1
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
2
|
Matsumoto H, Haniu H, Kurien BT, Komori N. Two-Dimensional Gel Electrophoresis by Glass Tube-Based IEF and SDS-PAGE. Methods Mol Biol 2019; 1855:107-113. [PMID: 30426412 DOI: 10.1007/978-1-4939-8793-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genome information combined with data derived from modern mass spectrometry enables us to determine the identity of a protein once it is isolated from a complex mixture. Two-dimensional gel electrophoresis established more than four decades ago serves as a powerful protocol to isolate many proteins at once for such protein analysis. In the first two decades, the original procedure to use a glass tube-based IEF had been commonly used. Since an IEF in glass tubes is rather difficult to maneuver, a new method to use an IEF on a thin agarose slab backed by a plastic film (IPG Dry Strip) had been invented and is now widely used. In this chapter, we describe a protocol that uses a glass tube-based IEF because the capacity of protein loading and resolving power of this type of classic two-dimensional gel is still indispensable for many applications, not only for protein identification but also for protocols that are benefited by larger amounts of materials, i.e., analysis of posttranslational modification of proteins such as phosphorylation, methylation, glycosylation, and others.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, Japan
| | - Biji T Kurien
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Voolstra O, Spät P, Oberegelsbacher C, Claussen B, Pfannstiel J, Huber A. Light-dependent phosphorylation of the Drosophila inactivation no afterpotential D (INAD) scaffolding protein at Thr170 and Ser174 by eye-specific protein kinase C. PLoS One 2015; 10:e0122039. [PMID: 25799587 PMCID: PMC4370639 DOI: 10.1371/journal.pone.0122039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Drosophila inactivation no afterpotential D (INAD) is a PDZ domain-containing scaffolding protein that tethers components of the phototransduction cascade to form a supramolecular signaling complex. Here, we report the identification of eight INAD phosphorylation sites using a mass spectrometry approach. PDZ1, PDZ2, and PDZ4 each harbor one phosphorylation site, three phosphorylation sites are located in the linker region between PDZ1 and 2, one site is located between PDZ2 and PDZ3, and one site is located in the N-terminal region. Using a phosphospecific antibody, we found that INAD phosphorylated at Thr170/Ser174 was located within the rhabdomeres of the photoreceptor cells, suggesting that INAD becomes phosphorylated in this cellular compartment. INAD phosphorylation at Thr170/Ser174 depends on light, the phototransduction cascade, and on eye-Protein kinase C that is attached to INAD via one of its PDZ domains.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Philipp Spät
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Björn Claussen
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, Universität Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- Mass Spectrometry Core Facility, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Matsumoto H. Proteomics of Drosophila compound eyes: early studies, now, and the future--light-induced protein phosphorylation as an example. J Neurogenet 2012; 26:118-22. [PMID: 22794103 DOI: 10.3109/01677063.2012.691923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past three decades, efforts to understand the molecular mechanisms underlying photoreceptor transduction of the fruit fly Drosophila melanogaster experienced drastic waves of technological development that involve multiple areas of scientific disciplines; the multidisciplinary approach includes a classical genetic manipulation in which random mutations are created and phenotypes are screened, a modern genetics maneuver in which a specific gene relevant to a hypothesis is molecularly cloned and manipulated, and, more recently, direct studies of proteins by proteomics technologies in combination with modern molecular biology and electrophysiology. This paper will review efforts that originated three decades ago in Professor William L. Pak's laboratory at Purdue University to study proteins involved in the Drosophila photoreceptor transduction process and show the power of such multidisciplinary approach that involves collaboration between molecular genetics, electrophysiology, and proteomics.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Abstract
This is the first of two reviews that include some of the studies that we, members of the Pak lab and collaborators, carried out from 1998 to 2010 on the functional and physical interactions among several Drosophila phototransduction components. The report includes our studies on the regulations and/or the functions of arrestin II (Arr2), norpA (PLC), inactivation no afterpotential D (INAD), transient receptor potential (TRP), TRP-like (TRPL), inactivation no afterpotential E (INAE), and Porin.
Collapse
Affiliation(s)
- Hung-Tat Leung
- Department of Biological Sciences, Grambling State University, 403 Main St., Grambling, LA 71245, USA.
| | | | | |
Collapse
|
6
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
7
|
Matsumoto H, Haniu H, Kurien BT, Komori N. Two-dimensional gel electrophoresis: glass tube-based IEF followed by SDS-PAGE. Methods Mol Biol 2012; 869:267-273. [PMID: 22585493 DOI: 10.1007/978-1-61779-821-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genome information combined with data derived from modern mass spectrometry enables us to determine the identity of a protein once it is isolated from a complex mixture. Two-dimensional gel electrophoresis established more than three decades ago serves as a powerful protocol to isolate many proteins at once for such protein analysis. In the first two decades, the original procedure to use a glass tube-based isoelectric focusing (IEF) had been commonly used. Since an IEF in glass tubes is rather difficult to maneuver, a new method to use an IEF on a thin agarose slab backed by a plastic film (IPG Dry Strip) has been invented and is now widely used. In this chapter, we describe the original protocol that uses a glass tube-based IEF because, the capacity of protein loading and resolving power of this type of classic two-dimensional gel is still indispensible.
Collapse
|
8
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci 2010; 30:1238-49. [PMID: 20107052 DOI: 10.1523/jneurosci.4464-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP) (CG10233) in Drosophila photoreceptors and establish its involvement in dark-noise suppression. RTP possesses membrane occupation and recognition nexus (MORN) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light-gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking neither inactivation nor afterpotential C (NINAC) myosin III, a motor protein/kinase, also display a similar dark-noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is attributable to lack of RTP and, furthermore, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors.
Collapse
|
10
|
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007; 454:821-47. [PMID: 17487503 DOI: 10.1007/s00424-007-0251-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/05/2007] [Indexed: 01/05/2023]
Abstract
Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and G alpha(q) undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Takahashi A, Kawasaki T, Wong HL, Suharsono U, Hirano H, Shimamoto K. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdr1. PLANT PHYSIOLOGY 2003; 132:1861-9. [PMID: 12913143 PMCID: PMC181272 DOI: 10.1104/pp.103.021733] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 03/15/2003] [Accepted: 04/24/2003] [Indexed: 05/18/2023]
Abstract
The rice (Oryza sativa) lesion-mimic mutants, cell death and resistance (cdr), show spontaneous cell death on the entire leaf and exhibited significant resistance to the rice blast fungus. Our previous studies showed that CDR1 and CDR2 genes negatively regulated the phosphorylation steps leading to the activation of NADPH oxidase, which is associated with oxidative burst. To identify novel factors involved in the phosphorylation steps, the phosphorylation level of total proteins was compared between cdr mutants and wild type using two-dimensional gel electrophoresis. Here, we show that the phosphorylation level of four proteins in cdr1 was increased as compared with the wild type after calyculin A treatment. Partial amino acid sequences revealed that one of the four proteins is homologous to prohibitin (PHB), which has been shown to be associated with senescence and cell death and to function as a chaperone in the assembly of mitochondrial respiratory chain complex in yeast and mammals. Analysis of green fluorescent protein fusions indicated that rice PHB (OsPHB1) was targeted to mitochondria as found in yeast and mammals, suggesting a possibility that PHB is involved in defense response and/or programmed cell death through the mitochondrial function.
Collapse
Affiliation(s)
- Akira Takahashi
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
13
|
Abstract
The transient receptor potential (TRP) superfamily is subdivided into four main classes of cation channels, TRPC, TRPV, TRPM and TRPN, each of which includes members in worms, flies, mice and humans. While the biophysical features of many of the mammalian channels have been described, relatively little is known concerning the biological roles of these channels. Forward genetic screens in Drosophila melanogaster and Caenorhabditis elegans have led to the identification of the founding members of each of these four subfamilies. Moreover, phenotypic analyses of invertebrate mutants have contributed greatly to our understanding of the roles of TRP proteins. A recurring theme is that many of these proteins function in sensory signaling processes ranging from vision to olfaction, osmosensation, light touch, social feeding, and temperature- and mechanically-induced nociception. In addition, at least one invertebrate TRP protein is required for cell division. As many of these functions may be conserved among the mammalian TRPs, the invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo.
Collapse
Affiliation(s)
- Craig Montell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Komori N, Cain SD, Roch JM, Miller KE, Matsumoto H. Differential expression of alternative splice variants of β-arrestin-1 and -2 in rat central nervous system and peripheral tissues. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.1998.00271.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Abstract
The hormone melatonin is synthesized by pinealocytes and retinal photoreceptors with a diurnal rhythm. Melatonin produced in the retina at night is thought to exert local modulatory effects by binding to specific receptors in several different retinal cell types. The mechanisms by which melatonin influences circadian activity in retinal cells is poorly understood. Suppression of cyclic AMP synthesis appears to be a major signaling pathway in response to melatonin receptor binding in many tissues. A potential downstream consequence of melatonin-induced changes in cyclic AMP concentrations and protein phosphorylation is the up- or down-regulation of expression of specific genes. In this report, we examined the changes in expression levels of specific proteins in the neural retina and retinal pigment epithelium (RPE) in response to melatonin treatment, because both of these tissues express melatonin receptors. Neural retina and RPE isolated from the eyes of Xenopus laevis were treated with or without 1 microM melatonin for 6 hr, then the rapidly synthesized tissue proteins were radiolabeled by a 15 min incubation with 35S-methionine, and the proteins were subsequently analyzed by two-dimensional gel electrophoresis and autoradiography. In both the neural retina and RPE, the densities of some specific proteins were altered in response to melatonin treatment, and the few protein spots that were altered were distinct between the two tissues. These results support the concept that one function of melatonin may be to regulate the expression of specific genes and the consequent protein levels, and that the target genes may differ according to the cell or tissue type.
Collapse
Affiliation(s)
- Allan F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | |
Collapse
|
16
|
Lee SJ, Montell C. Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin. Neuron 2001; 32:1097-106. [PMID: 11754840 DOI: 10.1016/s0896-6273(01)00538-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hundreds of G protein-coupled receptors (GPCRs) and at least six GPCR kinases have been identified, but the only GPCR phosphatase that has been definitively demonstrated is the rhodopsin phosphatase encoded by the rdgC locus of Drosophila. Mutations in rdgC result in defects in termination of the light response and cause severe retinal degeneration. In the current work, we demonstrate that RDGC binds to calmodulin, and a mutation in an IQ motif that eliminates the calmodulin/RDGC interaction prevents dephosphorylation of rhodopsin in vivo and disrupts termination of the photoresponse. Our data indicate that RDGC is a novel calmodulin-dependent protein phosphatase and raise the possibility that regulation of other GPCRs through dephosphorylation may be controlled by calmodulin-dependent protein phosphatases related to RDGC.
Collapse
Affiliation(s)
- S J Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
17
|
Matsumoto H, Komori N. Ocular proteomics: cataloging photoreceptor proteins by two-dimensional gel electrophoresis and mass spectrometry. Methods Enzymol 2000; 316:492-511. [PMID: 10800697 DOI: 10.1016/s0076-6879(00)16745-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | |
Collapse
|
18
|
Minke B, Hardie R. Chapter 9 Genetic dissection of Drosophila phototransduction. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
19
|
Matsumoto H, Kahn ES, Komori N. The emerging role of mass spectrometry in molecular biosciences: studies of protein phosphorylation in fly eyes as an example. NOVARTIS FOUNDATION SYMPOSIUM 1999; 224:225-44; discussion 244-8. [PMID: 10614054 DOI: 10.1002/9780470515693.ch13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern mass spectrometry (MS) streamlined with two-dimensional gel electrophoresis, in-gel digestion and HPLC-interfaced electrospray ionization quadrupole MS or matrix-assisted laser desorption ionization time-of-flight MS enables us to analyse proteins at a minuscule scale. We present here two examples of MS applications in which (1) we identified the in vivo phosphorylation site of Drosophila arrestin, phosrestin I (PRI), and (2) we revealed the identity of an 80 kDa phosphoprotein (80K) in Drosophila eyes to be the InaD gene product, a member of the PDZ domain proteins. Available evidence suggests that PRI quenches the activation of rhodopsin and that the InaD protein adjusts photoreceptor responsiveness by assembling/disassembling components involved in photoreceptor transduction in flies. PRI undergoes a reversible phosphorylation at a single site, and 80K at multiple sites. The phosphorylation states of PRI and 80K depend on the intensity and/or duration of light stimuli. From these results we postulate that these proteins function as a molecular switch adjusting the signalling cascade through phosphorylation. The combination of two-dimensional gel electrophoresis with MS will be a powerful tool for detailed investigation of such complex switching processes. The techniques described here can be applied also to other complex signalling systems.
Collapse
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | |
Collapse
|
20
|
Alloway PG, Dolph PJ. A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci U S A 1999; 96:6072-7. [PMID: 10339543 PMCID: PMC26837 DOI: 10.1073/pnas.96.11.6072] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Arrestins are regulatory proteins that participate in the termination of G protein-mediated signal transduction. The major arrestin in the Drosophila visual system, Arrestin 2 (Arr2), is phosphorylated in a light-dependent manner by a Ca2+/calmodulin-dependent protein kinase and has been shown to be essential for the termination of the visual signaling cascade in vivo. Here, we report the isolation of nine alleles of the Drosophila photoreceptor cell-specific arr2 gene. Flies carrying each of these alleles underwent light-dependent retinal degeneration and displayed electrophysiological defects typical of previously identified arrestin mutants, including an allele encoding a protein that lacks the major Ca2+/calmodulin-dependent protein kinase site. The phosphorylation mutant had very low levels of phosphorylation and lacked the light-dependent phosphorylation observed with wild-type Arr2. Interestingly, we found that the Arr2 phosphorylation mutant was still capable of binding to rhodopsin; however, it was unable to release from membranes once rhodopsin had converted back to its inactive form. This finding suggests that phosphorylation of arrestin is necessary for the release of arrestin from rhodopsin. We propose that the sequestering of arrestin to membranes is a possible mechanism for retinal disease associated with previously identified rhodopsin alleles in humans.
Collapse
Affiliation(s)
- P G Alloway
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
21
|
Matsumoto H, Komori N. Protein identification on two-dimensional gels archived nearly two decades ago by in-gel digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Biochem 1999; 270:176-9. [PMID: 10328780 DOI: 10.1006/abio.1999.4054] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology and NSF EPSCoR Oklahoma Laser Mass Spectrometry Facility, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73190, USA
| | | |
Collapse
|
22
|
Gurevich VV, Benovic JL. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 1997; 51:161-169. [PMID: 9016359 DOI: 10.1124/mol.51.1.161] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Arrestin plays an important role in quenching phototransduction via its ability to interact specifically with the phosphorylated light-activated form of the visual receptor rhodopsin (P-Rh*). Previous studies have demonstrated that Arg175 in bovine arrestin is directly involved in the phosphorylation-dependent binding of arrestin to rhodopsin and seems to function as a phosphorylation-sensitive trigger. In this study, we further probed the molecular mechanism of phosphorylation recognition by substituting 19 different amino acids for Arg175. We also assessed the effects of mutagenesis of several other highly conserved residues within the phosphorylation-recognition region (Val170, Leu172, Leu173, Ile174, Val177, and Gln178). The binding of all of these mutants to P-Rh*, light-activated rhodopsin, and truncated rhodopsin, which lacks the carboxyl-terminal phosphorylation sites, was then characterized. Overall, our results suggest that arrestin interaction with the phosphorylated carboxyl-terminal domain of rhodopsin activates two relatively independent changes in arrestin: (a) mobilization of additional binding sites and (b) increased affinity of the phosphorylation-recognition region for the rhodopsin carboxyl-terminal domain. Together, these two mechanisms ensure the exquisite selectivity of arrestin toward P-Rh*. Mutagenesis of residues that play a major role in binding site mobilization and phosphorylation-recognition enabled us to create "constitutively active" (phosphorylation-independent) arrestin mutants that have high affinity for both P-Rh* and light-activated rhodopsin. The introduction of a negative charge in position 175 was particularly effective in this respect. A detailed molecular model of phosphorylation-recognition is proposed.
Collapse
Affiliation(s)
- V V Gurevich
- Department of Biochemistry and Molecular Pharmacology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
23
|
Calman BG, Andrews AW, Rissler HM, Edwards SC, Battelle BA. Calcium/calmodulin-dependent protein kinase II and arrestin phosphorylation in Limulus eyes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1996; 35:33-44. [PMID: 8823933 DOI: 10.1016/1011-1344(96)07312-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In rhabdomeral photoreceptors, light stimulates the phosphorylation of arrestin, a protein critical for quenching the photoresponse, by activating a calcium/calmodulin-dependent protein kinase (CaM PK). Here we present biochemical evidence that a CaM PK that phosphorylates arrestin in Limulus eyes is structurally similar to mammalian CaM PK II. In addition, cDNAs encoding proteins homologous to mammalian and Drosophila CaM PK II in the catalytic and regulatory domains were cloned and sequenced from a Limulus lateral eye cDNA library. The Limulus sequences are unique, however, in that they lack most of the association domain. The proteins encoded by these sequences may phosphorylate arrestin.
Collapse
Affiliation(s)
- B G Calman
- Whitney Laboratory, University of Florida, St. Augustine 32086, USA
| | | | | | | | | |
Collapse
|
24
|
Huber A, Sander P, Paulsen R. Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J Biol Chem 1996; 271:11710-7. [PMID: 8662634 DOI: 10.1074/jbc.271.20.11710] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In an approach directed to isolate and characterize key proteins of the transduction cascade in photoreceptors using the phosphoinositide signaling pathway, we have isolated the Calliphora homolog of the Drosophila InaD gene product, which in Drosophila InaD mutants causes slow deactivation of the light response. By screening a retinal cDNA library with antibodies directed against photoreceptor membrane proteins, we have isolated a cDNA coding for an amino acid sequence of 665 residues (Mr = 73,349). The sequence displays 65.3% identity (77.3% similarity) with the Drosophila InaD gene product. Probing Western blots with monospecific antibodies directed against peptides comprising amino acids 272-542 (anti-InaD-(272-542)) or amino acids 643-655 (anti-InaD-(643-655)) of the InaD gene product revealed that the Calliphora InaD protein is specifically associated with the signal-transducing rhabdomeral photoreceptor membrane from which it can be extracted by high salt buffer containing 1.5 M NaCl. As five out of eight consensus sequences for protein kinase C phosphorylation reside within stretches of 10-16 amino acids that are identical in the Drosophila and Calliphora InaD protein, the InaD gene product is likely to be a target of protein kinase C. Phosphorylation studies with isolated rhabdomeral photoreceptor membranes followed by InaD immunoprecipitation revealed that the InaD protein is a phosphoprotein. In vitro phosphorylation is, at least to some extent, Ca 2+ dependent and activated by phorbol 12-myristate 13-acetate. The inaC-encoded eye-specific form of a protein kinase C (eye-PKC) is co-precipitated by antibodies specific for the InaD protein from detergent extracts of rhabdomeral photoreceptor membranes, suggesting that the InaD protein and eye-PKC are interacting in these membranes. Co-precipitating with the InaD protein and eye-PKC are two other key components of the transduction pathway, namely the trp protein, which is proposed to form a Ca2+ channel, and the norpA-encoded phospholipase C, the primary target enzyme of the transduction pathway. It is proposed that the rise of the intracellular Ca2+ concentration upon visual excitation initiates the phosphorylation of the InaD protein by eye-PKC and thereby modulates its function in the control of the light response.
Collapse
Affiliation(s)
- A Huber
- Zoological Institute I, University of Karlsruhe, Germany
| | | | | |
Collapse
|
25
|
Edwards SC, O'Day PM, Herrera DC. Characterization of protein phosphatases type 1 and type 2A in Limulus nervous tissue: their light regulation in the lateral eye and evidence of involvement in the photoresponse. Vis Neurosci 1996; 13:73-85. [PMID: 8730991 DOI: 10.1017/s0952523800007148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The activities of both protein phosphatases and protein kinases are responsible for the transient changes in the levels of phosphorylation and probably the functions of protein intermediates involved in the biochemical and physiological mechanisms underlying the photoresponse in photoreceptor cells from both vertebrate and invertebrate organisms. Of the known protein serine/threonine phosphatases, various forms of type 1 (PP 1) and type 2A (PP 2A) protein phosphatases are responsible for dephosphorylating many of the known phosphoproteins including those involved in photoreceptor cell function. In this report, we provide biochemical evidence for both PP 1- and PP 2A-like activities in the visual and nonvisual tissue of the horseshoe crab, Limulus polyphemus, that membrane and soluble forms of both enzymes are present, and that the activities of both enzymes are greater in light- than in dark-adapted lateral eyes. These activities were characterized using glycogen phosphorylase a, a substrate for both PP 1 and PP 2A, and various protein phosphatase inhibitors, including okadaic acid. We also report that okadaic acid, at concentrations required to inhibit PP 1, inhibited physiological functions of photoreceptor cells from the ventral eye, causing a delayed reduction of the resting membrane, and slowing and reducing light responses.
Collapse
Affiliation(s)
- S C Edwards
- Department of Biology, University of South Florida, Tampa 33620-5150, USA
| | | | | |
Collapse
|
26
|
Ranganathan R, Stevens CF. Arrestin binding determines the rate of inactivation of the G protein-coupled receptor rhodopsin in vivo. Cell 1995; 81:841-8. [PMID: 7781061 DOI: 10.1016/0092-8674(95)90004-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G protein-coupled receptor inactivation is a crucial feature of cellular signaling systems; this process determines the catalytic lifetime of the activated receptor and is necessary for response termination. Although previous work has indicated a class of models in which several sequential steps are required for receptor inactivation, the rate-limiting event is still unclear. In this paper, we develop a theory that describes the kinetics of inactivation of the G protein-coupled receptor rhodopsin based on the rate of arrestin binding and test the theory using a combination of genetic and electrophysiological techniques in Drosophila photoreceptors. The theory quantitatively describes the inactivation kinetics of activated rhodopsin in vivo and can be independently tested with molecular and spectroscopic data. The results demonstrate that the rate of arrestin binding determines the kinetics of receptor inactivation in vivo and thus is the event that controls signal amplification at the first step of this G protein-coupled transduction cascade.
Collapse
Affiliation(s)
- R Ranganathan
- Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, USA
| | | |
Collapse
|
27
|
Komori N, Usukura J, Kurien B, Shichi H, Matsumoto H. Phosrestin I, an arrestin homolog that undergoes light-induced phosphorylation in dipteran photoreceptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:607-617. [PMID: 7519097 DOI: 10.1016/0965-1748(94)90097-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two classes of phosphorylated homologs of vertebrate arrestins, designated phosrestins I (PRI) and phosrestin II (PRII), are expressed in the photoreceptors of a fruit fly, Drosophila melanogaster. This study presents evidence that the housefly, Musca domestica, also has a protein similar to Drosophila PRI. Our conclusion is based on the following evidence. (1) We identified a Musca photoreceptor protein exhibiting a molecular mass (51 kDa) and an isoelectric point (pI = 8.6) similar to those of Drosophila PRI. This Musca protein, designated Musca PRI, changes its pI upon illumination in vivo. Drosophila PRI. This Musca protein, designated Musca PRI, changes its pI upon illumination in vivo. (2) Rabbit antibodies raised against Musca PRI, against bovine arrestin, and against a synthetic peptide based on the Drosophila PRI sequence stained the Drosophila and Musca PRIs specifically on 1 and 2-dimensional Western immunoblots. (3) Both Drosophila and Musca PRIs incorporated 32P-radioactivity from gamma-32P-ATP in cell-free homogenates of retinas. Partial peptide digestions of Drosophila and Musca PRIs revealed similarity between these proteins. We observed that Drosophila PRI exists in the random preparation, but it also exists in other subcellular fractions. Immunocytochemistry at the EM level revealed a distribution of both Drosophila and Musca PRI epitopes in membranous vesicular structures in the cytosol as well as in the rhabdomeric microvillar membranes where the visual pigment, rhodopsin, exists. Such distribution of PRI epitopes suggests that PRI and its light-dependent phosphorylation may function in a space remote from the rhabdomere as well as the immediate milieu of photoreception.
Collapse
Affiliation(s)
- N Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|
28
|
Matsumoto H, Kurien BT, Takagi Y, Kahn ES, Kinumi T, Komori N, Yamada T, Hayashi F, Isono K, Pak WL. Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron 1994; 12:997-1010. [PMID: 8185954 DOI: 10.1016/0896-6273(94)90309-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Activation of PI-PLC initiates two independent branches of protein phosphorylation cascades catalyzed by either PKC or Ca2+/calmodulin-dependent protein kinase (CaMK). We find that phosrestin I (PRI), a Drosophila homolog of vertebrate photoreceptor arrestin, undergoes light-induced phosphorylation on a subsecond time scale which is faster than that of any other protein in vivo. We determine that a CaMK activity is responsible for in vitro PRI phosphorylation at Ser366 in the C-terminal tryptic segment, MetLysSer(P)IleGluGlnHisArg, in which Ser(P) represents phosphoserine366. We also demonstrate that Ser366 is the phosphorylation site of PRI in vivo by identifying the molecular species resulting from in-gel tryptic digestion of purified phospho-PRI using HPLC-electrospray ionization tandem quadrupole mass spectroscopy. From these data, we conclude that the CaMK pathway, not the PKC pathway, is responsible for the earliest protein phosphorylation event following activation of PI-PLC in living Drosophila photoreceptors.
Collapse
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Terakita A, Tsukahara Y, Hariyama T, Seki T, Tashiro H. Light-induced binding of proteins to rhabdomeric membranes in the retina of crayfish (Procambarus clarkii). Vision Res 1993; 33:2421-6. [PMID: 8249320 DOI: 10.1016/0042-6989(93)90120-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Light-induced protein interaction as part of the process of visual transduction in arthropods with rhabdomeric photoreceptors was investigated biochemically by using crayfish retina. Two kinds of retinal buffer soluble proteins (one of 40 kDa and the other of 46 kDa) were found to bind to the irradiated rhabdomeric membranes both in vitro and in vivo. The proteins bound to the membranes in the presence of metarhodopsin. An antibody against mouse arrestin (S-antigen) cross-reacted with the 40 kDa protein. These results suggest that the binding of the proteins to the membranes is caused by the formation of metarhodopsin, and that the 40 kDa protein has a similar structure to arrestin.
Collapse
Affiliation(s)
- A Terakita
- Laboratory for Photobiology, Institute of Chemical and Physical Research (RIKEN), Sendai, Japan
| | | | | | | | | |
Collapse
|
30
|
Selinger Z, Doza YN, Minke B. Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1179:283-99. [PMID: 8218373 DOI: 10.1016/0167-4889(93)90084-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Z Selinger
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
31
|
Bentrop J, Plangger A, Paulsen R. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:67-73. [PMID: 8365418 DOI: 10.1111/j.1432-1033.1993.tb18117.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An arrestin homolog (Arr2, 49-kDa protein) of blowfly (Calliphora erythrocephala) retinae undergoes light-dependent reversible binding to the photoreceptor membrane. In order to characterize this arrestin homolog and to study its function in a well-defined experimental system, we developed a purification scheme which used microvillar photoreceptor membranes as an affinity binding matrix. Additional purification steps included ammonium sulfate precipitation, gel filtration and binding to heparin-agarose. The molecular mass of purified Arr2, as judged by SDS/PAGE, is in the range 45-49 kDa. The isoelectric point, as judged by gel isoelectric focussing, is 8.7. Arr2 is specific to the retina, where it is subject to phosphorylation at multiple sites. Binding of purified Arr2 to isolated photoreceptor membranes efficiently activates the light-induced phosphorylation of visual pigment. Since the assay system used is deficient in rhodopsin phosphatase activity, the arrestin-stimulated phosphate incorporation into rhodopsin results solely from the activation of a protein kinase. Phosphorylation experiments with highly purified membrane preparations indicate that rhodopsin kinase is tightly associated with the rhabdomeric membrane or the microvillar cytoskeleton. Rhodopsin kinase is released from the membrane or inactivated upon treatment with urea. It is concluded that this arrestin is a regulator protein that controls visual-pigment phosphorylation by affecting the interaction of metarhodopsin and rhodopsin (metarhodopsin) kinase.
Collapse
Affiliation(s)
- J Bentrop
- Institut für Zoologie I, Universität Karlsruhe, Germany
| | | | | |
Collapse
|
32
|
Porter JA, Montell C. Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J Cell Biol 1993; 122:601-12. [PMID: 8335687 PMCID: PMC2119665 DOI: 10.1083/jcb.122.3.601] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Drosophila ninaC locus encodes a rhabdomere specific protein (p174) with linked protein kinase and myosin domains, required for a wild-type ERG and to prevent retinal degeneration. To investigate the role for linked kinase and myosin domains, we analyzed mutants generated by site-directed mutagenesis. Mutation of the kinase domain resulted in an ERG phenotype but no retinal degeneration. Deletion of the myosin domain caused a change in the subcellular distribution of p174 and resulted in both ERG and retinal degeneration phenotypes. Temperature-sensitive mutations in the myosin domain resulted in retinal degeneration, but no ERG phenotype. These results indicated that the ERG and retinal degeneration phenotypes were not strictly coupled suggesting that the myosin domain has multiple functions. We propose that the role of the kinase domain is to regulate other rhabdomeric proteins important in phototransduction and that the myosin domain has at least two roles: to traffic the kinase into the rhabdomeres and to maintain the rhabdomeres.
Collapse
Affiliation(s)
- J A Porter
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
33
|
Byk T, Bar-Yaacov M, Doza YN, Minke B, Selinger Z. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc Natl Acad Sci U S A 1993; 90:1907-11. [PMID: 8446607 PMCID: PMC45989 DOI: 10.1073/pnas.90.5.1907] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells.
Collapse
Affiliation(s)
- T Byk
- Department of Biological Chemistry, Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- P A Hargrave
- Department of Ophthalmology, School of Medicine, University of Florida, Gainesville 32610
| | | |
Collapse
|
35
|
Steele FR, Washburn T, Rieger R, O'Tousa JE. Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell 1992; 69:669-76. [PMID: 1316807 DOI: 10.1016/0092-8674(92)90230-a] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Drosophila retinal degeneration C (rdgC) gene is required to prevent light-induced retinal degeneration. Molecular analysis shows that the rdgC transcription unit encodes a novel serine/threonine protein phosphatase. Amino acids 153-393 define a domain that has 30% identity with the catalytic domains of types 1, 2A, and 2B serine/threonine protein phosphatases. A putative regulatory domain is appended that contains multiple potential Ca(2+)-binding sites or "EF hand motifs." Thus, the analysis suggests that the rdgC protein is a novel type of serine/threonine protein phosphatase that is directly regulated by Ca2+. rdgC is expressed in the visual systems of the fly, as well as in the mushroom bodies of the central brain.
Collapse
Affiliation(s)
- F R Steele
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
36
|
Matsumoto H, Yamada T. Phosrestins I and II: arrestin homologs which undergo differential light-induced phosphorylation in the Drosophila photoreceptor in vivo. Biochem Biophys Res Commun 1991; 177:1306-12. [PMID: 1905538 DOI: 10.1016/0006-291x(91)90683-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 49-kDa phosphoprotein gene and Dmarrestin gene encode two distinct arrestin homologs in the Drosophila photoreceptor. We find that two DNA fragments representing the Dmarrestin gene hybrid-selected a mRNA the in vitro translation of which produced a protein corresponding to the 39-kDa phosphoprotein previously reported by us. We propose to name these phosphorylated homologs of arrestin phosrestin I (49-kDa protein) and phosrestin II (39-kDa protein or the Dmarrestin gene product). We find that phosrestins I and II follow different time courses of phosphorylation in vivo; in the time period (approximate seconds) during which 43% of phosrestin I became phosphorylated, the phosphorylated state of phosrestin II remained unchanged from that of the nonilluminated flies. These results indicate that phosrestins I and II probably occupy different functional roles in the Drosophila photoreceptor.
Collapse
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | |
Collapse
|
37
|
Trowell SC, Clausen JA, Blest A. The principal light-phosphorylated protein of crab retina is a phosphatase. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0305-0491(91)90142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
LeVine H, Smith DP, Whitney M, Malicki DM, Dolph PJ, Smith GF, Burkhart W, Zuker CS. Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation. Mech Dev 1990; 33:19-25. [PMID: 2129011 DOI: 10.1016/0925-4773(90)90131-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Absorption of a photon of light by rhodopsin triggers mechanisms responsible for excitation as well as regulation of the phototransduction cascade. Arrestins are a family of proteins that appear to be responsible for terminating the active state of G-protein-coupled receptors. One of the major substrates of light-dependent phosphorylation in the visual cascade of Drosophila was purified and partially sequenced. The complete primary structure of the protein was determined by isolating the corresponding gene, which revealed it to be a new isoform of arrestin, Arr2. Arr2 is 401 residues in length, and shares 47% sequence identity with the Drosophila Arr1 protein and 42% with human arrestin. We show that the two Drosophila arrestin genes are differentially regulated, and that Arr2 is a specific substrate for a calcium-dependent protein kinase. This is the first demonstration of in vivo regulation of arrestins in a transduction cascade, and provides a new level of modulation in the function of G-protein-coupled receptors.
Collapse
Affiliation(s)
- H LeVine
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamada T, Takeuchi Y, Komori N, Kobayashi H, Sakai Y, Hotta Y, Matsumoto H. A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science 1990; 248:483-6. [PMID: 2158671 DOI: 10.1126/science.2158671] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gene encoding the 49-kilodalton protein that undergoes light-induced phosphorylation in the Drosophila photoreceptor has been isolated and characterized. The encoded protein has 401 amino acid residues and a molecular mass of 44,972 daltons, and it shares approximately 42 percent amino acid sequence identity with arrestin (S-antigen), which has been proposed to quench the light-induced cascade of guanosine 3',5'-monophosphate hydrolysis in vertebrate photoreceptors. Unlike the 49-kilodalton protein, however, arrestin, which appears to bind to phosphorylated rhodopsin, has not itself been reported to undergo phosphorylation. In vitro, Ca2+ was the only agent found that would stimulate the phosphorylation of the 49-kilodalton protein. The phosphorylation of this arrestin-like protein in vivo may therefore be triggered by a Ca2+ signal that is likely to be regulated by light-activated phosphoinositide-specific phospholipase C.
Collapse
Affiliation(s)
- T Yamada
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | | | | | |
Collapse
|
40
|
Lauter FR, Russo VE. Light-induced dephosphorylation of a 33 kDa protein in the wild-type strain of Neurospora crassa: the regulatory mutants wc-1 and wc-2 are abnormal. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 5:95-103. [PMID: 2140412 DOI: 10.1016/1011-1344(90)85008-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Light induces the dephosphorylation of a 33 kdalton protein within 8 min in the wild-type strain of Neurospora crassa. The regulatory mutants, wc-1 and wc-2, have an altered pattern of phosphoproteins in darkness and also after irradiation. Because the wc genes have previously been implicated in photodifferentiation (F. Degli Innocenti and V. E. A. Russo, Genetic analysis of blue light-induced responses in Neurospora crassa, in H. Senger (ed.), Blue Light Effects in Biological Systems, Springer-Verlag, Berlin, Heidelberg, 1984, pp. 213-219), we suggest that protein dephosphorylation may constitute a necessary step in the light-transduction chain of Neurospora crassa.
Collapse
Affiliation(s)
- F R Lauter
- Max-Planck-Institut für Molekulare Genetik, Berlin, F.R.G
| | | |
Collapse
|
41
|
Hyde DR, Mecklenburg KL, Pollock JA, Vihtelic TS, Benzer S. Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. Proc Natl Acad Sci U S A 1990; 87:1008-12. [PMID: 2105491 PMCID: PMC53399 DOI: 10.1073/pnas.87.3.1008] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
From a group of 436 Drosophila melanogaster cDNA clones, we selected 39 that are expressed exclusively or predominantly in the adult visual system. By sequence analysis, 20 of the clones appear to represent previously unreported distinct cDNAs. The corresponding transcripts are detected in the retina and optic lobes. The genes are scattered throughout the genome, some near mutations known to affect eye function. One of these clones has been identified, by sequence analysis, as the structural gene (Arr) for a Drosophila homolog of human arrestin. Vertebrate arrestin interacts with rhodopsin in phototransduction and has been associated with an autoimmune form of uveitis in primates. The presence of an arrestin homolog in Drosophila suggests that both the vertebrate and invertebrate phototransduction cascades are regulated in a similar manner.
Collapse
Affiliation(s)
- D R Hyde
- Department of Biological Sciences, University of Notre Dame, IN 46556
| | | | | | | | | |
Collapse
|
42
|
Edwards SC, Wishart AC, Wiebe EM, Battelle BA. Light-regulated proteins in Limulus ventral photoreceptor cells. Vis Neurosci 1989; 3:95-105. [PMID: 2487101 DOI: 10.1017/s0952523800004417] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protein intermediates of the photoresponse and the modulation of this response in invertebrate photoreceptors are largely unknown. As a first step toward identifying these proteins, we have examined light-stimulated changes in protein phosphorylation in preparations of Limulus photoreceptors. Here we show that light modulates the level of phosphorylation of three proteins associated with Limulus ventral photoreceptors: the upper band of a 46-kD protein doublet (46A) and a 122-kD protein, which become more heavily phosphorylated in response to light, and the lower component of the 46-kD doublet (46B), which is phosphorylated in dark-adapted cells, but not in cells maintained in the light. In dark-adapted preparations, 46A is phosphorylated within 30 s after a flash of light and dephosphorylates over a period of many minutes. It is also a major substrate for calcium/calmodulin-dependent protein kinase (Wiebe et al., 1989); therefore, we speculate that 46A is involved in some aspect of dark adaptation. Interestingly, the level of phosphorylation of 46A is the same when measured from preparations maintained in complete darkness or ambient light for at least 1.5 h. The 122-kD phosphoprotein is the same protein which becomes phosphorylated in response to efferent innervation to Limulus eyes (Edwards et al., 1988) and the efferent neurotransmitter, octopamine (Edwards and Battelle, 1987). It may be involved in the increase in retinal sensitivity and the enhanced response of photoreceptors to light that is initiated by efferent innervation. Its role in light-stimulated processes is not clear. The level of phosphorylation of 46B may be most relevant to the long-term state of adaptation of the photoreceptor cell to light and dark.
Collapse
Affiliation(s)
- S C Edwards
- Whitney Laboratory, University of Florida, St. Augustine
| | | | | | | |
Collapse
|
43
|
Abstract
Monoclonal antibodies (mABs) from hybridoma cells were raised and screened with a purified cone pigment, iodopsin, from the chicken retina. Four different methods were used to test these antibodies: (1) dot-immunobinding assay; (2) enzyme-linked immunoabsorbent assay (ELISA); (3) one dimensional immunoblotting and (4) two dimensional immunoblotting. Three classes of antibody producing cell lines were identified. One class produces a mAB specific to iodopsin. The mAB from the second class crossreacts with iodopsin and probably one of the other three cone pigments. The mAB from the third class probably crossreacts with all the four cone pigments in the chicken retina. The mABs from all these classes of hybridoma cell lines were selected so that they do not crossreact with rhodopsin. Two dimensional immunoblotting indicated that iodopsin has a much higher isoelectric point than rhodopsin, as suggested from the known amino acid sequences of human rod and cone pigments.
Collapse
Affiliation(s)
- J G Chen
- Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801
| | | | | | | |
Collapse
|
44
|
Komori N, Rider MA, Takemoto DJ, Shichi H, Matsumoto H. ADP-ribosylation of bovine S-antigen by cholera toxin. Biochem Biophys Res Commun 1988; 156:1160-5. [PMID: 3190695 DOI: 10.1016/s0006-291x(88)80754-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The S-antigen (alias 48K protein or arrestin) of bovine rod photoreceptors contains two stretches of amino acid sequence homologous to the ADP-ribosylation sites of the alpha subunit of transducin (Ta). We have found that cholera toxin transfers the ADP-ribosyl group from NAD to purified bovine S-antigen as well as to S-antigen in rod outer segment membranes, while Bordetella pertussis toxin is unable to catalyze the transfer reaction efficiently. Under the same conditions, both toxins catalyzed ADP-ribosylation of Ta in rod outer segments. The ADP-ribosylation of S-antigen by cholera toxin indicates that S-antigen not only exhibits sequence homology with the ADP-ribosylation sites of Ta, but it must also resemble Ta in the tertiary structure of the domain which determines the susceptibility of S-antigen to the catalytic action of cholera toxin. These results suggest that S-antigen may function as a competitor of Ta in some stage of the cGMP cascade of visual transduction.
Collapse
Affiliation(s)
- N Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|
45
|
Müller U, Wojna Z, König B, Spatz HC. Thiophosphorylation of the regulatory subunit of the cAMP-dependent protein kinase from Drosophila brain tissue. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0020-1790(88)90049-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
YAMADA TAKUMA, HOTTA YOSHIKI. LOCALIZATION OF A DROSOPHILA EYE PROTEIN WHICH IS PHOSPHORYLATED AFTER LIGHT STIMULATION. Biomed Res 1988. [DOI: 10.2220/biomedres.9.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
|
48
|
Hong CB, Prusti RK, Song PS. Light-adaptation in the photophobic response by Stentor coeruleus. Arch Microbiol 1987; 147:117-20. [PMID: 3109345 DOI: 10.1007/bf00415271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Effects of preillumination on photophobic response (light-adaptation) and recovery of the photophobic sensitivity in the dark (dark-adaptation) in Stentor coeruleus were examined. When the cells were preilluminated with white light of 7.80 W/m2 for 2 min, the fluence-rate response curve of photophobic response was shifted toward higher light intensities by half an order of magnitude compared to the one without preillumination. Preillumination with a higher light intensity resulted in a further shift of the fluence-rate response curve. An action spectrum for light-adaptation showed a primary peak at 610 nm and secondary peaks at 540 and 480 nm which are almost identical to the peaks observed in the photophobic action spectrum. The light-adapted cells showed a recovery of their photophobic sensing ability following dark treatment. Dark-adaptation resulted in total recovery of photophobic sensing ability in 8 minutes for the most cases examined.
Collapse
|
49
|
Willmund R, Mitschulat H, Schneider K. Long-term modulation of Ca2+-stimulated autophosphorylation and subcellular distribution of the Ca2+/calmodulin-dependent protein kinase in the brain of Drosophila. Proc Natl Acad Sci U S A 1986; 83:9789-93. [PMID: 3099290 PMCID: PMC387227 DOI: 10.1073/pnas.83.24.9789] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
After prolonged visual adaptation of Drosophila, dramatic long-term changes of in vitro phosphorylation of a 50-kDa brain protein that is identical to the Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) can be measured in isolated heads. By selective receptor cell desensitization in blue light, subcellular distribution of the 50-kDa kinase in fly brain is modified, and Ca2+-stimulated in vitro phosphorylation is increased. Concomitantly the 50-kDa kinase is translocated by in vitro phosphorylation from the membrane-cytoskeleton complex into the cytoplasm. After adaptation, association of the enzyme to the membrane shows long-term modification. In yellow light, which reverts receptor cell adaptation within seconds, the changes in kinase activity and distribution remain for about 2 hr, corresponding to the duration of behavioral modification induced by blue light. Reducing protein synthesis with cycloheximide inhibits the induction of behavioral modification as well as the prolonged modulation of the 50-kDa kinase by blue light. From our simple assay to measure biochemical changes induced in the intact organism by sensory stimulation, we propose that Ca2+/calmodulin-dependent kinase II is involved in long-term modulation of synaptic transmission.
Collapse
|
50
|
Bentrop J, Paulsen R. Light-modulated ADP-ribosylation, protein phosphorylation and protein binding in isolated fly photoreceptor membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:61-7. [PMID: 3780740 DOI: 10.1111/j.1432-1033.1986.tb10124.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhodopsin (P, lambda max 480 nm) of blowfly photoreceptors R1-6 is converted by light into a thermally stable metarhodopsin (M, lambda max 565 nm). In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane. ADP-ribosylation of the 41-kDa protein is catalyzed by cholera toxin and is inhibited by P----M conversion. The 41-kDa protein might represent the alpha-subunit of the G-protein, proposed to be part of the phototransduction mechanism [Blumenfeld, A. et al. (1985) Proc. Natl Acad. Sci. USA 82, 7116-7120]. P----M conversion leads to phosphorylation of opsin at multiple binding sites: up to 4 mol phosphate are bound/mol M formed. Dephosphorylation of the phosphate binding sites is induced by photoconversion of M to P. High levels of calcium (2 mM) inhibit phosphorylation of M and increase dephosphorylation of P. Protein patterns obtained by sodium dodecyl sulfate gel electrophoresis of irradiated retina membranes show an increased incorporation of label from [gamma-32P]ATP also into protein bands of 48 kDa, 68 kDa and 200 kDa. Binding studies reveal that in the case of the 48-kDa protein this effect is primarily due to a light-induced binding of the protein to the photoreceptor membrane. The binding of the 48-kDa phosphoprotein is reversible: after M----P conversion the protein becomes extractable by isotonic buffers. These data suggest that in rhabdomeric photoreceptors of invertebrates light-activation of rhodopsin is coupled to an enzyme cascade in a similar way as in the ciliary photoreceptors of vertebrates, although there may be differences, e.g. in the type of G-protein which mediates between the activated state of metarhodopsin and a signal-amplifying enzyme reaction.
Collapse
|