1
|
Fung D, Razi A, Pandos M, Velez B, Fermin Perez E, Adams L, Rawson S, Walsh RM, Hanna J. Evidence supporting a catalytic pentad mechanism for the proteasome and other N-terminal nucleophile enzymes. Nat Commun 2025; 16:2949. [PMID: 40140419 PMCID: PMC11947121 DOI: 10.1038/s41467-025-58077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Proteases are defined by their nucleophile but require additional residues to regulate their active sites, most often arranged as catalytic triads that control the generation and resolution of acyl-enzyme intermediates. Threonine N-terminal nucleophiles represent a diverse family of proteases and transferases that possess two active site nucleophiles, the side chain hydroxyl and the free amino-terminus, and require autocatalytic cleavage of their N-terminal propeptides. Here we provide evidence that the proteasome, which mediates intracellular protein degradation and contains three different threonine protease subunits, utilizes a unique catalytic pentad mechanism. In addition to the previously defined lysine/aspartate pair which regulates threonine's side chain, a second serine/aspartate pair appears to regulate threonine's amino-terminus. The pentad is required for substrate proteolysis and assembly-coupled autocatalytic cleavage, the latter triggered by alignment of the full pentad upon fusion of two half-proteasome precursors. A similar pentad mechanism was required by the ornithine acetyltransferase Arg7, suggesting that this may be a general property of threonine N-terminal nucleophiles. Finally, we show that two patient-derived proteasome mutations compromise function of the serine/aspartate unit in yeast, suggesting that defective pentad function may underlie some human proteasomopathies.
Collapse
Affiliation(s)
- Darlene Fung
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Pandos
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Erignacio Fermin Perez
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lea Adams
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Shah S, Shi CM, Elgizawy KK, Yan WH, Wu G, Wang XP, Yang FL. E3 Siah ubiquitin ligase regulates dichotomous spermatogenesis in Sitotroga cerealella. Front Cell Dev Biol 2025; 12:1507725. [PMID: 39866841 PMCID: PMC11759277 DOI: 10.3389/fcell.2024.1507725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of ScE3 Siah in dichotomous spermatogenesis of adult Sitotroga cerealella. In S. cerealella E3 ligase Siah predominantly expressed in adult tissues. Knockdown of ScE3 Siah leads to disruptions in testes and sperm morphology, affecting the structure of eupyrene and apyrene sperm bundles and causing defective ultrastructure in eupyrene sperm. This disruption results in a reduction in the number of dichotomous sperms and significantly reduces their motility. Moreover, ScE3 Siah knockdown inhibits the transfer and motility of dichotomous sperm, impacting spermatophore formation in females and ultimately reducing egg production. Understanding the role of ScE3 Siah is not only crucial for comprehending the complex processes involved in dichotomous spermatogenesis and fertilization but also provides an avenue for sustainable pest control management.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chun-Mei Shi
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Egypt
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Eadsforth TC, Torrie LS, Rowland P, Edgar EV, MacLean LM, Paterson C, Robinson DA, Shepherd SM, Thomas J, Thomas MG, Gray DW, Postis VLG, De Rycker M. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J Biol Chem 2025; 301:108049. [PMID: 39638245 PMCID: PMC11748689 DOI: 10.1016/j.jbc.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T. cruzi proteasome. Active-site mutant recombinant proteasomes reveal substrate promiscuity for WT proteasomes, with important implications for assessing pharmacological responses of active-site selective inhibitors. Using these mutant proteasomes, we show that some selective parasite proteasome inhibitors only partially inhibit the chymotrypsin-like activity, including a newly developed 5-(phenoxymethyl)furan-2-carboxamide-based proteasome inhibitor. In spite of partial inhibition, these compounds remain potent inhibitors of intracellular T. cruzi growth. Drug-resistant mutants provide further insights in drug mode-of-inhibition. We also present the high-resolution CryoEM structures of both native and recombinantly-expressed T. cruzi proteasomes which reveal pharmacologically relevant differences in the ligand-binding site compared to the related Leishmania proteasome. Furthermore, we show that the trypanosomatid β4/β5 selectivity pocket is not present in the proteasome structures of other protozoan parasites. This work highlights the need, and provides approaches, to precisely assess proteasome substrate selectivity and pharmacology. It enables structure-guided drug discovery for this promising Chagas disease drug target, provides a new chemical starting point for drug discovery, and paves the road for development of robust proteasome drug discovery programmes for other eukaryotic infectious diseases.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Lorna M MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David A Robinson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Sharon M Shepherd
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Michael G Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Vincent L G Postis
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Salcedo-Tacuma D, Howells GD, McHose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: a comprehensive database for identifying HbYX motif-containing proteins across the tree of life. BMC Genomics 2024; 25:951. [PMID: 39396964 PMCID: PMC11475706 DOI: 10.1186/s12864-024-10864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were experimentally tested by pulldowns, confirming that they directly interact with the proteasome, with one of them directly activating it. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Giovanni D Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Coleman McHose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
5
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
6
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
7
|
Salcedo-Tacuma D, Howells G, Mchose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: A Comprehensive Database for Identifying HbYX Motif-Containing Proteins Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598080. [PMID: 38895466 PMCID: PMC11185799 DOI: 10.1101/2024.06.08.598080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were tested and found to directly interact with the proteasome. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer. Link: http://proend.org/.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Coleman Mchose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
8
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Shah S, Elgizawy KK, Wu MY, Yao H, Yan WH, Li Y, Wang XP, Wu G, Yang FL. Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin-Proteasome Pathway. Cells 2023; 12:2507. [PMID: 37887351 PMCID: PMC10605923 DOI: 10.3390/cells12202507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin-proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Meng-Ya Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Hucheng Yao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Yu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| |
Collapse
|
10
|
Pawar KS, Singh PN, Singh SK. Fungal alkaline proteases and their potential applications in different industries. Front Microbiol 2023; 14:1138401. [PMID: 37065163 PMCID: PMC10098022 DOI: 10.3389/fmicb.2023.1138401] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
The consumption of various enzymes in industrial applications around the world has increased immensely. Nowadays, industries are more focused on incorporating microbial enzymes in multiple processes to avoid the hazardous effects of chemicals. Among these commercially exploited enzymes, proteases are the most abundantly used enzymes in different industries. Numerous bacterial alkaline proteases have been studied widely and are commercially available; however, fungi exhibit a broader variety of proteases than bacteria. Additionally, since fungi are often recognized as generally regarded as safe (GRAS), using them as enzyme producers is safer than using bacteria. Fungal alkaline proteases are appealing models for industrial use because of their distinct spectrum of action and enormous diversity in terms of being active under alkaline range of pH. Unlike bacteria, fungi are less studied for alkaline protease production. Moreover, group of fungi growing at alkaline pH has remained unexplored for their capability for the production of commercially valuable products that are stable at alkaline pH. The current review focuses on the detailed classification of proteases, the production of alkaline proteases from different fungi by fermentation (submerged and solid–state), and their potential applications in detergent, leather, food, pharmaceutical industries along with their important role in silk degumming, waste management and silver recovery processes. Furthermore, the promising role of alkali–tolerant and alkaliphilic fungi in enzyme production has been discussed briefly. This will highlight the need for more research on fungi growing at alkaline pH and their biotechnological potential.
Collapse
|
11
|
He L, Zhang HR, Di WD, Li FF, Wang CQ, Yang X, Liu XF, Hu M. A proteasomal β5 subunit of Haemonchus contortus with a role in the growth, development and life span. Parasit Vectors 2023; 16:100. [PMID: 36922877 PMCID: PMC10015785 DOI: 10.1186/s13071-023-05676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The proteasome in eukaryotic cells can degrade a variety of proteins and plays an important role in regulating the cell cycle, cell survival and apoptosis. The proteasome receives much attention as a potential chemotherapeutic target for treatment of a variety of infectious parasitic diseases, but few studies of proteasomes have been done on parasitic nematodes. METHODS A proteasomal β5 subunit encoding gene (named Hc-pbs-5) and its inferred product (Hc-PBS-5) in Haemonchus contortus were identified and characterized in this study. Then, the transcriptional profiles and anatomical expression were studied using an integrated molecular approach. Finally, a specific proteasome inhibitor bortezomib (BTZ), together with RNA interference (RNAi), was employed to assess the function of Hc-PBS-5. RESULTS Bioinformatic analysis revealed that the coding sequence of Hc-pbs-5 was 855 bp long and encoded 284 amino acids (aa). The predicted protein (Hc-PBS-5) had core conservative sequences (65-250 aa) belonging to N-terminal nucleophile (Ntn) family of hydrolases. Real-time PCR results revealed that Hc-pbs-5 was continuously transcribed in eight developmental stages with higher levels at the infective third-stage larvae (L3s) and adult males of H. contortus. Immunohistochemical results revealed that Hc-PBS-5 was expressed in intestine, outer cuticle, muscle cells under the outer cuticle, cervical glands and seminal vesicles of male adults and also in intestine, outer cuticle, cervical glands, uterine wall, eggs and ovaries of female adults of H. contortus. BTZ could reduce proportions of egg hatching, and the fourth-stage larvae (L4s) developed from the exsheathed L3s (xL3s) of H. contortus. In addition, silencing Hc-pbs-5 by soaking the specific double-stranded RNA (dsRNA) could decrease the transcription of Hc-pbs-5 and result in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results indicate that proteasomal β5 subunit plays an important role in the growth, development and life span of H. contortus.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Hong-Run Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Wen-Da Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiao-Fang Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
12
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
13
|
Wang X, Wu K, Zhang H, Liu J, Yang Z, Bai J, Liu H, Shao L. Efficient side-chain deacylation of polymyxin B1 in recombinant Streptomyces strains. Biotechnol Lett 2022; 44:1287-1299. [PMID: 36076042 DOI: 10.1007/s10529-022-03290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Polymyxins are antibacterial polypeptides used as "last resort" therapy option for multidrug-resistant Gram-negative bacteria. The expansion of polymyxin-resistant infections has inspired development of novel polymyxin derivatives, and deacylation is one of the critical steps in generating those antibiotics. Deacylase from Actinoplanes utahensis hydrolyze the acyl moieties of echinocandins, and also efficiently deacylates daptomycin, ramoplanin and other important antibiotics. Here, deacylase was studied considering its potential usefulness in deacylating polymyxin B1. RESULTS All the six recombinant strains containing the deacylase gene catalyzed hydrolysis of polymyxin B1, yielding cyclic heptapeptides. The efficiency of recombinant S. albus (SAL701) was higher than that of the others, and deacylation was the most efficient at 40 °C in 0.2 M Tris buffer (pH 8.0) with 0.2 M Mg2+. The optimal substrate concentration of SAL701 was increased from 2.0 to 6.0 g/L. SAL701 was highly thermostable, showing no loss of activity at 50 °C for 12 h, and the mycelia could be recycled at least three times without loss of catalytic activity. SAL701 could not deacylate β-lactam substrate such as penicillin G and cephalosporin C. Deacylase catalyzes the amide bond 1 closest to the nucleus of polymyxin B1 rather than the other bond, suggesting that it has high catalytic site specificity. Homology modeling and the docking results implied that Thr190 in deacylase could facilitate hydrolysis with high regioselectivity. CONCLUSIONS These results show that SAL701 is effective in increasing the cyclic heptapeptide moiety of polymyxin B1. These properties of the biocatalyst may enable its development in the industrial production of polymyxins antibiotics.
Collapse
Affiliation(s)
- Xiaojing Wang
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kai Wu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hanzhi Zhang
- Abiochem Biotechnology Co., Ltd, Shanghai, China
| | - Jing Liu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhijun Yang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Liu
- Department of Antibiotics and Microorganisms, Shanghai Institute for Food and Drug Control, Shanghai, China.
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China. .,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
14
|
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan HS, Gupta PK. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Linhorst A, Lübke T. The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives. Cells 2022; 11:cells11101592. [PMID: 35626629 PMCID: PMC9140057 DOI: 10.3390/cells11101592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
N-terminal nucleophile (Ntn)-hydrolases catalyze the cleavage of amide bonds in a variety of macromolecules, including the peptide bond in proteins, the amide bond in N-linked protein glycosylation, and the amide bond linking a fatty acid to sphingosine in complex sphingolipids. Ntn-hydrolases are all sharing two common hallmarks: Firstly, the enzymes are synthesized as inactive precursors that undergo auto-proteolytic self-activation, which, as a consequence, reveals the active site nucleophile at the newly formed N-terminus. Secondly, all Ntn-hydrolases share a structural consistent αββα-fold, notwithstanding the total lack of amino acid sequence homology. In humans, five subclasses of the Ntn-superfamily have been identified so far, comprising relevant members such as the catalytic active subunits of the proteasome or a number of lysosomal hydrolases, which are often associated with lysosomal storage diseases. This review gives an updated overview on the structural, functional, and (patho-)physiological characteristics of human Ntn-hydrolases, in particular.
Collapse
|
16
|
Tyagi R, Srivastava M, Jain P, Pandey RP, Asthana S, Kumar D, Raj VS. Development of potential proteasome inhibitors against Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:2189-2203. [PMID: 33074049 DOI: 10.1080/07391102.2020.1835722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Preeti Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| |
Collapse
|
17
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
18
|
Staszczak M. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System. Int J Mol Sci 2021; 22:13309. [PMID: 34948102 PMCID: PMC8707610 DOI: 10.3390/ijms222413309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal pathway responsible for regulated degradation of intracellular proteins in eukaryotes. As the principal proteolytic pathway in the cytosol and the nucleus, the UPS serves two main functions: the quality control function (i.e., removal of damaged, misfolded, and functionally incompetent proteins) and a major regulatory function (i.e., targeted degradation of a variety of short-lived regulatory proteins involved in cell cycle control, signal transduction cascades, and regulation of gene expression and metabolic pathways). Aberrations in the UPS are implicated in numerous human pathologies such as cancer, neurodegenerative disorders, autoimmunity, inflammation, or infectious diseases. Therefore, the UPS has become an attractive target for drug discovery and development. For the past two decades, much research has been focused on identifying and developing compounds that target specific components of the UPS. Considerable effort has been devoted to the development of both second-generation proteasome inhibitors and inhibitors of ubiquitinating/deubiquitinating enzymes. With the feature of unique structure and bioactivity, secondary metabolites (natural products) serve as the lead compounds in the development of new therapeutic drugs. This review, for the first time, summarizes fungal secondary metabolites found to act as inhibitors of the UPS components.
Collapse
Affiliation(s)
- Magdalena Staszczak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
19
|
Zhang S, Huang G, Versloot R, Bruininks BMH, Telles de Souza PC, Marrink SJ, Maglia G. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat Chem 2021; 13:1192-1199. [PMID: 34795436 PMCID: PMC7612055 DOI: 10.1038/s41557-021-00824-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
The precise assembly and engineering of molecular machines capable of handling biomolecules play crucial roles in most single-molecule methods. In this work we use components from all three domains of life to fabricate an integrated multiprotein complex that controls the unfolding and threading of individual proteins across a nanopore. This 900 kDa multicomponent device was made in two steps. First, we designed a stable and low-noise β-barrel nanopore sensor by linking the transmembrane region of bacterial protective antigen to a mammalian proteasome activator. An archaeal 20S proteasome was then built into the artificial nanopore to control the unfolding and linearized transport of proteins across the nanopore. This multicomponent molecular machine opens the door to two approaches in single-molecule protein analysis, in which selected substrate proteins are unfolded, fed to into the proteasomal chamber and then addressed either as fragmented peptides or intact polypeptides.
Collapse
|
20
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Molecular and cellular dynamics of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140583. [PMID: 33321258 DOI: 10.1016/j.bbapap.2020.140583] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system serves to remove proteins that are either dysfunctional or no longer needed. The 26S proteasome is a 2.5 MDa multisubunit complex comprising the 20S core particle, where degradation is executed, and one or two regulatory particles which prepare substrates for degradation. Whereas the 20S core particles of several species had been studied extensively by X-ray crystallography, the 26S holocomplex structure had remained elusive for a long time. Recent advances in single-particle cryo-electron microscopy have changed the situation and provided atomic resolution models of this intriguing molecular machine and its dynamics. Besides, cryo-electron tomography enables structural studies in situ, providing molecular resolution images of macromolecules inside pristinely preserved cellular environments. This has greatly contributed to our understanding of proteasome dynamics in the context of cells.
Collapse
|
22
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
23
|
Marshall RS, Gemperline DC, McLoughlin F, Book AJ, Hofmann K, Vierstra RD. An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. J Cell Sci 2020; 133:jcs249862. [PMID: 33033180 PMCID: PMC7657472 DOI: 10.1242/jcs.249862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and β-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for β-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
24
|
Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol 2020; 23:e13276. [PMID: 33037857 DOI: 10.1111/cmi.13276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Viruses confiscate cellular components of the ubiquitin-proteasome system (UPS) to facilitate many aspects of the infectious cycle. The 26S proteasome is an ATP-dependent, multisubunit proteolytic machine present in all eukaryotic cells. The proteasome executes the controlled degradation of functional proteins, as well as the hydrolysis of aberrantly folded polypeptides. There is growing evidence for the role of the UPS in viral entry. The UPS assists in several steps of the initiation of infection, including endosomal escape of the entering virion, intracellular transport of incoming nucleocapsids and uncoating of the viral genome. Inhibitors of proteasome activity, including MG132, epoxomicin, lactacystin and bortezomib have been integral to developments in this area. Here, we review the mechanistic details of UPS involvement in the entry process of viruses from a multitude of families. The possibility of proteasome inhibitors as therapeutic antiviral agents is highlighted.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Becky H Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
25
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
Jeong S, Ahn J, Kwon AR, Ha NC. Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus. Mol Cells 2020; 43:694-704. [PMID: 32694241 PMCID: PMC7468587 DOI: 10.14348/molcells.2020.0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 06/28/2020] [Indexed: 01/03/2023] Open
Abstract
HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Ae-Ran Kwon
- Department of Beauty Care, College of Medical Science, Daegu Haany University, Gyeongsan 38610, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Radadiya A, Zhu W, Coricello A, Alcaro S, Richards NGJ. Improving the Treatment of Acute Lymphoblastic Leukemia. Biochemistry 2020; 59:3193-3200. [PMID: 32786406 PMCID: PMC7497903 DOI: 10.1021/acs.biochem.0c00354] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
l-Asparaginase (EC 3.5.1.1) was first used as a component of combination drug therapies to treat acute lymphoblastic leukemia (ALL), a cancer of the blood and bone marrow, almost 50 years ago. Administering this enzyme to reduce asparagine levels in the blood is a cornerstone of modern clinical protocols for ALL; indeed, this remains the only successful example of a therapy targeted against a specific metabolic weakness in any form of cancer. Three problems, however, constrain the clinical use of l-asparaginase. First, a type II bacterial variant of l-asparaginase is administered to patients, the majority of whom are children, which produces an immune response thereby limiting the time over which the enzyme can be tolerated. Second, l-asparaginase is subject to proteolytic degradation in the blood. Third, toxic side effects are observed, which may be correlated with the l-glutaminase activity of the enzyme. This Perspective will outline how asparagine depletion negatively impacts the growth of leukemic blasts, discuss the structure and mechanism of l-asparaginase, and briefly describe the clinical use of chemically modified forms of clinically useful l-asparaginases, such as Asparlas, which was recently given FDA approval for use in children (babies to young adults) as part of multidrug treatments for ALL. Finally, we review ongoing efforts to engineer l-asparaginase variants with improved therapeutic properties and briefly detail emerging, alternate strategies for the treatment of forms of ALL that are resistant to asparagine depletion.
Collapse
Affiliation(s)
- Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Wen Zhu
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy.,Net4Science, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, 13079 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
28
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
29
|
Shagufta, Ahmad I. Transition metal complexes as proteasome inhibitors for cancer treatment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Swatek A, Staszczak M. Effect of Ferulic Acid, a Phenolic Inducer of Fungal Laccase, on 26S Proteasome Activities In Vitro. Int J Mol Sci 2020; 21:ijms21072463. [PMID: 32252291 PMCID: PMC7177946 DOI: 10.3390/ijms21072463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
The 26S proteasome is an ATP-dependent protease complex (2.5 MDa) that degrades most cellular proteins in Eukaryotes, typically those modified by a polyubiquitin chain. The proteasome-mediated proteolysis regulates a variety of critical cellular processes such as transcriptional control, cell cycle, oncogenesis, apoptosis, protein quality control, and stress response. Previous studies conducted in our laboratory have shown that 26S proteasomes are involved in the regulation of ligninolytic enzymes (such as laccase) in white-rot fungi in response to nutrient starvation, cadmium exposure, and ER stress. Laccases are useful biocatalysts for a wide range of biotechnological applications. The goal of the current study was to determine the effect of ferulic acid (4-hydroxy-3-methoxycinnamic acid), a phenolic compound known to induce some ligninolytic enzymes, on proteasomes isolated from mycelia of the wood-decomposing basidiomycete Trametes versicolor. The peptidase activities of 26S proteasomes were assayed by measuring the hydrolysis of fluorogenic peptide substrates specific for each active site: Suc-LLVY-AMC, Z-GGR-AMC and Z-LLE-AMC for chymotrypsin-like, trypsin-like, and caspase-like site, respectively. Ferulic acid affected all peptidase activities of the 26S fungal proteasomes in a concentration-dependent manner. A possible inhibitory effect of ferulic acid on peptidase activities of the 26S human proteasomes was tested as well. Moreover, the ability of ferulic acid to inhibit (at concentrations known to induce laccase activity in white-rot fungi) the rate of 26S proteasome-catalyzed degradation of a model full-length protein substrate (β-casein) was demonstrated by a fluorescamine assay and by a gel-electrophoretic analysis. Our findings provide new insights into the role of ferulic acid in lignin-degrading fungi. However, the detailed molecular mechanisms involved remain to be elucidated by future studies.
Collapse
|
31
|
Sun Q, Zhou T, Xi D, Li X, Lü Z, Xu F, Wang C, Niu Y, Xu P. Design and synthesis of tripeptidyl furylketones as selective inhibitors against the β5 subunit of human 20S proteasome. Eur J Med Chem 2020; 192:112160. [PMID: 32146375 DOI: 10.1016/j.ejmech.2020.112160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023]
Abstract
A series of tripeptidic proteasome inhibitors with furylketone as C-terminus were designed and synthesized. Biochemical evaluations against β1, β2 and β5 subunits revealed that they acted selectively on β5 subunit with IC50s against chymotrypsin-like (CT-L) activity in micromolar range. LC-MS/MS analysis of the ligand-20S proteasome mixture showed that the most potent compound 11m (IC50 = 0.18 μM) made no covalent modification on 20S proteasome. However, it was identified acting in a slowly reversible manner in wash-out assay and the reversibility was much lower than that of MG132, suggesting the possibility of these tripeptidic furylketones forming reversible covalent bonds with 20S proteasome. Several compounds were selected for anti-proliferative assay towards multiple cancer cell lines, and compound 11m displayed comparable potency to positive control (MG132) in all cell lines tested. Furthermore, the pharmacokinetic (PK) data in rats indicated 11m behaved similarly (Cmax, 2007 μg/L; AUC0-t, 680 μg/L·h; Vss, 0.66 L/kg) to the clinical used agent carfilzomib. All these data suggest 11m is a good lead compound to be developed to novel anti-tumor agent.
Collapse
Affiliation(s)
- Qi Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tongliang Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dandan Xi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
32
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Maugeri A, Navarra M. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome. Mol Immunol 2019; 113:93-102. [DOI: 10.1016/j.molimm.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
|
34
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Giannetto A, Lanza S, Bruno G, Mirkhani V. Synthesis, solution behaviour and potential anticancer activity of new trinuclear organometallic palladium(II) complex of {S}-1-phenylethyl dithiooxamide: Comparison with the trinuclear heterobimetallic platinum(II) analogue. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Pilla SP, R B, Bahadur RP. Dissecting protein‐protein interactions in proteasome assembly: Implication to its self‐assembly. J Mol Recognit 2019; 32:e2784. [DOI: 10.1002/jmr.2784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Smita P. Pilla
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| | - Babu R
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| | - Ranjit P. Bahadur
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
37
|
Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases? Molecules 2019; 24:molecules24030572. [PMID: 30764512 PMCID: PMC6384577 DOI: 10.3390/molecules24030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Unconstrained amides that undergo fast hydrolysis under mild conditions are valuable sources of information about how amide bonds may be activated in enzymatic transformations. We report a compound possessing an unconstrained amide bond surrounded by an amino and a carboxyl group, each mounted in close proximity on a bicyclic scaffold. Fast amide hydrolysis of this model compound was found to depend on the presence of both the amino and carboxyl functions, and to involve a proton transfer in the rate-limiting step. Possible mechanisms for the hydrolytic cleavage and their relevance to peptide bond cleavage catalyzed by natural enzymes are discussed. Experimental observations suggest that the most probable mechanisms of the model compound hydrolysis might include a twisted amide intermediate and a rate-determining proton transfer.
Collapse
|
38
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 750] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Proc Natl Acad Sci U S A 2018; 116:534-539. [PMID: 30559193 PMCID: PMC6329974 DOI: 10.1073/pnas.1817752116] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes are ATP-dependent proteases that occur in all three domains of life, and are the principal molecular machines for the regulated degradation of intracellular proteins. The eukaryotic 26S proteasome has been extensively characterized. However, its evolutionary precursor, the archaeal proteasome–ATPase complex, remains poorly understood. The inherent instability of these primordial protein complexes has so far hindered attempts for detailed structure determination. Using cryo-EM single-particle analysis, we were able to determine the structure of an archaeal PAN-proteasome, which is a complex of the proteolytic core and the ATPase PAN (proteasome-activating nucleotidase). The structures reported here not only provide insights into the functional cycle of PAN-proteasomes, they reveal a fundamental mechanism of ATPase operation. Proteasomes occur in all three domains of life, and are the principal molecular machines for the regulated degradation of intracellular proteins. They play key roles in the maintenance of protein homeostasis, and control vital cellular processes. While the eukaryotic 26S proteasome is extensively characterized, its putative evolutionary precursor, the archaeal proteasome, remains poorly understood. The primordial archaeal proteasome consists of a 20S proteolytic core particle (CP), and an AAA-ATPase module. This minimal complex degrades protein unassisted by non-ATPase subunits that are present in a 26S proteasome regulatory particle (RP). Using cryo-EM single-particle analysis, we determined structures of the archaeal CP in complex with the AAA-ATPase PAN (proteasome-activating nucleotidase). Five conformational states were identified, elucidating the functional cycle of PAN, and its interaction with the CP. Coexisting nucleotide states, and correlated intersubunit signaling features, coordinate rotation of the PAN-ATPase staircase, and allosterically regulate N-domain motions and CP gate opening. These findings reveal the structural basis for a sequential around-the-ring ATPase cycle, which is likely conserved in AAA-ATPases.
Collapse
|
40
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
41
|
Reporter PET Images Bortezomib Treatment-Mediated Suppression of Cancer Cell Proteasome Activity. Sci Rep 2018; 8:12290. [PMID: 30116045 PMCID: PMC6095884 DOI: 10.1038/s41598-018-29642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Proteasomal protein degradation is a promising target for cancer therapy. Here, we developed a positron emission tomography (PET) technique based on the sodium-iodide symporter (NIS) gene fused with the carboxyl-terminal of ornithine decarboxylase (cODC) that noninvasively images cancer cells with inhibited proteasome activity. A retroviral vector was constructed in which the murine cODC degron was fused to the human NIS gene (NIS-cODC). Transiently transduced CT26 and HT29 colon cancer cells and stably expressing CT26/NIS-cODC cells were prepared. In cancer cells transiently transduced with NIS-cODC, NIS expression and transport activity was low at baseline, but NIS protein and 125I uptake was significantly increased by inhibition of proteasome activity with bortezomib. Stable CT26/NIS-cODC cells also showed increased cytosolic and membrane NIS by bortezomib, and four different stable clones displayed bortezomib dose-dependent stimulation of 125I and 99mTc-04− uptake. Importantly, bortezomib dose-dependently suppressed survival of CT26/NIS-cODC clones in a manner that closely correlated to the magnitudes of 125I and 99mTc-04− uptake. CT26/NIS-cODC tumors of bortezomib-treated mice demonstrated greater 124I uptake on PET images and increased NIS expression on tissue staining compared to vehicle-injected animals. NIS-cODC PET imaging may allow noninvasive quantitative monitoring of proteasome activity in cancer cells treated with bortezomib.
Collapse
|
42
|
On the Trails of the Proteasome Fold: Structural and Functional Analysis of the Ancestral β-Subunit Protein Anbu. J Mol Biol 2018; 430:628-640. [DOI: 10.1016/j.jmb.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/20/2022]
|
43
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
44
|
The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers. J Mol Biol 2017; 430:611-627. [PMID: 29258816 PMCID: PMC6376114 DOI: 10.1016/j.jmb.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
Ancestral β-subunit (Anbu) is homologous to HslV and 20S proteasomes. Based on its phylogenetic distribution and sequence clustering, Anbu has been proposed as the “ancestral” form of proteasomes. Here, we report biochemical data, small-angle X-ray scattering results, negative-stain electron microscopy micrographs and a crystal structure of the Anbu particle from Yersinia bercovieri (YbAnbu). All data are consistent with YbAnbu forming defined 12–14 subunit multimers that differ in shape from both HslV and 20S proteasomes. The crystal structure reveals that YbAnbu subunits form tight dimers, held together in part by the Anbu specific C-terminal helices. These dimers (“protomers”) further assemble into a low-rise left-handed staircase. The lock-washer shape of YbAnbu is consistent with the presence of defined multimers, X-ray diffraction data in solution and negative-stain electron microscopy images. The presented structure suggests a possible evolutionary pathway from helical filaments to highly symmetric or pseudosymmetric multimer structures. YbAnbu subunits have the Ntn-hydrolase fold, a putative S1 pocket and conserved candidate catalytic residues Thr1, Asp17 and Lys32(33). Nevertheless, we did not detect any YbAnbu peptidase or amidase activity. However, we could document orthophosphate production from ATP catalyzed by the ATP-grasp protein encoded in the Y. bercovieri Anbu operon.
Collapse
|
45
|
Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. J Biol Chem 2017; 292:21170-21179. [PMID: 29109146 DOI: 10.1074/jbc.r117.807560] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome is the major protease responsible for the production of antigenic peptides recognized by CD8+ cytolytic T cells (CTL). These peptides, generally 8-10 amino acids long, are presented at the cell surface by major histocompatibility complex (MHC) class I molecules. Originally, these peptides were believed to be solely derived from linear fragments of proteins, but this concept was challenged several years ago by the isolation of anti-tumor CTL that recognized spliced peptides, i.e. peptides composed of fragments distant in the parental protein. The splicing process was shown to occur in the proteasome through a transpeptidation reaction involving an acyl-enzyme intermediate. Here, we review the steps that led to the discovery of spliced peptides as well as the recent advances that uncover the unexpected importance of spliced peptides in the composition of the MHC class I repertoire.
Collapse
Affiliation(s)
- Nathalie Vigneron
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Violette Ferrari
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Vincent Stroobant
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Joanna Abi Habib
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Benoit J Van den Eynde
- From the Ludwig Institute for Cancer Research, .,the de Duve Institute, Université catholique de Louvain, and.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), B-1200 Brussels, Belgium
| |
Collapse
|
46
|
Gaczynska M, Osmulski PA. Targeting Protein-Protein Interactions in the Ubiquitin-Proteasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:123-165. [PMID: 29412995 DOI: 10.1016/bs.apcsb.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major venue for controlled intracellular protein degradation in Eukaryota. The machinery of several hundred proteins is involved in recognizing, tagging, transporting, and cleaving proteins, all in a highly regulated manner. Short-lived transcription factors, misfolded translation products, stress-damaged polypeptides, or worn-out long-lived proteins, all can be found among the substrates of UPP. Carefully choreographed protein-protein interactions (PPI) are involved in each step of the pathway. For many of the steps small-molecule inhibitors have been identified and often they directly or indirectly target PPI. The inhibitors may destabilize intracellular proteostasis and trigger apoptosis. So far this is the most explored option used as an anticancer strategy. Alternatively, substrate-specific polyubiquitination may be regulated for a precise intervention aimed at a particular metabolic pathway. This very attractive opportunity is moving close to clinical application. The best known drug target in UPP is the proteasome: the end point of the journey of a protein destined for degradation. The proteasome alone is a perfect object to study the mechanisms and roles of PPI on many levels. This giant protease is built from multisubunit modules and additionally utilizes a service from transient protein ligands, for example, delivering substrates. An elaborate set of PPI within the highest-order proteasome assembly is involved in substrate recognition and processing. Below we will outline PPI involved in the UPP and discuss the growing prospects for their utilization in pharmacological interventions.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
47
|
Vigneron N, Abi Habib J, Van den Eynde BJ. Learning from the Proteasome How To Fine-Tune Cancer Immunotherapy. Trends Cancer 2017; 3:726-741. [PMID: 28958390 DOI: 10.1016/j.trecan.2017.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Cancer immunotherapy has recently emerged as a forefront strategy to fight cancer. Key players in antitumor responses are CD8+ cytolytic T lymphocytes (CTLs) that can detect tumor cells that carry antigens, in other words, small peptides bound to surface major histocompatibility complex (MHC) class I molecules. The success and safety of cancer immunotherapy strategies depends on the nature of the antigens recognized by the targeted T cells, their strict tumor specificity, and whether tumors and antigen-presenting cells can efficiently process the peptide. We review here the nature of the tumor antigens and their potential for the development of immunotherapeutic strategies. We also discuss the importance of proteasome in the production of these peptides in the context of immunotherapy and therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Joanna Abi Habib
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| |
Collapse
|
48
|
Bifunctional quorum-quenching and antibiotic-acylase MacQ forms a 170-kDa capsule-shaped molecule containing spacer polypeptides. Sci Rep 2017; 7:8946. [PMID: 28827579 PMCID: PMC5566955 DOI: 10.1038/s41598-017-09399-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Understanding the molecular mechanisms of bacterial antibiotic resistance will help prepare against further emergence of multi-drug resistant strains. MacQ is an enzyme responsible for the multi-drug resistance of Acidovorax sp. strain MR-S7. MacQ has acylase activity against both N-acylhomoserine lactones (AHLs), a class of signalling compounds involved in quorum sensing, and β-lactam antibiotics. Thus, MacQ is crucial as a quencher of quorum sensing as well as in conferring antibiotic resistance in Acidovorax. Here, we report the X-ray structures of MacQ in ligand-free and reaction product complexes. MacQ forms a 170-kDa capsule-shaped molecule via face-to-face interaction with two heterodimers consisting of an α-chain and a β-chain, generated by the self-cleaving activity of a precursor polypeptide. The electron density of the spacer polypeptide in the hollow of the molecule revealed the close orientation of the peptide-bond atoms of Val20SP-Gly21SP to the active-site, implying a role of the residues in substrate binding. In mutational analyses, uncleaved MacQ retained degradation activity against both AHLs and penicillin G. These results provide novel insights into the mechanism of self-cleaving maturation and enzymatic function of N-terminal nucleophile hydrolases.
Collapse
|
49
|
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation. Cell Chem Biol 2017; 24:218-230. [PMID: 28132893 DOI: 10.1016/j.chembiol.2016.12.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/27/2016] [Accepted: 12/28/2016] [Indexed: 11/26/2022]
Abstract
The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.
Collapse
Affiliation(s)
- Emily S Weyburne
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Owen M Wilkins
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Zhe Sha
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Williams
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, 2333 CC Leiden, the Netherlands
| | - Hermann S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, 2333 CC Leiden, the Netherlands
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Cole
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Alexei F Kisselev
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
50
|
Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc Natl Acad Sci U S A 2017; 114:1305-1310. [PMID: 28115689 DOI: 10.1073/pnas.1621129114] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.
Collapse
|