1
|
Genetic screening reveals a link between Wnt signaling and antitubulin drugs. THE PHARMACOGENOMICS JOURNAL 2015; 16:164-72. [PMID: 26149735 PMCID: PMC4705004 DOI: 10.1038/tpj.2015.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023]
Abstract
The antitubulin drugs, paclitaxel (PX) and colchicine (COL), inhibit cell growth and are therapeutically valuable. PX stabilizes microtubules, while COL promotes their depolymerization. But, the drug concentrations that alter tubulin polymerization are hundreds of times higher than their clinically useful levels. To map genetic targets for drug action at single-gene resolution, we used a human radiation hybrid panel. We identified loci that affected cell survival in the presence of five compounds of medical relevance. For PX and COL, the zinc and ring finger 3 (ZNRF3) gene dominated the genetic landscape at therapeutic concentrations. ZNRF3 encodes an R-spondin regulated receptor that inhibits Wingless/Int (Wnt) signaling. Overexpression of the ZNRF3 gene shielded cells from antitubulin drug action, while small interfering RNA knockdowns resulted in sensitization. Further a potent pharmacological inhibitor of Wnt signaling, Wnt-C59, protected cells from PX and COL. Our results suggest that the antitubulin drugs perturb microtubule dynamics, thereby influencing Wnt signaling.
Collapse
|
2
|
Abstract
The Cannon lecture this year illustrates how knowledge of DNA sequences of complex living organisms is beginning to shape the landscape of physiology in the 21st century. Enormous challenges and opportunities now exist for physiologists to relate the galaxy of genes to normal and pathological functions. The first extensive genomic systems biology map for cardiovascular and renal function was completed last year as well as a new hypothesis-generating tool ("physiological profiling") that enables us to hypothesize relationships between specific genes responsible for the regulation of regulatory pathways. Techniques of chromosomal substitution (consomic and congenic rats) are beginning to confirm statistical results from linkage analysis studies, narrow the regions of genetic interest for positional cloning, and provide genetically well-defined control strains for physiological studies. Patterns of gene expression identified by microarray and mapping of expressed genes to chromosomal sites are adding to the understanding of systems physiology. The previously unimaginable goal of connecting approximately 36,000 genes to the complex functions of mammalian systems is indeed well underway.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
3
|
Abstract
This review aims at providing a general understanding of how the multiple cytogenetic aberrations in cancer cells arise and exemplifies this by considering the specific role of chromosome 11q loci in carcinogenesis. Section I provides a theoretical molecular and structural framework for understanding the cytogenetic aberrations described in cancer. Given this background, Section II describes advances in the identification and localization of cancer susceptibility genes on chromosome 11q, highlighting ongoing areas of investigation.
Collapse
Affiliation(s)
- J Koreth
- University of Oxford, Nuffield Department of Pathology and Bacteriology, John Radcliffe Hospital, Headington, U.K
| | | | | |
Collapse
|
4
|
Zhao LP, Quiaoit F, Hsu L, Aragaki C. Efficient, robust, and unified method for mapping complex traits (I): Two-point linkage analysis. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980605)77:5<366::aid-ajmg5>3.0.co;2-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Siegel AF, Roach JC, Magness C, Thayer E, van den Engh G. Optimization of restriction fragment DNA mapping. J Comput Biol 1998; 5:113-26. [PMID: 9541875 DOI: 10.1089/cmb.1998.5.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Consider a mapping project in which overlap of clonal segments is inferred from complete multiple restriction digests. The fragment sizes of the clones are measured with some error, potentially leading to a map with erroneous links. The number of errors in the map depends on the number and types of enzymes used to characterize the clones. The most critical parameter is the decision rule k, or the criterion for declaring clone overlap. Small changes in k may cause an order of magnitude change in the amount of work it takes to build a map of given completion. We observe that the cost of an optimal mapping strategy is approximately proportional to the target size. While this finding is encouraging, considerable effort is nonetheless required: for large-scale sequencing projects with up-front mapping, mapping will be a non-negligible fraction of the total sequencing cost.
Collapse
Affiliation(s)
- A F Siegel
- Department of Management Science, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
6
|
Cayanis E, Russo JJ, Kalachikov S, Ye X, Park SH, Sunjevaric I, Bonaldo MF, Lawton L, Venkatraj VS, Schon E, Soares MB, Rothstein R, Warburton D, Edelman IS, Zhang P, Efstratiadis A, Fischer SG. High-resolution YAC-cosmid-STS map of human chromosome 13. Genomics 1998; 47:26-43. [PMID: 9465293 DOI: 10.1006/geno.1997.5087] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have assembled a high-resolution physical map of human chromosome 13 DNA (approximately 114 Mb) from hybridization, PCR, and FISH mapping data using a specifically designed set of computer programs. Although the mapping of 13p is limited, 13q (approximately 98 Mb) is covered by an almost continuous contig of 736 YACs aligned to 597 contigs of cosmids. Of a total of 10,789 cosmids initially selected from a chromosome 13-specific cosmid library (16,896 colonies) using inter-Alu PCR probes from the YACs and probes for markers mapped to chromosome 13, 511 were assembled in contigs that were established from cross-hybridization relationships between the cosmids. The 13q YAC-cosmid map was annotated with 655 sequence tagged sites (STSs) with an average spacing of 1 STS per 150 kb. This set of STSs, each identified by a D number and cytogenetic location, includes database markers (198), expressed sequence tags (93), and STSs generated by sequencing of the ends of cosmid inserts (364). Additional annotation has been provided by positioning 197 cosmids mapped by FISH on 13q. The final (comprehensive) map, a list of STS primers, and raw data used in map assembly are available at our Web site (genome1.ccc.columbia.edu/ approximately genome/) and can serve as a resource to facilitate accurate localization of additional markers, provide substrates for sequencing, and assist in the discovery of chromosome 13 genes associated with hereditary diseases.
Collapse
Affiliation(s)
- E Cayanis
- Columbia Genome Center, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xie Y, Chen X, Wagner TE. A ribozyme-mediated, gene "knockdown" strategy for the identification of gene function in zebrafish. Proc Natl Acad Sci U S A 1997; 94:13777-81. [PMID: 9391103 PMCID: PMC28383 DOI: 10.1073/pnas.94.25.13777] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The zebrafish system offers many unique opportunities for the study of molecular biology. To date, only random mutagenesis, and not directed gene knockouts, have been demonstrated in this system. To more fully develop the potential of the zebrafish system, an approach to effectively inhibit the expression of any targeted gene in the developing zebrafish embryo has been developed. This approach uses a transient, cytoplasmic, T7 expression system, injected into the fertilized zebrafish egg to rapidly produce high levels of a ribozyme directed against the mRNA encoded by the targeted gene to inhibit its expression. In a demonstration of this strategy, expression of the recessive dominant zebrafish no tail gene was effectively inhibited by using this strategy to yield a phenotype identical to that resulting from a known defective mutation in this same gene. This, ribozyme-mediated, message deletion strategy may have use in determining the function of genetic coding sequences of unknown function.
Collapse
Affiliation(s)
- Y Xie
- The Edison Institute, Graduate Program in Molecular and Cellular Biology, and the Department of Clinical Research, College of Medicine, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
8
|
Bouffard GG, Idol JR, Braden VV, Iyer LM, Cunningham AF, Weintraub LA, Touchman JW, Mohr-Tidwell RM, Peluso DC, Fulton RS, Ueltzen MS, Weissenbach J, Magness CL, Green ED. A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb. Genome Res 1997; 7:673-92. [PMID: 9253597 DOI: 10.1101/gr.7.7.673] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The construction of highly integrated and annotated physical maps of human chromosomes represents a critical goal of the ongoing Human Genome Project. Our laboratory has focused on developing a physical map of human chromosome 7, a approximately 170-Mb segment of DNA that corresponds to an estimated 5% of the human genome. Using a yeast artificial chromosome (YAC)-based sequence-tagged site (STS)-content mapping strategy, 2150 chromosome 7-specific STSs have been established and mapped to a collection of YACs highly enriched for chromosome 7 DNA. The STSs correspond to sequences generated from a variety of DNA sources, with particular emphasis placed on YAC insert ends, genetic markers, and genes. The YACs include a set of relatively nonchimeric clones from a human-hamster hybrid cell line as well as clones isolated from total genomic libraries. For map integration, we have localized 260 STSs corresponding to Genethon genetic markers and 259 STSs corresponding to markers orders by radiation hybrid (RH) mapping on our YAC contigs. Analysis of the data with the program SEGMAP results in the assembly of 22 contigs that are "anchored" on the Genethon genetic map, the RH map, and/or the cytogenetic map. These 22 contigs are ordered relative to one another, are (in all but 3 cases) oriented relative to the centromere and telomeres, and contain > 98% of the mapped STSs. The largest anchored YAC contig, accounting for most of 7p, contains 634 STSs and 1260 YACs. An additional 14 contigs, accounting for approximately 1.5% of the mapped STSs, are assembled but remain unanchored on either the genetic or RH map. Therefore, these 14 "orphan" contigs are not ordered relative to other contigs. In our contig maps, adjacent STSs are connected by two or more YACs in > 95% of cases. With 2150 mapped STSs, our map provides an average STS spacing of approximately 79 kb. The physical map we report here exceeds the goal of 100-kb average STS spacing and should provide an excellent framework for systematic sequencing of the chromosome.
Collapse
Affiliation(s)
- G G Bouffard
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- J Yu
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
10
|
Stewart EA, McKusick KB, Aggarwal A, Bajorek E, Brady S, Chu A, Fang N, Hadley D, Harris M, Hussain S, Lee R, Maratukulam A, O'Connor K, Perkins S, Piercy M, Qin F, Reif T, Sanders C, She X, Sun WL, Tabar P, Voyticky S, Cowles S, Fan JB, Mader C, Quackenbush J, Myers RM, Cox DR. An STS-based radiation hybrid map of the human genome. Genome Res 1997; 7:422-33. [PMID: 9149939 DOI: 10.1101/gr.7.5.422] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have constructed a physical map of the human genome by using a panel of 83 whole genome radiation hybrids (the Stanford G3 panel) in conjunction with 10,478 sequence-tagged sites (STSs) derived from random genomic DNA sequences, previously mapped genetic markers, and expressed sequences. Of these STSs, 5049 are framework markers that fall into 1766 high-confidence bins. An additional 945 STSs are indistinguishable in their map location from one or more of the framework markers. These 5994 mapped STSs have an average spacing of 500 kb. An additional 4484 STSs are positioned with respect to the framework markers. Comparison of the orders of markers on this map with orders derived from independent meiotic and YAC STS-content maps indicates that the error rate in defining high-confidence bins is < 5%. Analysis of 322 random cDNAs indicates that the map covers the vast majority of the human genome. This STS-based radiation hybrid map of the human genome brings us one step closer to the goal of a physical map containing 30,000 unique ordered landmarks with an average marker spacing of 100 kb.
Collapse
Affiliation(s)
- E A Stewart
- Stanford Human Genome Center, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- J L Weber
- Center for Medical Genetics, Marshfield Medical Research Foundation, Wisconsin 54449, USA.
| | | |
Collapse
|
12
|
Andrews C, Devlin B, Perlin M, Roeder K. Binning clones by hybridization with complex probes: statistical refinement of an inner product mapping method. Genomics 1997; 41:141-54. [PMID: 9143488 DOI: 10.1006/geno.1997.4652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular methods that use long-range information to solve genomics problems (i.e., top-down strategies) efficiently have become increasingly prominent in the genomics literature. One such method, an implementation of inner product mapping (IPM), uses noisy, long-range radiation hybrid (RH)/YAC overlap data and relatively noise-free RH/STS overlap data to localize clones to specific chromosomal regions. Because the molecular data are rarely noise-free, statistical models tailored to the top-down molecular methods make the methods far more effective. We develop two statistical models for IPM (or any other top-down strategy of similar form), a parametric logit model and a nonparametric order-restricted model, and show how these models can be implemented within a hierarchical Bayes framework. Using these models, we refine the chromosome 11 map reported in M. Perlin et al. (1995, Genomics 28: 315-327). Our analyses improve the IPM map, both in terms of successful localization of clones and in terms of the confidence with which they are localized.
Collapse
Affiliation(s)
- C Andrews
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
13
|
Esposito T, Ciccodicola A, Flagiello L, Matarazzo MR, Migliaccio C, Cifarelli RA, Visone R, Campanile C, Mazzarella R, Schlessinger D, D'Urso M, D'Esposito M. Expressed STSs and transcription of human Xq28. Gene 1997; 187:185-91. [PMID: 9099879 DOI: 10.1016/s0378-1119(96)00772-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STSs, which have been used to build and format clone contigs, have been used here to assemble a transcriptional map across a cytogenetic band. Of fifty one STSs in Xq28, 20 were positive by RT-PCR. Thus, an additional 20 possible ESTs were detected among the STSs, and seven of these also identified cDNAs in at least one library. The transcripts confirm the high expression level of this region, correlated with its GC compositional map and CpG island content.
Collapse
Affiliation(s)
- T Esposito
- International Institute of Genetics and Biophysics (IIGB), CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Microsatellites form a significant proportion of the growing family of repetitive DNA sequences, widely dispersed in the human genome. Due to their ubiquity, PCR (polymerase chain reaction) typability, Mendelian co-dominant inheritance, and extreme polymorphism, microsatellites have assumed an increasingly important role as markers in the genome. Apart from their obvious applications in genome mapping and positional cloning, these markers have been applied in fields as disparate as tumour biology, personal identification, population genetic analysis, and the construction of human evolutionary trees. Microsatellites are associated with human disease, not only as markers of risk but also directly in disease aetiopathogenesis, providing new insights into non-Mendelian inheritance; the replication, repair, and mutation of eukaryotic DNA; the regulation of gene transcription; and protein-protein interactions. These insights have resulted in novel paradigms for oncogenesis and neurological disease.
Collapse
Affiliation(s)
- J Koreth
- Nuffield Department of Pathology and Bacteriology, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
15
|
Vijg J. Two-dimensional DNA typing: A cost-effective way of analyzing complex mixtures of DNA fragments for sequence variations. Mol Biotechnol 1995; 4:275-95. [PMID: 8680934 DOI: 10.1007/bf02779021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
By two-dimensional (2D) DNA typing, multiple DNA fragments can be analyzed in parallel for all possible sequence variations. The method involves electrophoretic separation in polyacrylamide gels, first by size and subsequently on the basis of basepair sequence in a denaturing gradient. The system has been automated partly and a dedicated image analysis system for rapid interpretation of the often complex spot patterns was developed. In this review, the basic principles of 2D DNA typing, its methodology, and some major applications in genetic studies of animals, plants, and microorganisms will be discussed, with the emphasis on human genetics.
Collapse
Affiliation(s)
- J Vijg
- Division on Aging, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
16
|
Ashworth LK, Batzer MA, Brandriff B, Branscomb E, de Jong P, Garcia E, Garnes JA, Gordon LA, Lamerdin JE, Lennon G, Mohrenweiser H, Olsen AS, Slezak T, Carrano AV. An integrated metric physical map of human chromosome 19. Nat Genet 1995; 11:422-7. [PMID: 7493023 DOI: 10.1038/ng1295-422] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A metric physical map of human chromosome 19 has been generated. The foundation of the map is sets of overlapping cosmids (contigs) generated by automated fingerprinting spanning over 95% of the euchromatin, about 50 megabases (Mb). Distances between selected cosmid clones were estimated using fluorescence in situ hybridization in sperm pronuclei, providing both order and distance between contigs. An average inter-marker separation of 230 kb has been obtained across the non-centromeric portion of the chromosome. Various types of larger insert clones were used to span gaps between contigs. Currently, the map consists of 51 'islands' containing multiple clone types, whose size, order and relative distance are known. Over 450 genes, genetic markers, sequence tagged sites (STSs), anonymous cDNAs, and other markers have been localized. In addition, EcoRI restriction maps have been generated for > 41 Mb (approximately 83%) of the chromosome.
Collapse
Affiliation(s)
- L K Ashworth
- Human Genome Center, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guyer MS, Collins FS. How is the Human Genome Project doing, and what have we learned so far? Proc Natl Acad Sci U S A 1995; 92:10841-8. [PMID: 7479895 PMCID: PMC40527 DOI: 10.1073/pnas.92.24.10841] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this paper, we describe the accomplishments of the initial phase of the Human Genome Project, with particular attention to the progress made toward achieving the defined goals for constructing genetic and physical maps of the human genome and determining the sequence of human DNA, identifying the complete set of human genes, and analyzing the need for adequate policies for using the information about human genetics in ways that maximize the benefits for individuals and society.
Collapse
Affiliation(s)
- M S Guyer
- National Center for Human Genome Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270:467-70. [PMID: 7569999 DOI: 10.1126/science.270.5235.467] [Citation(s) in RCA: 5100] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.
Collapse
Affiliation(s)
- M Schena
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|
19
|
Houlgatte R, Mariage-Samson R, Duprat S, Tessier A, Bentolila S, Lamy B, Auffray C. The Genexpress Index: a resource for gene discovery and the genic map of the human genome. Genome Res 1995; 5:272-304. [PMID: 8593614 DOI: 10.1101/gr.5.3.272] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detailed analysis of a set of 18,698 sequences derived from both ends of 10,979 human skeletal muscle and brain cDNA clones defined 6676 functional families, characterized by their sequence signatures over 5750 distinct human gene transcripts. About half of these genes have been assigned to specific chromosomes utilizing 2733 eSTS markers, the polymerase chain reaction, and DNA from human-rodent somatic cell hybrids. Sequence and clone clustering and a functional classification together with comprehensive data base searches and annotations made it possible to develop extensive sequence and map cross-indexes, define electronic expression profiles, identify a new set of overlapping genes, and provide numerous new candidate genes for human pathologies.
Collapse
Affiliation(s)
- R Houlgatte
- Genexpress, Centre National de la Recherche Scientifique (CNRS) UPR420, Villejuif, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Fain PR, Kort EN, Chance PF, Nguyen K, Redd DF, Econs MJ, Barker DF. A 2D crossover-based map of the human X chromosome as a model for map integration. Nat Genet 1995; 9:261-6. [PMID: 7773289 DOI: 10.1038/ng0395-261] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed a two-dimensional map of 243 markers on the X chromosome. The average distance between markers ordered by two recombinants is 5.4 centiMorgans (cM), which is reduced to 3.2 cM using a less stringent criterion of one recombinant. Map resolution is enhanced by replacing the usual reference marker format with a 2D format, and the two-recombinant rule is more conservative than the lod 3.0 criterion for order. Taken together, crossover mapping and the 2D format produces maps with greater reliability and higher resolution than maps constructed using currently accepted standards. This first high-density crossover-based map of an entire human chromosome provides a model for integrating physical and genetic maps.
Collapse
Affiliation(s)
- P R Fain
- Department of Medical Informatics, University of Utah, Salt Lake City 84108, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Volik S, Lebedev Y, Nikolaev L, Shevchenko Y, Vinogradova T, Kopantzev E, Kolesnik T, Monastyrskaya G, Kunz U, Grzeschik KH. Mapping of transcribed sequences on human chromosome 19. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1995; 6:13-26. [PMID: 8746456 DOI: 10.3109/10425179509074694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
30 EST/STS have been mapped on human chromosome 19 using a highly specific hncDNA library as a source of transcribed sequences. In addition more than 50 sites constituting 19 families of closely related sequences containing at least one transcribed member each were mapped across the chromosome. Chromosome-19 specific hncDNA clones were hybridized to chromosome 19 cosmids that were previously assembled into contigs covering about 80% of Chr19. The hybridization results were verified by PCR. Such an approach to EST mapping provides information on possible locations of genes as transcribed units of genome and on location of repeated elements used for the priming the hncDNA synthesis. Mapped hncDNA sequences may serve as good starting points for the systematic sequencing of transcribed genomic regions.
Collapse
Affiliation(s)
- S Volik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Ras, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|