genetically encoded cAMP sensor with high temporal resolution, we found neural-activity-dependent rapid cAMP elevation during learning. Interestingly, in slow-wave sleep, during which memory consolidation occurs, the cAMP level in mice was anti-correlated with neural activity and exhibited norepinephrine β1 receptor-dependent infra-slow oscillations that were synchronized across the hippocampus and cortex. Furthermore, the hippocampal-cortical interactions increased during the narrow time-window of the peak cAMP level; suppressing hippocampal activity specifically during this window impaired spatial memory consolidation. Thus, hippocampal-dependent memory consolidation occurs within a specific time window of high cAMP activity during slow-wave sleep.
Collapse
Affiliation(s)
- Ziru Deng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Fei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
3
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Kakizawa S, Park JJ, Tonoki A. Biology of cognitive aging across species. Geriatr Gerontol Int 2024; 24 Suppl 1:15-24. [PMID: 38126240 DOI: 10.1111/ggi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Aging is associated with cognitive decline, which can critically affect quality of life. Examining the biology of cognitive aging across species will lead to a better understanding of the fundamental mechanisms involved in this process, and identify potential interventions that could help to improve cognitive function in aging individuals. This minireview aimed to explore the mechanisms and processes involved in cognitive aging across a range of species, from flies to rodents, and covers topics, such as the role of reactive oxygen species and autophagy/mitophagy in cognitive aging. Overall, this literature provides a comprehensive overview of the biology of cognitive aging across species, highlighting the latest research findings and identifying potential avenues for future research. Geriatr Gerontol Int 2024; 24: 15-24.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
6
|
Pouyan N, Younesi Sisi F, Kargar A, Scheidegger M, McIntyre RS, Morrow JD. The effects of Lysergic Acid Diethylamide (LSD) on the Positive Valence Systems: A Research Domain Criteria (RDoC)-Informed Systematic Review. CNS Drugs 2023; 37:1027-1063. [PMID: 37999867 PMCID: PMC10703966 DOI: 10.1007/s40263-023-01044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The renewed interest in psychedelic research provides growing evidence of potentially unique effects on various aspects of reward processing systems. Using the Research Domain Criteria (RDoC) framework, as proposed by the National Institute of Mental Health, we aim to synthesize the existing literature concerning the impact of lysergic acid diethylamide (LSD) on the RDoC's Positive Valence Systems (PVS) domain, and to identify potential avenues for further research. METHODS Two LSD-related terms (lysergic acid diethylamide and LSD) and 13 PVS-related terms (reward, happiness, bliss, motivation, reinforcement learning, operant, conditioning, satisfaction, decision making, habit, valence, affect, mood) were used to search electronic databases such as PubMed, Scopus, PsychINFO, and Web of Science for relevant articles. A manual search of the reference list resulted in nine additional articles. After screening, articles and data were evaluated and included based on their relevance to the objective of investigating the effects of LSD on the PVS. Articles and data were excluded if they did not provide information about the PVS, were observational in nature, lacked comparators or reference groups, or were duplicates. A risk of bias assessment was performed using the National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) risk of bias (RoB) tool. Data from the included articles were collected and structured based on the RDoC bio-behavioral matrix, specifically focusing on the PVS domain and its three constituent constructs: reward responsiveness, reward learning, and reward valuation. RESULTS We reviewed 28 clinical studies with 477 participants. Lysergic acid diethylamide, assessed at self-report (23 studies), molecular (5 studies), circuit (4 studies), and paradigm (3 studies) levels, exhibited dose-dependent mood improvement (20 short-term and 3 long-term studies). The subjective and neural effects of LSD were linked to the 5-HT2A receptor (molecular). Animal studies (14 studies) suggested LSD could mildly reinforce conditioned place preference without aversion and reduce responsiveness to other rewards. Findings on reward learning were inconsistent but hinted at potential associative learning enhancements. Reward valuation measures indicated potential reductions in effort expenditure for other reinforcers. CONCLUSION Our findings are consistent with our previous work, which indicated classical psychedelics, primarily serotonin 2A receptor agonists, enhanced reward responsiveness in healthy individuals and patient populations. Lysergic acid diethylamide exhibits a unique profile in the reward learning and valuation constructs. Using the RDoC-based framework, we identified areas for future research, enhancing our understanding of the impact of LSD on reward processing. However, applying RDoC to psychedelic research faces limitations due to diverse study designs that were not initially RDoC-oriented. Limitations include subjective outcome measure selection aligned with RDoC constructs and potential bias in synthesizing varied studies. Additionally, some human studies were open-label, introducing potential bias compared to randomized, blinded studies.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Michigan Psychedelic Center (M-PsyC), and Chronic Pain and Fatigue Research Center (CPFRC), University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Aracell Zist Darou pharmaceutical, Tehran, Iran.
| | - Farnaz Younesi Sisi
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Kargar
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Pharmacy, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jonathan D Morrow
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Broersen R, Albergaria C, Carulli D, Carey MR, Canto CB, De Zeeuw CI. Synaptic mechanisms for associative learning in the cerebellar nuclei. Nat Commun 2023; 14:7459. [PMID: 37985778 PMCID: PMC10662440 DOI: 10.1038/s41467-023-43227-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.
Collapse
Affiliation(s)
- Robin Broersen
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Catarina Albergaria
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- University College London, Sainsbury Wellcome Centre, London, UK
| | - Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| | - Cathrin B Canto
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| | - Chris I De Zeeuw
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Soula M, Martín-Ávila A, Zhang Y, Dhingra A, Nitzan N, Sadowski MJ, Gan WB, Buzsáki G. Forty-hertz light stimulation does not entrain native gamma oscillations in Alzheimer's disease model mice. Nat Neurosci 2023; 26:570-578. [PMID: 36879142 PMCID: PMC10839995 DOI: 10.1038/s41593-023-01270-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
There is a demand for noninvasive methods to ameliorate disease. We investigated whether 40-Hz flickering light entrains gamma oscillations and suppresses amyloid-β in the brains of APP/PS1 and 5xFAD mouse models of Alzheimer's disease. We used multisite silicon probe recording in the visual cortex, entorhinal cortex or the hippocampus and found that 40-Hz flickering simulation did not engage native gamma oscillations in these regions. Additionally, spike responses in the hippocampus were weak, suggesting 40-Hz light does not effectively entrain deep structures. Mice avoided 40-Hz flickering light, associated with elevated cholinergic activity in the hippocampus. We found no reliable changes in plaque count or microglia morphology by either immunohistochemistry or in vivo two-photon imaging following 40-Hz stimulation, nor reduced levels of amyloid-β 40/42. Thus, visual flicker stimulation may not be a viable mechanism for modulating activity in deep structures.
Collapse
Affiliation(s)
- Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Alejandro Martín-Ávila
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, NY, USA
| | - Yiyao Zhang
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Annika Dhingra
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Noam Nitzan
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Martin J Sadowski
- Department of Neurology and Psychiatry, Langone Medical Center, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY, USA
| | - Wen-Biao Gan
- Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA.
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA.
- Department of Neurology and Psychiatry, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
9
|
Lai H, Zhang L, Zhang S. Improving Network Training on Resource-Constrained Devices via Habituation Normalization. SENSORS (BASEL, SWITZERLAND) 2022; 22:9940. [PMID: 36560310 PMCID: PMC9783687 DOI: 10.3390/s22249940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a technique for accelerating and stabilizing training, the batch normalization (BN) is widely used in deep learning. However, BN cannot effectively estimate the mean and the variance of samples when training/fine-tuning with small batches of data on resource-constrained devices. It will lead to a decrease in the accuracy of the deep learning model. In the fruit fly olfactory system, the algorithm based on the "negative image" habituation model can filter redundant information and improve numerical stability. Inspired by the circuit mechanism, we propose a novel normalization method, the habituation normalization (HN). HN first eliminates the "negative image" obtained by habituation and then calculates the statistics for normalizing. It solves the problem of accuracy degradation of BN when the batch size is small. The experiment results show that HN can speed up neural network training and improve the model accuracy on vanilla LeNet-5, VGG16, and ResNet-50 in the Fashion MNIST and CIFAR10 datasets. Compared with four standard normalization methods, HN keeps stable and high accuracy in different batch sizes, which shows that HN has strong robustness. Finally, the applying HN to the deep learning-based EEG signal application system indicates that HN is suitable for the network fine-tuning and neural network applications under limited computing power and memory.
Collapse
Affiliation(s)
- Huixia Lai
- The College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
| | - Lulu Zhang
- The College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
| | - Shi Zhang
- The College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
- The Digit Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
10
|
Botha AE, Ansariara M, Emadi S, Kolahchi MR. Chimera Patterns of Synchrony in a Frustrated Array of Hebb Synapses. Front Comput Neurosci 2022; 16:888019. [PMID: 35814347 PMCID: PMC9260432 DOI: 10.3389/fncom.2022.888019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The union of the Kuramoto–Sakaguchi model and the Hebb dynamics reproduces the Lisman switch through a bistability in synchronized states. Here, we show that, within certain ranges of the frustration parameter, the chimera pattern can emerge, causing a different, time-evolving, distribution in the Hebbian synaptic strengths. We study the stability range of the chimera as a function of the frustration (phase-lag) parameter. Depending on the range of the frustration, two different types of chimeras can appear spontaneously, i.e., from randomized initial conditions. In the first type, the oscillators in the coherent region rotate, on average, slower than those in the incoherent region; while in the second type, the average rotational frequencies of the two regions are reversed, i.e., the coherent region runs, on average, faster than the incoherent region. We also show that non-stationary behavior at finite N can be controlled by adjusting the natural frequency of a single pacemaker oscillator. By slowly cycling the frequency of the pacemaker, we observe hysteresis in the system. Finally, we discuss how we can have a model for learning and memory.
Collapse
Affiliation(s)
- A. E. Botha
- Department of Physics, Science Campus, University of South Africa, Private Bag X6, Johannesburg, South Africa
| | - M. Ansariara
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - S. Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - M. R. Kolahchi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
- *Correspondence: M. R. Kolahchi
| |
Collapse
|
11
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Chieffo DPR, Arcangeli V, Moriconi F, Zanetti C, Frassanito P, Bianchi F, Massimi L, Tamburrini G. Correlation between Pre- and Post-Surgical Findings for Long-Term Neurocognitive and Behaviour Development Due to Posterior Fossa Pilocytic Astrocytomas: The Trend after 10 Years. Diagnostics (Basel) 2021; 11:diagnostics11081489. [PMID: 34441423 PMCID: PMC8394479 DOI: 10.3390/diagnostics11081489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: The objective of the present study was to selectively evaluate the long-term impact of posterior fossa pilocytic astrocytomas, which are known to be among the most benign forms of paediatric brain tumours on neurocognitive and behavioural functions. Methods: Children that were operated on for a posterior fossa pilocytic astrocytoma in the Pediatric Neurosurgery Department of the Catholic University Medical School were selected according to the following criteria: (a) age > 5 years (in order to have a complete set of neurocognitive evaluations data), (b) ability to perform a complete set of tests before and after surgery, and (c) children that had a regular follow-up up to 10 years from the surgical treatment. Results: Forty-three percent of the children selected for the present study showed a borderline IQ before surgery, which is a result corresponding to those previously reported in the literature for children affected by posterior fossa pilocytic astrocytomas; praxis and visual perception were the selective functions that were more frequently affected. Language performance tests scores were below average in 40% of the cases but tended to improve in terms of expressive and receptive skills even at the 1-year follow-up; the improvements became significant at the 5-year and 10-year follow-ups. Conclusions: Recognising and measuring the short- and long-term effects of cerebellar tumours in children and their treatment are the first step towards improving their clinical course and quality of life. Early interventions should be offered to all of them, with specific attention bestowed on visual-spatial stimulation, speech and occupational therapies in order to act on praxic and visuo-perceptive skills, as well as on emotion and behaviour tracts of the neurocognitive profile, which more commonly tend to persist in the long term.
Collapse
Affiliation(s)
- Daniela Pia Rosaria Chieffo
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (D.P.R.C.); (V.A.); (F.M.); (C.Z.)
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Valentina Arcangeli
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (D.P.R.C.); (V.A.); (F.M.); (C.Z.)
| | - Federica Moriconi
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (D.P.R.C.); (V.A.); (F.M.); (C.Z.)
| | - Camilla Zanetti
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (D.P.R.C.); (V.A.); (F.M.); (C.Z.)
| | - Paolo Frassanito
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Federico Bianchi
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Correspondence: or ; Tel.: +39-06-30154120; Fax: +39-06-3051343
| | - Luca Massimi
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Gianpiero Tamburrini
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
13
|
Rosell-Valle C, Martínez-Losa M, Matas-Rico E, Castilla-Ortega E, Zambrana-Infantes E, Gómez-Conde AI, Sánchez-Salido L, Ladrón de Guevara-Miranda D, Pedraza C, Serrano-Castro PJ, Chun J, Rodríguez de Fonseca F, Álvarez-Dolado M, Santín LJ, Estivill-Torrús G. GABAergic deficits in absence of LPA 1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct 2021; 226:1479-1495. [PMID: 33792787 DOI: 10.1007/s00429-021-02261-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.
Collapse
Grants
- PSI2017-82604R Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PSI2017-83408P Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SAF-09-07746 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PI16/01510 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SEJ-4515 Andalusian Regional Ministry of Economy, Knowledge, Business and University
- SEJ-1863 Andalusian Regional Ministry of Economy, Knowledge, Business and University
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
- Unidad de Producción de Reprogramación Celular, Red Andaluza Para El Diseño Y Traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Magdalena Martínez-Losa
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Elisa Matas-Rico
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Manuel Álvarez-Dolado
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Luis Javier Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
14
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Extracts or Active Components from Acorus gramineus Aiton for Cognitive Function Impairment: Preclinical Evidence and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6752876. [PMID: 32908635 PMCID: PMC7468674 DOI: 10.1155/2020/6752876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022]
Abstract
Extracts or active components from Acorus gramineus Aiton (EAAGA) have been clinically used for cognition impairment more than hundreds of years and are still used in modern times in China and elsewhere worldwide. Previous studies reported that EAAGA improves cognition impairment in animal models. Here, we conducted a preclinical systematic review to assess the current evidence of EAAGA for cognition impairment. We searched 7 databases up until June 2019. Methodological quality for each included studies was accessed according to the CAMARADES 10-item checklist. The primary outcome measures were neurobehavioral function scores evaluated by the Morris water maze test, electrical Y-maze test, step-down test, radial eight-arm maze test, and step-through test. The secondary outcome measures were mechanisms of EAAGA for cognition function. Finally, 34 studies involving 1431 animals were identified. The quality score of studies range from 1 to 6, and the median was 3.32. Compared with controls, the results of the meta-analysis indicated EAAGA exerted a significant effect in decreasing the escape latency and error times and in increasing the length of time spent in the platform quadrant and the number of platform crossings representing learning ability and memory function (all P < 0.01). The possible mechanisms of EAAGA are largely through anti-inflammatory, antioxidant, antiapoptosis activities, inhibition of neurotoxicity, regulating synaptic plasticity, protecting cerebrovascular, stimulating cholinergic system, and suppressing astrocyte activation. In conclusion, EAAGA exert potential neuroprotective effects in experimental cognition impairment, and EAAGA could be a candidate for cognition impairment treatment and further clinical trials.
Collapse
|
16
|
Morse M. Augmenting Assessment Procedures for Children with Severe Multiple Handicaps and Sensory Impairments. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2020. [DOI: 10.1177/0145482x9208600128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Functional visual assessments of children with severe neurological and physical handicaps are difficult to conduct and frequently do not provide clear guidelines for training. The addition of a learn a routine procedure, which capitalizes on the child's interest of the moment, provides information on the child's patterns of responses, ability to accommodate to variations of a stimulus, and strategies for interaction.
Collapse
Affiliation(s)
- M.T. Morse
- New Hampshire Educational Services for the Sensory Impaired, RFD 4, Box 90, Pembroke Hill Road, Pembroke, NH 03275
| |
Collapse
|
17
|
Green model to adapt classical conditioning learning in the hippocampus. Neuroscience 2020; 426:201-219. [PMID: 31812493 DOI: 10.1016/j.neuroscience.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
Compared with the biological paradigms of classical conditioning, non-adaptive computational models are not capable of realistically simulating the biological behavioural functions of the hippocampal regions, because of their implausible requirement for a large number of learning trials, which can be on the order of hundreds. Additionally, these models did not attain a unified, final stable state even after hundreds of learning trials. Conversely, the output response has a different threshold for similar tasks in various models with prolonged transient response of unspecified status via the training or even testing phases. Accordingly, a green model is a combination of adaptive neuro-computational hippocampal and cortical models that is proposed by adaptively updating the whole weights in all layers for both intact networks and lesion networks using instar and outstar learning rules with adaptive resonance theory (ART). The green model sustains and expands the classical conditioning biological paradigms of the non-adaptive models. The model also overcomes the irregular output response behaviour by using the proposed feature of adaptivity. Further, the model successfully simulates the hippocampal regions without passing the final output response back to the whole network, which is considered to be biologically implausible. The results of the Green model showed a significant improvement confirmed by empirical studies of different tasks. In addition, the results indicated that the model outperforms the previously published models. All the obtained results successfully and quickly attained a stable, desired final state (with a unified concluding state of either "1" or "0") with a significantly shorter transient duration.
Collapse
|
18
|
Finno CJ, Peterson J, Kang M, Park S, Bordbari MH, Durbin-Johnson B, Settles M, Perez-Flores MC, Lee JH, Yamoah EN. Single-Cell RNA-seq Reveals Profound Alterations in Mechanosensitive Dorsal Root Ganglion Neurons with Vitamin E Deficiency. iScience 2019; 21:720-735. [PMID: 31733517 PMCID: PMC6864320 DOI: 10.1016/j.isci.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-sequencing of DRGNs was performed in Ttpa-/- mice, an established model of AVED. In stark contrast to expected changes in proprioceptive neurons, Ttpa-/- DRGNs showed marked upregulation of voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+) DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosensitive Ttpa-/- DRGNs. A highly supplemented vitE diet (600 mg dl-α-tocopheryl acetate/kg diet) prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency profoundly alters the molecular signature and functional properties of mechanosensitive TH+ DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical sensation.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Mincheol Kang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, USA
| | - Maria C Perez-Flores
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeong H Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
19
|
Wanner NM, Colwell ML, Faulk C. The epigenetic legacy of illicit drugs: developmental exposures and late-life phenotypes. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz022. [PMID: 31777665 PMCID: PMC6875650 DOI: 10.1093/eep/dvz022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/24/2023]
Abstract
The effects of in utero exposure to illicit drugs on adult offspring are a significant and widespread but understudied global health concern, particularly in light of the growing opioid epidemic and emerging therapeutic uses for cannabis, ketamine, and MDMA. Epigenetic mechanisms including DNA methylation, histone modifications, and expression of non-coding RNAs provide a mechanistic link between the prenatal environment and health consequences years beyond the original exposure, and shifts in the epigenome present in early life or adolescence can lead to disease states only appearing during adulthood. The current review summarizes the literature assessing effects of perinatal illicit drug exposure on adult disease phenotypes as mediated by perturbations of the epigenome. Both behavioral and somatic phenotypes are included and studies reporting clinical data in adult offspring, epigenetic readouts in offspring of any age, or both phenotypic and epigenetic measures are prioritized. Studies of licit substances of abuse (i.e. alcohol, nicotine) are excluded with a focus on cannabis, psychostimulants, opioids, and psychedelics; current issues in the field and areas of interest for further investigation are also discussed.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Mathia L Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Christopher Faulk
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| |
Collapse
|
20
|
Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning. Neurobiol Learn Mem 2019; 166:107094. [PMID: 31542329 DOI: 10.1016/j.nlm.2019.107094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
There is a long history of research documenting plasticity in the cerebellum as well as the role of the cerebellum in learning and memory. Recordings in slices of cerebellum have provided evidence of long-term depression and long-term potentiation at several excitatory and inhibitory synapses. Lesions and recordings show the cerebellum is crucial for eyeblink conditioning and it appears changes in both synaptic and membrane plasticity are involved. In addition to its role in fine motor control, there is growing consensus that the cerebellum is crucial for perceptual, cognitive, and emotional functions. In the current review, we explore the evidence that eyeblink conditioning results in significant changes in intrinsic membrane excitability as well as synaptic plasticity in Purkinje cells of the cerebellar cortex in rabbits and changes in intrinsic membrane excitability in principal neurons of the deep cerebellar nuclei in rats.
Collapse
|
21
|
Rodrigues AV, Kohlsdorf T. Learning skills in
Tropidurus
lizards are associated with territory harshness. J Zool (1987) 2019. [DOI: 10.1111/jzo.12721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A. V. Rodrigues
- Department of Biology‐FFCLRP University of Sao Paulo Ribeirao Preto SP Brazil
- Department of Zoology ‐ IB University of Sao Paulo Sao Paulo SP Brazil
| | - T. Kohlsdorf
- Department of Biology‐FFCLRP University of Sao Paulo Ribeirao Preto SP Brazil
| |
Collapse
|
22
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
23
|
O’Mara SM, Aggleton JP. Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing. Front Neural Circuits 2019; 13:52. [PMID: 31447653 PMCID: PMC6692652 DOI: 10.3389/fncir.2019.00052] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Memory research remains focused on just a few brain structures-in particular, the hippocampal formation (the hippocampus and entorhinal cortex). Three key discoveries promote this continued focus: the striking demonstrations of enduring anterograde amnesia after bilateral hippocampal damage; the realization that synapses in the hippocampal formation are plastic e.g., when responding to short bursts of patterned stimulation ("long-term potentiation" or LTP); and the discovery of a panoply of spatially-tuned cells, principally surveyed in the hippocampal formation (place cells coding for position; head-direction cells, providing compass-like information; and grid cells, providing a metric for 3D space). Recent anatomical, behavioral, and electrophysiological work extends this picture to a growing network of subcortical brain structures, including the anterior thalamic nuclei, rostral midline thalamic nuclei, and the claustrum. There are, for example, spatially-tuned cells in all of these regions, including cells with properties similar to place cells of the hippocampus proper. These findings add new perspectives to what had been originally been proposed-but often overlooked-half a century ago: that damage to an extended network of structures connected to the hippocampal formation results in diencephalic amnesia. We suggest these new findings extend spatial signaling in the brain far beyond the hippocampal formation, with profound implications for theories of the neural bases of spatial and mnemonic functions.
Collapse
Affiliation(s)
- Shane M. O’Mara
- School of Psychology and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Fischer EK, Roland AB, Moskowitz NA, Tapia EE, Summers K, Coloma LA, O'Connell LA. The neural basis of tadpole transport in poison frogs. Proc Biol Sci 2019; 286:20191084. [PMID: 31311480 DOI: 10.1098/rspb.2019.1084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parental care has evolved repeatedly and independently across animals. While the ecological and evolutionary significance of parental behaviour is well recognized, underlying mechanisms remain poorly understood. We took advantage of behavioural diversity across closely related species of South American poison frogs (Family Dendrobatidae) to identify neural correlates of parental behaviour shared across sexes and species. We characterized differences in neural induction, gene expression in active neurons and activity of specific neuronal types in three species with distinct care patterns: male uniparental, female uniparental and biparental. We identified the medial pallium and preoptic area as core brain regions associated with parental care, independent of sex and species. The identification of neurons active during parental care confirms a role for neuropeptides associated with care in other vertebrates as well as identifying novel candidates. Our work is the first to explore neural and molecular mechanisms of parental care in amphibians and highlights the potential for mechanistic studies in closely related but behaviourally variable species to help build a more complete understanding of how shared principles and species-specific diversity govern parental care and other social behaviour.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | | | - Nora A Moskowitz
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Elicio E Tapia
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | - Lauren A O'Connell
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
25
|
mGluR1 in cerebellar Purkinje cells is essential for the formation but not expression of associative eyeblink memory. Sci Rep 2019; 9:7353. [PMID: 31089195 PMCID: PMC6517439 DOI: 10.1038/s41598-019-43744-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022] Open
Abstract
Classical eyeblink conditioning is a representative associative motor learning that requires both the cerebellar cortex and the deep cerebellar nucleus (DCN). Metabotropic glutamate receptor subtype 1 (mGluR1) is richly expressed in Purkinje cells (PCs) of the cerebellar cortex. Global mGluR1 knock-out (KO) mice show a significantly lower percentage of conditioned response (CR%) than wild-type mice in eyeblink conditioning, and the impaired CR% is restored by the introduction of mGluR1 in PCs. However, the specific roles of mGluR1 in major memory processes, including formation, storage and expression have not yet been defined. We thus examined the role of mGluR1 in these processes of eyeblink conditioning, using mGluR1 conditional KO (cKO) mice harboring a selective and reversible expression of mGluR1 in PCs. We have found that eyeblink memory is not latently formed in the absence of mGluR1 in adult mouse PCs. However, once acquired, eyeblink memory is expressed even after the depletion of mGluR1 in PCs. We thus conclude that mGluR1 in PCs is indispensable for the formation of eyeblink memory, while it is not required for the expression of CR.
Collapse
|
26
|
Within the framework of the dual-system model, voluntary action is central to cognition. Atten Percept Psychophys 2019; 81:2192-2216. [PMID: 31062301 DOI: 10.3758/s13414-019-01737-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new version of the dual-system hypothesis is described. Consistent with earlier models, the improvisational subsystem of the instrumental system, which includes the occipital cortex, inferior temporal cortex, and medial temporal cortex, especially the hippocampus, directs the construction of visual representations of the world and constructs ad-hoc responses to novel targets. The habit system, which includes the occipital cortex; parietal cortex; premotor, supplementary motor, and ventrolateral areas of frontal cortex; and the basal ganglia, especially the caudate nucleus, encodes sequences of actions and generates previously successful actions to familiar targets. However, unlike in previous dual-system models, human cognitive activity involved in task performance is not exclusively associated with one system or the other. Rather, the two systems make it possible for people to learn a variety of skills that draw on the competencies of both systems. The collective effects of these skills define human cognition. So, in contrast with earlier versions of the dual-system hypothesis, which identified the habit system solely with procedural learning and implicit improvements in task performance, the model presented here attributes a direct role in declarative-memory tasks to the habit system. Furthermore, within the model, the computational competencies of the two systems are used to construct purposeful sequences of actions-that is, skills. Human cognition is the result of the performance of these skills. Thus, voluntary action is central to human cognition.
Collapse
|
27
|
Oxytocin for learning calm and safety. Int J Psychophysiol 2019; 136:5-14. [DOI: 10.1016/j.ijpsycho.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
|
28
|
Ma GP, Zheng Q, Xu MB, Zhou XL, Lu L, Li ZX, Zheng GQ. Rhodiola rosea L. Improves Learning and Memory Function: Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2018; 9:1415. [PMID: 30564123 PMCID: PMC6288277 DOI: 10.3389/fphar.2018.01415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Rhodiola rosea L. (R. rosea L.) is widely used to stimulate the nervous system, extenuate anxiety, enhance work performance, relieve fatigue, and prevent high altitude sickness. Previous studies reported that R. rosea L. improves learning and memory function in animal models. Here, we conducted a systematic review and meta-analysis for preclinical studies to assess the current evidence for R. rosea L. effect on learning and memory function. Ultimately, 36 studies involving 836 animals were identified by searching 6 databases from inception to May 2018. The primary outcome measures included the escape latency in Morris water maze (MWM) test on behalf of learning ability, the frequency and the length of time spent on the target quadrant in MWM test representing memory function, and the number of errors in step down test, dark avoidance test and Y maze test on behalf of memory function. The secondary outcome measures were mechanisms of R. rosea L. for learning and/or memory function. Compared with control, the pooled results of 28 studies showed significant effects of R. rosea L. for reducing the escape latency (P < 0.05); 23 studies for increasing the frequency and the length of time spent on the target quadrant (P < 0.05); and 6 studies for decreasing the number of errors (P < 0.01). The possible mechanisms of R. rosea L. are largely through antioxidant, cholinergic regulation, anti-apoptosis activities, anti-inflammatory, improving coronary blood flow, and cerebral metabolism. In conclusion, the findings suggested that R. rosea L. can improve learning and memory function.
Collapse
Affiliation(s)
- Gou-ping Ma
- Tongde Hospital of Zhejiang province, Hangzhou, China
| | - Qun Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-bei Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-li Zhou
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zuo-xiao Li
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Devan BD, Berger K, McDonald RJ. The Emergent Engram: A Historical Legacy and Contemporary Discovery. Front Behav Neurosci 2018; 12:168. [PMID: 30131682 PMCID: PMC6090515 DOI: 10.3389/fnbeh.2018.00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bryan D Devan
- Laboratory of Comparative Neuropsychology, Psychology Department, Towson University, Towson, MD, United States
| | - Kyle Berger
- Laboratory of Comparative Neuropsychology, Psychology Department, Towson University, Towson, MD, United States
| | - Robert J McDonald
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
30
|
Cerebellar injury and impaired function in a rabbit model of maternal inflammation induced neonatal brain injury. Neurobiol Learn Mem 2018; 165:106901. [PMID: 30016703 DOI: 10.1016/j.nlm.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Cerebellum is involved in higher cognitive functions and plays important roles in neurological disorders. Cerebellar injury has been detected frequently in patients with preterm birth resulting in cognitive dysfunction later in life. Maternal infection and inflammation is associated with preterm birth and in neonatal brain injury. We have previously shown that intrauterine lipopolysaccharide (LPS) exposure induces white matter injury and microglial activation in the cerebral white matter tracts of neonatal rabbits, resulting in motor deficits consistent with the clinical findings of cerebral palsy (CP). Here we investigated whether intrauterine LPS exposure induced cerebellar inflammation and functional impairment. Timed-pregnant New Zealand white rabbits underwent a laparotomy on gestational day 28 (G28) and LPS (3200 EU, endotoxin group) was injected along the wall of the uterus as previously described. Controls did not receive surgical intervention. Kits born to control and endotoxin treated dams were euthanized on postnatal day (PND)1 (3 days post-injury) or PND5 (7 days post-injury) and cerebellum evaluated for presence of inflammation. The microglial morphology in cerebellar white matter areas was analyzed using Neurolucida and Neurolucida Explorer. mRNA expression of inflammatory cytokines was quantified by real-time-PCR. We found that intrauterine exposure to LPS induced intensive microglial activation in cerebellar white matter areas, as evidenced by increased numbers of activated microglia and morphological changes (amoeboid soma and retracted processes) that was accompanied by significant increases in pro-inflammatory cytokines. The Purkinje cell layer was less developed in endotoxin exposed kits than healthy controls. In kits that survived to PND 60, soma size and cell density of Purkinje cells were significantly decreased in endotoxin exposed kits compared to controls. The findings of altered Purkinje cell morphology were consistent with impaired cerebellar function as tested by eye-blink conditioning at 1 month of age. The results indicate that the cerebellum is vulnerable to perinatal insults and that therapies targeting cerebellar inflammation and injury may help in improving outcomes and function.
Collapse
|
31
|
Time-limited involvement of caudal anterior cingulate cortex in trace eyeblink conditioning retrieval is dependent on conditioned stimulus intensity. PLoS One 2018; 13:e0191320. [PMID: 29370235 PMCID: PMC5784963 DOI: 10.1371/journal.pone.0191320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
The medial prefrontal cortex (mPFC) has been widely investigated for its roles in learning and memory. The present study investigated the time-limited involvement of the caudal anterior cingulate cortex (cACC) of the mPFC in the retrieval process for a simple associative motor learning, trace eyeblink conditioning (tEBC), using a 75 dB or 100 dB tone as the conditioned stimulus (CS). The GABAA receptor agonist muscimol was injected into the cACC of guinea pigs at 1 day or 4 weeks after tEBC acquisition. When muscimol was administered 1 day after tEBC acquisition, the conditioned response (CR) of the 75 dB group was severely impaired, whereas the CR of the 100 dB group exhibited no significant change relative to the control. When muscimol was administered 4 weeks after tEBC acquisition, the CR was impaired in both the 75 dB and 100 dB groups. This study indicate that the cACC of the mPFC is necessary for recent retrieval of tEBC with a low-intensity CS but not of tEBC with a high-intensity CS, whereas for remote retrieval of tEBC, the cACC of the mPFC is essential regardless of whether the CS intensity is high or low. These results support a conditional role for the mPFC in modulating recent retrieval of tEBC and a persistent role for its involvement in remote retrieval of tEBC.
Collapse
|
32
|
Tran TD, Amin A, Jones KG, Sheffer EM, Ortega L, Dolman K. The Use of Trace Eyeblink Classical Conditioning to Assess Hippocampal Dysfunction in a Rat Model of Fetal Alcohol Spectrum Disorders. J Vis Exp 2017. [PMID: 28809846 PMCID: PMC5614106 DOI: 10.3791/55350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neonatal rats were administered a relatively high concentration of ethyl alcohol (11.9% v/v) during postnatal days 4-9, a time when the fetal brain undergoes rapid organizational change and is similar to accelerated brain changes that occur during the third trimester in humans. This model of fetal alcohol spectrum disorders (FASDs) produces severe brain damage, mimicking the amount and pattern of binge-drinking that occurs in some pregnant alcoholic mothers. We describe the use of trace eyeblink classical conditioning (ECC), a higher-order variant of associative learning, to assess long-term hippocampal dysfunction that is typically seen in alcohol-exposed adult offspring. At 90 days of age, rodents were surgically prepared with recording and stimulating electrodes, which measured electromyographic (EMG) blink activity from the left eyelid muscle and delivered mild shock posterior to the left eye, respectively. After a 5 day recovery period, they underwent 6 sessions of trace ECC to determine associative learning differences between alcohol-exposed and control rats. Trace ECC is one of many possible ECC procedures that can be easily modified using the same equipment and software, so that different neural systems can be assessed. ECC procedures in general, can be used as diagnostic tools for detecting neural pathology in different brain systems and different conditions that insult the brain.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Psychology, East Carolina University; Multidisciplinary Studies Program in Neuroscience, East Carolina University;
| | - Aenia Amin
- Department of Psychology, East Carolina University; Multidisciplinary Studies Program in Neuroscience, East Carolina University
| | - Keith G Jones
- Multidisciplinary Studies Program in Neuroscience, East Carolina University
| | | | - Lidia Ortega
- Department of Psychology, East Carolina University
| | - Keith Dolman
- Multidisciplinary Studies Program in Neuroscience, East Carolina University
| |
Collapse
|
33
|
Abstract
William James did much to set the stage for psychobiology. Beyond insisting that brain structures and processes must be the basis of explanations of mental phenomena, he expressed ideas about brain localization and plasticity in neural networks that foreshadowed many aspects of current neurobiology of learning and even connectionist theory.
Collapse
|
34
|
Steinmetz JE. Neuronal Activity in the Rabbit Interpositus Nucleus during Classical NM-Conditioning with a Pontine-Nucleus-Stimulation CS. Psychol Sci 2017. [DOI: 10.1111/j.1467-9280.1990.tb00245.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The nictitating membranes of six rabbits were classically conditioned using a pontine-nucleus-stimulation conditioned stimulus with an air-puff unconditioned stimulus and a tone conditioned stimulus with an air-puff unconditioned stimulus. Multiple-unit neuronal activity in the cerebellar interpositus nucleus was monitored during the stimulation and tone training. Significant increases in the number of learned responses as well as increases in conditioning-related neuronal activity in the interpositus were observed during stimulation training. The number of conditioned nictitating-membrane responses and level of learning-related neuronal activity remained high during subsequent tone training. These data show that the cerebellum is activated in a similar manner when pontine stimulation or peripheral tones are used as a conditioned stimulus during classical nictitating-membrane conditioning.
Collapse
|
35
|
McLachlan NM, Wilson SJ. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition. Front Psychol 2017; 8:265. [PMID: 28373850 PMCID: PMC5357638 DOI: 10.3389/fpsyg.2017.00265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/10/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications.
Collapse
Affiliation(s)
- Neil M. McLachlan
- Melbourne School of Psychological Sciences, University of MelbourneMelbourne, VIC, Australia
| | | |
Collapse
|
36
|
Zhou LT, Ye SH, Yang HX, Zhou YT, Zhao QH, Sun WW, Gao MM, Yi YH, Long YS. A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14. Neuroscience 2017; 349:64-75. [PMID: 28257890 DOI: 10.1016/j.neuroscience.2017.02.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/08/2023]
Abstract
Fragile X mental retardation protein (FMRP), an important RNA-binding protein responsible for fragile X syndrome, is involved in posttranscriptional control of gene expression that links with brain development and synaptic functions. Here, we reveal a novel role of FMRP in pre-mRNA alternative splicing, a general event of posttranscriptional regulation. Using co-immunoprecipitation and immunofluorescence assays, we identified that FMRP interacts with an alternative-splicing-associated protein RNA-binding protein 14 (RBM14) in a RNA-dependent fashion, and the two proteins partially colocalize in the nuclei of hippocampal neurons. We show that the relative skipping/inclusion ratio of the micro-exon L in the Protrudin gene and exon 10 in the Tau gene decreased in the hippocampus of Fmr1 knockout (KO) mice. Knockdown of either FMRP or RBM14 alters the relative skipping/inclusion ratio of Protrudin and Tau in cultured Neuro-2a cells, similar to that in the Fmr1 KO mice. Furthermore, overexpression of FMRP leads to an opposite pattern of the splicing, which can be offset by RBM14 knockdown. RNA immunoprecipitation assays indicate that FMRP promotes RBM14's binding to the mRNA targets. In addition, overexpression of the long form of Protrudin or the short form of Tau promotes protrusion growth of the retinoic acid-treated, neuronal-differentiated Neuro-2a cells. Together, these data suggest a novel function of FMRP in the regulation of pre-mRNA alternative splicing through RBM14 that may be associated with normal brain function and FMRP-related neurological disorders.
Collapse
Affiliation(s)
- Lin-Tao Zhou
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Shun-Hua Ye
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Hai-Xuan Yang
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yong-Ting Zhou
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qi-Hua Zhao
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Wei-Wen Sun
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Yue-Sheng Long
- Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| |
Collapse
|
37
|
LeDoux JE, Moscarello J, Sears R, Campese V. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol Psychiatry 2017; 22:24-36. [PMID: 27752080 PMCID: PMC5173426 DOI: 10.1038/mp.2016.166] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022]
Abstract
Research on avoidance conditioning began in the late 1930s as a way to use laboratory experiments to better understand uncontrollable fear and anxiety. Avoidance was initially conceived of as a two-factor learning process in which fear is first acquired through Pavlovian aversive conditioning (so-called fear conditioning), and then behaviors that reduce the fear aroused by the Pavlovian conditioned stimulus are reinforced through instrumental conditioning. Over the years, criticisms of both the avoidance paradigm and the two-factor fear theory arose. By the mid-1980s, avoidance had fallen out of favor as an experimental model relevant to fear and anxiety. However, recent progress in understanding the neural basis of Pavlovian conditioning has stimulated a new wave of research on avoidance. This new work has fostered new insights into contributions of not only Pavlovian and instrumental learning but also habit learning, to avoidance, and has suggested that the reinforcing event underlying the instrumental phase should be conceived in terms of cellular and molecular events in specific circuits rather than in terms of vague notions of fear reduction. In our approach, defensive reactions (freezing), actions (avoidance) and habits (habitual avoidance) are viewed as being controlled by unique circuits that operate nonconsciously in the control of behavior, and that are distinct from the circuits that give rise to conscious feelings of fear and anxiety. These refinements, we suggest, overcome older criticisms, justifying the value of the new wave of research on avoidance, and offering a fresh perspective on the clinical implications of this work.
Collapse
Affiliation(s)
- J E LeDoux
- Center for Neural Science, New York University, New York, NY, USA
- Nathan Kline Institute, Orangeburg, NY, USA
| | - J Moscarello
- Center for Neural Science, New York University, New York, NY, USA
| | - R Sears
- Center for Neural Science, New York University, New York, NY, USA
| | - V Campese
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
38
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
39
|
Plant N. Can a systems approach produce a better understanding of mood disorders? Biochim Biophys Acta Gen Subj 2016; 1861:3335-3344. [PMID: 27565355 DOI: 10.1016/j.bbagen.2016.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND One in twenty-five people suffer from a mood disorder. Current treatments are sub-optimal with poor patient response and uncertain modes-of-action. There is thus a need to better understand underlying mechanisms that determine mood, and how these go wrong in affective disorders. Systems biology approaches have yielded important biological discoveries for other complex diseases such as cancer, and their potential in affective disorders will be reviewed. SCOPE OF REVIEW This review will provide a general background to affective disorders, plus an outline of experimental and computational systems biology. The current application of these approaches in understanding affective disorders will be considered, and future recommendations made. MAJOR CONCLUSIONS Experimental systems biology has been applied to the study of affective disorders, especially at the genome and transcriptomic levels. However, data generation has been slowed by a lack of human tissue or suitable animal models. At present, computational systems biology has only be applied to understanding affective disorders on a few occasions. These studies provide sufficient novel biological insight to motivate further use of computational biology in this field. GENERAL SIGNIFICANCE In common with many complex diseases much time and money has been spent on the generation of large-scale experimental datasets. The next step is to use the emerging computational approaches, predominantly developed in the field of oncology, to leverage the most biological insight from these datasets. This will lead to the critical breakthroughs required for more effective diagnosis, stratification and treatment of affective disorders.
Collapse
Affiliation(s)
- Nick Plant
- School of Bioscience and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
40
|
Brown KL, Freeman JH. Retention of eyeblink conditioning in periweanling and adult rats. Dev Psychobiol 2016; 58:1055-1065. [PMID: 27279383 DOI: 10.1002/dev.21439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022]
Abstract
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory, though nothing is known regarding developmental differences in retention between periweanling and adult rats. The present study examined retention of eyeblink conditioning in periweanling (postnatal day 24 at the start of training) and adult rats 1, 7, or 28 days after acquisition. Retention was assessed by (1) a conditional stimulus (CS)-alone test session followed by (2) CS-unconditional stimulus (US) reacquisition tests. Conditional response (CR) levels at acquisition were comparable in most respects between ages, and robust CR levels were present at the start of retention tests for both ages in the 1 day group, with CR percentages at block 1 of reacquisition higher in periweanlings relative to adults. At the 7 day retention test there was a trend toward significance for higher CR percentages at the CS-alone test in adults relative to periweanlings, though there were no age differences at reacquisition testing. When testing occurred 28 days after acquisition, however, periweanlings showed fewer CRs relative to adults during reacquisition despite low CR levels in both ages throughout the CS-alone test. Furthermore, periweanlings in the 28 day group required more trials at reacquisition than all other groups to exceed CR levels from their first acquisition session. These findings are consistent with rapid forgetting in the young commonly referred to as "infantile amnesia." The well-characterized eyeblink preparation may be useful for future studies investigating neural mechanisms responsible for rapid forgetting in developing animals.
Collapse
Affiliation(s)
- Kevin L Brown
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - John H Freeman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Kuszewska K, Miler K, Filipiak M, Woyciechowski M. Sedentary antlion larvae (Neuroptera: Myrmeleontidae) use vibrational cues to modify their foraging strategies. Anim Cogn 2016; 19:1037-41. [PMID: 27222150 PMCID: PMC4967082 DOI: 10.1007/s10071-016-1000-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/24/2022]
Abstract
Learning abilities are exhibited by many animals, including insects. However, sedentary species are typically believed to have low capacities and requirements for learning. Despite this view, recent studies show that even such inconspicuous organisms as larval antlions, which employ an ambush predation strategy, are capable of learning, although their learning abilities are rather simple, i.e., limited to the association of vibrational cues with the arrival of prey. This study demonstrates, for the first time, that antlion larvae can use vibrational cues for complex modifications of their foraging strategies. Specifically, antlion larvae rapidly learn to differentiate between the vibrational cues associated with prey of different sizes, and they save resources by ignoring smaller prey in favour of larger, more energetically profitable prey. Moreover, antlion larvae can learn to associate vibrational cues with the loss of their prey, and they respond by burying their victims under the sand more often and more rapidly than do individuals with no opportunities to form such associations. These findings provide not only new insights into the cognitive abilities of animals but also support for the optimal foraging strategy concept, suggesting the importance of maximizing fitness output by balancing the costs and benefits of alternative foraging strategies.
Collapse
Affiliation(s)
- Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.
| | - Krzysztof Miler
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Michał Filipiak
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
42
|
Abstract
For most ofthe 20th century, the brain science community held the view that the cerebellum was exclusively involved in motor control functions. Over the past 20 years, this has largely been replaced by the idea that the cerebellum participates in a variety of motor and nonmotor functions and, importantly, may contain neurons that display longand short-term plasticity, encoding behavioral and cognitive functions. The authors present evidence for the involvement of the cerebellum in motor and nonmotor functions and further suggest that the cerebellum’s internal neural architecture and connectivity patterns with other areas ofthe brain determine the range offunctions that the cerebellum participates in. To stress the interactive nature ofthe structure, the authors suggest that the phenomena that the cerebellum encodes may be best described generally as the psychological functions ofthe cerebellum instead ofattempting to categorize all functions as either motor or nonmotor.
Collapse
|
43
|
Schreurs BG. Classical Conditioning and Modification of the Rabbit's (Oryctolagus Cuniculus) Unconditioned Nictitating Membrane Response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental tenet of behavior is that a reflex is automatic, unconscious, involuntary, and relatively invariant. However, we have discovered that a reflex can change dramatically as a function of classical conditioning, and this change can be demonstrated independently of the conditioned stimulus. We have termed this phenomenon conditioning-specific reflex modification (CRM). Although the behavioral laws and neural substrates of nonassociative reflex changes have been identified, the behavioral laws and neural substrates of CRM are only now being revealed. For example, CRM is similar to classical conditioning in that (a) it is a function of both the strength of conditioning and (b) the strength of the unconditioned stimulus, (c) it can be extinguished, and (d) it can be generalized from one unconditioned stimulus to another. Preliminary analysis suggests that CRM may have some features in common with post-traumatic stress disorder and may provide insights into treatment of the disorder.
Collapse
|
44
|
Willmore CB. The Cognitive Effect Profiles of NMDA Receptor Modulating Drugs are Resolvable If Stimulus Complexity Is Varied in a Number Discernment Task. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Number discernment is at the heart of task accuracy for laboratory animals performing Fixed Consecutive Number (FCN) operant tasks. Narrow-limit FCN tasks, in particular, are useful for measuring working memory in rat subjects because performance efficacy, which is set up to concord with food delivery, depends on a fairly precise quantification of cues generated by the rat's ongoing behavior. Reported here is a behavioral pharmacology study that utilized a group of overtrained and FCN-schedule-compliant rats injected in a randomized series of testing sessions with different types of N-methyl-D-aspartate (NMDA) receptor modulating drugs. Modifications made to the narrowlimit FCN schedule permitted a simultaneous measure of druginduced compromises in subjects' sensory integrative or motor coordinating capabilities. This highly sensitive model implicated the intrachannel and the glutamate recognition NMDA receptor binding sites as prime mediators of NMDA antagonist associated memory impairments because drugs acting at the mentioned sites lowered counting efficacy without altering sensorimotor function.
Collapse
|
45
|
Abstract
Dual-task performance was assessed in 140 adults during eyeblink classical conditioning (EBCC) and one of several secondary tasks (timed-interval tapping, recognition memory choice reaction time, video viewing) Four groups received paired-EBCC stimulus presentation and three groups received explicitly unpaired EBCC stimuli Although the subjects were not told about the conditioning task, they acquired conditioned responses (CRs) at normal levels Postsession interviews probed participants' awareness of EBCC stimulus contingencies and production of CRs Reported awareness of paired-EBCC stimulus contingencies and CR production was not related to actual EBCC performance Twenty-seven percent of the participants receiving explicitly unpaired stimuli reported a stimulus contingency when none existed The dissociation between awareness and performance provides additional support for the categorization of simple EBCC as a form of nondeclarative learning
Collapse
|
46
|
Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia. Neurosci Biobehav Rev 2015; 61:108-20. [PMID: 26698018 DOI: 10.1016/j.neubiorev.2015.12.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/09/2015] [Accepted: 12/10/2015] [Indexed: 01/10/2023]
Abstract
Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain-behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising (1) the cortico-cerebellar-striatal-thalamic loop and (2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the "generalized" cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature.
Collapse
Affiliation(s)
- Julia M Sheffield
- Washington University in St Louis, Department of Psychology, 1 Brookings Drive, St Louis, MO 63130, USA.
| | - Deanna M Barch
- Washington University in St Louis, Department of Psychology, 1 Brookings Drive, St Louis, MO 63130, USA; Washington University in St Louis, Department of Psychiatry, 4940 Childrens Place, St Louis, MO 63110, USA; Washington University in St Louis, Department of Radiology, 224 Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
47
|
Abstract
ABSTRACT:Synaptic plasticity plays a role in the learning capability of brain tissues. Long-term depression (LTD) of parallel fiber synapses in cerebellar Purkinje cells occurs when these synapses are activated in conjunction with climbing fiber synapses. Signal transduction mechanisms underlying LTD have recently been investigated extensively. It has also become apparent that climbing fiber signals encode errors in the motor performance of an animal. It is therefore hypothesized that learning proceeds in cerebellar tissues in such a way that error signals of climbing fibers act to depress by LTD those parallel fiber synapses responsible for the errors. The cerebellum contains a large number of corticonuclear microcomplexes. Each microcomplex is connected to an extracerebellar system and is presumed to endow the system with learning capability. The hypothesis accounts for the adaptation of the vestibuloocular reflex and probably also for other forms of motor and cognitive learning.
Collapse
|
48
|
Facilitated acquisition of standard but not long delay classical eyeblink conditioning in behaviorally inhibited adolescents. Behav Brain Res 2015; 278:476-81. [DOI: 10.1016/j.bbr.2014.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
|
49
|
Weiss C, Disterhoft JF. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 2015; 6:142. [PMID: 26500564 PMCID: PMC4595794 DOI: 10.3389/fpsyt.2015.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer's disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
50
|
Poulos AM, Thompson RF. Localization and characterization of an essential associative memory trace in the mammalian brain. Brain Res 2014; 1621:252-9. [PMID: 25449891 DOI: 10.1016/j.brainres.2014.10.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
We argue here that we have succeeded in localizing an essential memory trace for a basic form of associative learning and memory - classical conditioning of discrete responses learned with an aversive stimulus - to the anterior interpositus nucleus of the cerebellum. We first identified the entire essential circuit, using eyelid conditioning as the model system, and used reversible inactivation, during training, of critical structures and activation of pathways to localize definitively the essential memory trace. This discovery and the associated studies have: 1) shown that the essential cerebellar circuit applies equally to all mammals studied, including humans; 2) shown that this cerebellar circuit holds for the learning of any discrete behavioral response elicited by an aversive US, not just eyelid closure; 3) identified the essential circuit and process for reinforcement for this form of learning; 4) shown that this form of learning and its essential cerebellar circuitry is phylogenetically very old; 5) solved the long-standing puzzle of where memory traces are formed in the brain when the CS is electrical stimulation of the cerebral cortex in conditioning; 6) shown that this cerebellar circuitry forms the essential neural substrate for the behavioral phenomenon of "blocking", and hence, 7) provides the first clear neural instantiation of the Rescorla-Wagner learning algorithm; 8) shown that the fundamental neural process underlying this form of learning is a strengthening of preexisting pathways, and 9) shown that the basic mechanism underlying this strengthening is the formation of new excitatory synapses. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Andrew M Poulos
- Department of Psychology, Center for Neuroscience, University at Albany, State University of New York, Albany, New York, USA.
| | - Richard F Thompson
- Neurosciences Program, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|