1
|
Chaudhary S, Kaur H, Kaur H, Rana B, Tomar D, Jena KC. Probing the Bovine Hemoglobin Adsorption Process and its Influence on Interfacial Water Structure at the Air-Water Interface. APPLIED SPECTROSCOPY 2021; 75:1497-1509. [PMID: 34346774 DOI: 10.1177/00037028211035157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
*These authors contributed equally to this work.The molecular-level insight of protein adsorption and its kinetics at interfaces is crucial because of its multifold role in diverse fundamental biological processes and applications. In the present study, the sum frequency generation (SFG) vibrational spectroscopy has been employed to demonstrate the adsorption process of bovine hemoglobin (BHb) protein molecules at the air-water interface at interfacial isoelectric point of the protein. It has been observed that surface coverage of BHb molecules significantly influences the arrangement of the protein molecules at the interface. The time-dependent SFG studies at two different frequencies in the fingerprint region elucidate the kinetics of protein denaturation process and its influence on the hydrogen-bonding network of interfacial water molecules at the air-water interface. The initial growth kinetics suggests the synchronized behavior of protein adsorption process with the structural changes in the interfacial water molecules. Interestingly, both the events carry similar characteristic time constants. However, the conformational changes in the protein structure due to the denaturation process stay for a long time, whereas the changes in water structure reconcile quickly. It is revealed that the protein denaturation process is followed by the advent of strongly hydrogen-bonded water molecules at the interface. In addition, we have also carried out the surface tension kinetics measurements to complement the findings of our SFG spectroscopic results.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Harpreet Kaur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
2
|
Riveros-Perez E, Riveros R. Water in the human body: An anesthesiologist's perspective on the connection between physicochemical properties of water and physiologic relevance. Ann Med Surg (Lond) 2017; 26:1-8. [PMID: 29904607 PMCID: PMC5904784 DOI: 10.1016/j.amsu.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
The unique structure and multifaceted physicochemical properties of the water molecule, in addition to its universal presence in body compartments, make water a key player in multiple biological processes in human physiology. Since anesthesiologists deal with physiologic processes where water molecules are critical at different levels, and administer medications whose pharmacokinetics and pharmacodynamics depend on interaction with water molecules, we consider that exploration of basic science aspects related to water and its role in physiology and pharmacology is relevant to the practice of anesthesiology. The purpose of this paper is to delineate the physicochemical basis of water that are critical in enabling it to support various homeostatic processes. The role of water in the formation of solutions, modulation of surface tension and in homeostasis of body temperature, acid-base status and osmolarity, is analyzed. Relevance of molecular water interactions to the anesthesiologist is not limited to the realm of physiology and pathophysiology. Deep knowledge of the importance of water in volatile anesthetic effects on neurons opens a window to a new comprehensive understanding of complex cellular mechanisms underlying the practice of anesthesiology.
Collapse
Affiliation(s)
- Efraín Riveros-Perez
- Department of Anesthesiology and Perioperative Medicine, Augusta University, USA
| | - Ricardo Riveros
- Pediatric Anesthesiologist Nemours Children's Health System, Orlando, FL, USA
| |
Collapse
|
3
|
Kim HK, Kim SH, Ryu JK. Changes in the Blood Components Caused by Water Intake. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.3.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyun-Kyung Kim
- Department of Biomedical Laboratory Science, College of Natural Science, Gimcheon University, Gimcheon, Korea
| | - Soo-Hwan Kim
- Department of Biomedical Laboratory Science, College of Natural Science, Gimcheon University, Gimcheon, Korea
| | - Jae-Ki Ryu
- Department of Biomedical Laboratory Science, College of Natural Science, Gimcheon University, Gimcheon, Korea
| |
Collapse
|
4
|
Vaiana SM, Manno M, Emanuele A, Palma-Vittorelli MB, Palma MU. The role of solvent in protein folding and in aggregation. J Biol Phys 2013; 27:133-45. [PMID: 23345739 DOI: 10.1023/a:1013146530021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We discuss features of the effect of solvent on protein folding andaggregation, highlighting the physics related to the particulate nature and the peculiar structure of the aqueous solvent, and the biological significance of interactions between solvent and proteins. To this purpose we use a generalized energy landscape of extended dimensionality. A closer look at the properties of solvent induced interactions and forces proves useful for understanding the physical grounds of `ad hoc' interactions and for devising realistic ways of accounting for solvent effects. The solvent has long been known to be a crucially important part of biological systems, and times appear mature for it to be adequately accounted for in the protein folding problem. Use of the extended dimensionality energy landscape helpseliciting the possibility of coupling among conformational changes and aggregation, such as proved by experimental data in the literature.
Collapse
Affiliation(s)
- S M Vaiana
- INFM, Progetto Sud and Unita' di Palermo, at Department of Physical and Astronomical Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
5
|
Solvent-induced free energy landscape and solute-solvent dynamic coupling in a multielement solute. Biophys J 2008; 77:2470-8. [PMID: 20540927 DOI: 10.1016/s0006-3495(99)77083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1999] [Accepted: 07/27/1999] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations using a simple multielement model solute with internal degrees of freedom and accounting for solvent-induced interactions to all orders in explicit water are reported. The potential energy landscape of the solute is flat in vacuo. However, the sole untruncated solvent-induced interactions between apolar (hydrophobic) and charged elements generate a rich landscape of potential of mean force exhibiting typical features of protein landscapes. Despite the simplicity of our solute, the depth of minima in this landscape is not far in size from free energies that stabilize protein conformations. Dynamical coupling between configurational switching of the system and hydration reconfiguration is also elicited. Switching is seen to occur on a time scale two orders of magnitude longer than that of the reconfiguration time of the solute taken alone, or that of the unperturbed solvent. Qualitatively, these results are unaffected by a different choice of the water-water interaction potential. They show that already at an elementary level, solvent-induced interactions alone, when fully accounted for, can be responsible for configurational and dynamical features essential to protein folding and function.
Collapse
|
6
|
Pullara F, Emanuele A, Palma-Vittorelli MB, Palma MU. Protein aggregation/crystallization and minor structural changes: universal versus specific aspects. Biophys J 2007; 93:3271-8. [PMID: 17660322 PMCID: PMC2025655 DOI: 10.1529/biophysj.107.110577] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein association covers wide interests in biophysics, protein science, and biotechnologies, and it is often viewed as governed by conformation details. More recently, the existence of a universal physical principle governing aggregation/crystallization processes has been suggested by a series of experiments and shown to be linked to the universal scaling properties of concentration fluctuations occurring in the proximity of a phase transition (spinodal demixing in the specific case). Such properties have provided a quantitative basis for capturing kinetic association data on a universal master curve, ruled by the normalized distance of the state of the system from its instability region. Here we report new data on lysozyme crystal nucleation. They strengthen the evidence in favor of universality and show that the system enters the region of universal behavior in a stepwise manner as a result of minor conformation changes. Results also show that the link between conformation details and universal behavior is actuated by interactions mediated by the solvent. Outside the region of universal behavior, nucleation rates become unpredictable and undetectably long.
Collapse
Affiliation(s)
- F Pullara
- Department of Physical and Astronomical Sciences, University of Palermo, I-90123, Palermo, Italy
| | | | | | | |
Collapse
|
7
|
Vaiana SM, Rotter MA, Emanuele A, Ferrone FA, Palma-Vittorelli MB. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation. Proteins 2006; 58:426-38. [PMID: 15573374 DOI: 10.1002/prot.20339] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We compare the role of a conformational switch and that of a point mutation in the thermodynamic stability of a protein solution and in the consequent propensity toward aggregation. We study sickle-cell hemoglobin (HbS), the beta6 Glu-Val point mutant of adult human hemoglobin (HbA), in its R (CO-liganded) conformation, and compare its aggregation properties to those of both HbS and HbA in their T (unliganded) conformation. Static and dynamic light scattering measurements performed for various hemoglobin concentrations showed critical divergences with mean field exponents as temperature was increased. This allowed determining spinodal data points T(S)(c) by extrapolation. These points were fitted to theoretical expressions of the T(S)(c) spinodal line, which delimits the region where the homogeneous solution becomes thermodynamically unstable against demixing in two sets of denser and dilute mesoscopic domains, while remaining still liquid. Fitting provided model-free numerical values of enthalpy and entropy parameters measuring the stability of solutions against demixing, namely, 93.2 kJ/mol and 314 J/ degrees K-mol, respectively. Aggregation was observed also for R-HbS, but in amorphous form and above physiological temperatures close to the spinodal, consistent with the role played in nucleation by anomalous fluctuations governed by the parameter epsilon = (T - T(S))/T(S). Fourier transform infrared (FTIR) and optical spectroscopy showed that aggregation is neither preceded nor followed by denaturation. Transient multiple interprotein contacts occur in the denser liquid domains for R-HbS, T-HbS, and T-HbA. The distinct effects of their specific nature and configurations, and those of desolvation on the demixing and aggregation thermodynamics, and on the aggregate structure are highlighted.
Collapse
Affiliation(s)
- S M Vaiana
- INFM at Department of Physical and Astronomical Sciences, Università di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
8
|
Manno M, San Biagio PL, Palma MU. The role of pH on instability and aggregation of sickle hemoglobin solutions. Proteins 2004; 55:169-76. [PMID: 14997550 DOI: 10.1002/prot.10648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the physical basis of protein aggregation covers strong physical and biomedical interests. Sickle hemoglobin (HbS) is a point-mutant form of normal human adult hemoglobin (HbA). It is responsible for the first identified "molecular disease," as its propensity to aggregation is responsible for sickle cell disease. At moderately higher than physiological pH value, this propensity is inhibited: The rate of aggregate nucleation becomes exceedingly small and solubility after polymerization increases. These order-of-magnitude effects on polymer nucleation rates and concurrent relatively modest changes of solubility after polymerization are here shown to be related to both pH-induced changes of location and shape of the liquid-liquid demixing (LLD) region. This allows establishment of a self-consistent contact between the thermodynamics of the solution as such (i.e., the LLD region), the kinetics of fiber nucleation, the theory of percolation, and the thermodynamics of gelation. The observed pH-induced changes are largely attributable to strong perturbations of hydrophobic hydration configurations and related free energy by electric charges. Similar mechanisms of effective control of aggregate nucleation rates by means of agents such as cosolutes, pH, salts, and additives, shifting the LLD and associated regions of anomalous fluctuations, promise to be relevant to the whole field of protein aggregation pathologies.
Collapse
Affiliation(s)
- M Manno
- INFM Unit at the Department of Physical and Astronomical Sciences, Università di Palermo, Palermo, Italy
| | | | | |
Collapse
|
9
|
Vaiana SM, Emanuele A, Palma-Vittorelli MB, Palma MU. Irreversible formation of intermediate BSA oligomers requires and induces conformational changes. Proteins 2004; 55:1053-62. [PMID: 15146502 DOI: 10.1002/prot.20074] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding the relation between protein conformational changes and aggregation, and the physical mechanisms leading to such processes, is of primary importance, due to its direct relation to a vast class of severe pathologies. Growing evidence also suggests that oligomeric intermediates, which may occur early in the aggregation pathway, can be themselves pathogenic. The possible cytotoxicity of oligomers of non-disease-associated proteins adds generality to such suggestion and to the interest of studies of oligomer formation. Here we study the early stages of aggregation of Bovine Serum Albumin (BSA), a non pathogenic protein which has proved to be a useful model system. Dynamic light scattering and circular dichroism measurements in kinetic experiments following step-wise temperature rises, show that the "intermediate" form, which initiates large-scale aggregation, is the result of structural and conformational changes and concurrent formation of oligomers, of average size in the range of 100-200 A. Two distinct thresholds are observed. Beyond the first one oligomerization starts and causes partial irreversibility of conformational changes. Beyond the second threshold, additional secondary structural changes occurring in proteins being recruited progress on the same time scale of oligomerization. The concurrent behavior causes a mutual stabilization of oligomerization, and of structural and conformational changes, evidenced by a progressive increase of their irreversibility. This process interaction appears to be pivotal in producing irreversible oligomers.
Collapse
Affiliation(s)
- S M Vaiana
- INFM and Department of Physical and Astronomical Sciences, Università di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
10
|
Vaiana SM, Palma-Vittorelli MB, Palma MU. Time scale of protein aggregation dictated by liquid-liquid demixing. Proteins 2003; 51:147-53. [PMID: 12596271 DOI: 10.1002/prot.10306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing impact of protein aggregation pathologies, together with the current high need for extensive information on protein structures are focusing much interest on the physics underlying the nucleation and growth of protein aggregates and crystals. Sickle Cell Hemoglobin (HbS), a point-mutant form of normal human Hemoglobin (HbA), is the first recognized and best-studied case of pathologically aggregating protein. Here we reanalyze kinetic data on nucleation of deoxy-HbS aggregates by referring them to the (concentration-dependent) temperature T(s) characterizing the occurrence of the phase transition of liquid-liquid demixing (LLD) of the solution. In this way, and by appropriate scaling of kinetic data at different concentrations, so as to normalize their spans, the apparently disparate sets of data are seen to fall on a master curve. Expressing the master curve vs. the parameter epsilon = (T - T(s)) / T(s), familiar from phase transition theory, allows eliciting the role of anomalously large concentration fluctuations associated with the LLD phase transition and also allows decoupling quantitatively the role of such fluctuations from that of microscopic, inter-protein interactions leading to nucleation. Referring to epsilon shows how in a narrow temperature span, that is at T - T(s), nucleation kinetics can undergo orders-of-magnitude changes, unexpected in terms of ordinary chemical kinetics. The same is true for similarly small changes of other parameters (pH, salts, precipitants), capable of altering T(s) and consequently epsilon. This offers the rationale for understanding how apparently minor changes of parameters can dramatically affect protein aggregation and related diseases.
Collapse
Affiliation(s)
- S M Vaiana
- INFM Unit at the Department of Physical and Astronomical Sciences, University of Palermo, Palermo, Italy
| | | | | |
Collapse
|
11
|
Pizzitutti F, Bruni F. Glassy dynamics and enzymatic activity of lysozyme. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 64:052905. [PMID: 11735996 DOI: 10.1103/physreve.64.052905] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 07/02/2001] [Indexed: 05/23/2023]
Abstract
There has been much interest in the analogies between dynamic processes in proteins and in other complex systems such as viscous liquids and glasses. We have investigated the dynamics of protons along chains of hydrogen-bonded water molecules adsorbed on the surface of the globular protein lysozyme. The hydration dependence of the dielectric relaxation time is fitted by a modified Vogel-Fulcher-Tamman equation, in which the variable temperature has been replaced with hydration. We find that the relaxation time diverges at a singular hydration that coincides with the critical water content required to trigger lysozyme enzymatic activity. This surprising correlation suggests a direct coupling between protein function and glasslike behavior, with possible implications for the turnover number of the enzyme.
Collapse
Affiliation(s)
- F Pizzitutti
- Dipartimento di Fisica E. Amaldi, Università di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | | |
Collapse
|
12
|
Manno M, Emanuele A, Martorana V, San Biagio PL, Bulone D, Palma-Vittorelli MB, McPherson DT, Xu J, Parker TM, Urry DW. Interaction of processes on different length scales in a bioelastomer capable of performing energy conversion. Biopolymers 2001; 59:51-64. [PMID: 11343280 DOI: 10.1002/1097-0282(200107)59:1<51::aid-bip1005>3.0.co;2-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work concerns the aggregation properties of (Gly-Val-Gly-Val-Pro)(251) rec, a polypentapeptide reflecting a highly conserved repetitive unit of the bioelastomer, elastin. On raising the temperature of aqueous solutions above 25 degrees C, this polypeptide was already known to undergo concurrent conformational changes (hydrophobic folding), phase separation, and self-assembly with formation of aggregated three-stranded filaments composed of dynamic polypeptide helices, called beta-spirals. Aggregates obtained from the solution can be shaped into bands that acquire entropic elastic properties upon gamma-irradiation and can perform a variety of energy conversions. Previous studies have shown that aggregation is prompted by the (diverging) critical fluctuations of concentration occurring in the solution, in vicinity of its spinodal line. Here, we present combined circular dicroism (CD) and light scattering experiments, and independent fittings of experimental data to the theoretical spinodal and binodal (coexistence) lines. Results show the following logical and causal sequence of processes: (a) Smooth and progressive conformational changes promoted by concentration fluctuations occurring as temperature is raised "pull down" (in the temperature scale) the instability region of the solution. (b) This further promotes critical fluctuations. (c) The related locally high concentration prompts a further substantial conformational change ending in triple-helix formation and coacervation. (d) This intertwining of processes, covering different length scales (from that of individual peptides to the mesoscopic one of demixed regions), is related to the fact that solvent-induced interactions play a strong role over the entire scale span. These results concur with other recent ones in pointing out that process interactions over many length-scales probably reflect a frequent if not ubiquitous pattern in protein aggregation. This may be highly relevant to the desirable deep understanding of such phenomenon, whose interests cover many fields.
Collapse
Affiliation(s)
- M Manno
- Progetto Sud and INFM Unit at Department of Physical and Astronomical Sciences, Via Archirafi 36, 90123 Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Burnett JC, Botti P, Abraham DJ, Kellogg GE. Computationally accessible method for estimating free energy changes resulting from site-specific mutations of biomolecules: systematic model building and structural/hydropathic analysis of deoxy and oxy hemoglobins. Proteins 2001; 42:355-77. [PMID: 11151007 DOI: 10.1002/1097-0134(20010215)42:3<355::aid-prot60>3.0.co;2-f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A practical computational method for the molecular modeling of free-energy changes associated with protein mutations is reported. The de novo generation, optimization, and thermodynamic analysis of a wide variety of deoxy and oxy hemoglobin mutants are described in detail. Hemoglobin is shown to be an ideal candidate protein for study because both the native deoxy and oxy states have been crystallographically determined, and a large and diverse population of its mutants has been thermodynamically characterized. Noncovalent interactions for all computationally generated hemoglobin mutants are quantitatively examined with the molecular modeling program HINT (Hydropathic INTeractions). HINT scores all biomolecular noncovalent interactions, including hydrogen bonding, acid-base, hydrophobic-hydrophobic, acid-acid, base-base, and hydrophobic-polar, to generate dimer-dimer interface "scores" that are translated into free-energy estimates. Analysis of 23 hemoglobin mutants, in both deoxy and oxy states, indicates that the effects of mutant residues on structurally bound waters (and visa versa) are important for generating accurate free-energy estimates. For several mutants, the addition/elimination of structural waters is key to understanding the thermodynamic consequences of residue mutation. Good agreement is found between calculated and experimental data for deoxy hemoglobin mutants (r = 0.79, slope = 0.78, standard error = 1.4 kcal mol(-1), n = 23). Less accurate estimates were initially obtained for oxy hemoglobin mutants (r = 0.48, slope = 0.47, standard error = 1.4 kcal mol(-1), n = 23). However, the elimination of three outliers from this data set results in a better correlation of r = 0.87 (slope = 0.72, standard error = 0.75, n = 20). These three mutations may significantly perturb the hemoglobin quaternary structure beyond the scope of our structural optimization procedure. The method described is also useful in the examination of residue ionization states in protein structures. Specifically, we find an acidic residue within the native deoxy hemoglobin dimer-dimer interface that may be protonated at physiological pH. The final analysis is a model design of novel hemoglobin mutants that modify cooperative free energy (deltaGc)--the energy barrier between the allosteric transition from deoxy to oxy hemoglobin.
Collapse
Affiliation(s)
- J C Burnett
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0133, USA
| | | | | | | |
Collapse
|
14
|
Bulone D, Martorana V, Palma-Vittorelli MB. Effects of electric charges on hydrophobic forces. II. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:6799-809. [PMID: 11102033 DOI: 10.1103/physreve.62.6799] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Indexed: 11/07/2022]
Abstract
We study by molecular-dynamics simulations the effect of electric charges of either sign on hydrophobic interactions and on the dynamics of hydration water, using explicit water and very simplified solutes. Results show that the presence of a charged solute can disrupt the "hydrophobic contact bond" between two apolar solutes nearby, by forcing them towards a different configuration. As a consequence of different structural changes of the solvent caused by charges of opposite sign, the effect is markedly charge-sign-dependent. Analogous weaker effects appear to be induced by the presence of one additional apolar element. The dynamics of hydration water around each solute is also seen to be strongly influenced by the presence of other (charged or uncharged) nearby solutes. Comparison between our results on hydration water dynamics around charged solutes and available experimental data allows sorting out the effects of solute charge sign and size. Our results also offer a plain interpretation of the equivalence of the effects on water structure due to solute ions and to high pressures. These results reflect at a basic paradigmatic level the immensely more complex cases of well-known phenomena such as salting-in and salting-out, and of protein conformational changes caused, e.g., by the arrival of a charged or of an apolar group (phosphorilation or methylation). As it will be discussed, they help in the direction of Delbruck's desirable "progress towards a radical physical explanation" for this class of phenomena.
Collapse
Affiliation(s)
- D Bulone
- CNR Institute for Interdisciplinary Applications of Physics, Via U. La Malfa 153, I-90146 Palermo, Italy
| | | | | |
Collapse
|
15
|
San Biagio PL, Martorana V, Emanuele A, Vaiana SM, Manno M, Bulone D, Palma-Vittorelli MB, Palma MU. Interacting processes in protein coagulation. Proteins 1999; 37:116-20. [PMID: 10451555 DOI: 10.1002/(sici)1097-0134(19991001)37:1<116::aid-prot11>3.0.co;2-i] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A strong interest is currently focused on protein self-association and deposit. This usually involves conformational changes of the entire protein or of a fragment. It can occur even at low concentrations and is responsible for pathologies such as systemic amyloidosis, Alzheimer's and Prion diseases, and other neurodegenerative pathologies. Readily available proteins, exhibiting at low concentration self-association properties related to conformational changes, offer very convenient model systems capable of providing insight into this class of problems. Here we report experiments on bovine serum albumin, showing that the process of conformational change of this protein towards an intermediate form required for coagulation occurs simultaneously and interacts with two more processes: mesoscopic demixing of the solution and protein cross-linking. This pathway of three interacting processes allows coagulation even at very low concentrations, and it has been recently observed also in the case of a nonpeptidic polymer. It could therefore be a fairly common feature in polymer coagulation/gelation. Proteins 1999;37:116-120.
Collapse
|
16
|
Martorana V, Corongiu G, Palma M. Interaction of explicit solvent with hydrophobic/philic/charged residues of a protein: Residue character vs. conformational context. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980801)32:2<129::aid-prot1>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Martorana V, Bulone D, San Biagio PL, Palma-Vittorelli MB, Palma MU. Collective properties of hydration: long range and specificity of hydrophobic interactions. Biophys J 1997; 73:31-7. [PMID: 9199768 PMCID: PMC1180905 DOI: 10.1016/s0006-3495(97)78044-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report results of molecular dynamics (MD) simulations of composite model solutes in explicit molecular water solvent, eliciting novel aspects of the recently demonstrated, strong many-body character of hydration. Our solutes consist of identical apolar (hydrophobic) elements in fixed configurations. Results show that the many-body character of PMF is sufficiently strong to cause 1) a remarkable extension of the range of hydrophobic interactions between pairs of solute elements, up to distances large enough to rule out pairwise interactions of any type, and 2) a SIF that drives one of the hydrophobic solute elements toward the solvent rather than away from it. These findings complement recent data concerning SIFs on a protein at single-residue resolution and on model systems. They illustrate new important consequences of the collective character of hydration and of PMF and reveal new aspects of hydrophobic interactions and, in general, of SIFs. Their relevance to protein recognition, conformation, function, and folding and to the observed slight yet significant nonadditivity of functional effects of distant point mutations in proteins is discussed. These results point out the functional role of the configurational and dynamical states (and related statistical weights) corresponding to the complex configurational energy landscape of the two interacting systems: biomolecule + water.
Collapse
Affiliation(s)
- V Martorana
- Istituto Nazionale di Fisica Della Materia at Department of Physics, Palermo, Italy
| | | | | | | | | |
Collapse
|
18
|
Bulone D, Newman J, San Biagio PL. Mesoscopic gels at low agarose concentration: perturbation effects of ethanol. Biophys J 1997; 72:388-94. [PMID: 8994624 PMCID: PMC1184328 DOI: 10.1016/s0006-3495(97)78678-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aqueous agarose solutions at low concentrations (0.5 g/liter) were temperature quenched below the spinodal line to form mutually disconnected mesoscopic gels. In the presence of 6% ethanol, these solutions, obtained by quenching at the same temperature depth as in pure water, appear much more fluid, as determined by probe diffusion experiments. We show by static and dynamic light scattering that this can be explained by the solvent-mediated effects of ethanol, leading to a globular shape of mesoscopic agarose gels, rather than to an extended rodlike structure observed in pure water. Our findings show the significant effects of solvent perturbations on particle condensation and, therefore, may be useful in understanding the role of the solvent in the folding of biomolecules.
Collapse
Affiliation(s)
- D Bulone
- CNR Institute for Interdisciplinary Applications of Physics, Palermo, Italy
| | | | | |
Collapse
|
19
|
Martorana V, Corongiu G, Palma M. Correlated solvent-induced forces on a protein at single residue resolution: relation to conformation, stability, dynamics and function. Chem Phys Lett 1996. [DOI: 10.1016/0009-2614(96)00322-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Brugè F, Fornili S, Malenkov G, Palma-Vittorelli M, Palma M. Solvent-induced forces on a molecular scale: non-additivity, modulation and causal relation to hydration. Chem Phys Lett 1996. [DOI: 10.1016/0009-2614(96)00185-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
San Biagio P, Bulone D, Emanuele A, Palma-Vittorelli M, Palma M. Spontaneous symmetry-breaking pathways: time-resolved study of agarose gelation. Food Hydrocoll 1996. [DOI: 10.1016/s0268-005x(96)80059-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
San Biagio PL, Bulone D, Emanuele A, Palma MU. Self-assembly of biopolymeric structures below the threshold of random cross-link percolation. Biophys J 1996; 70:494-9. [PMID: 8770227 PMCID: PMC1224949 DOI: 10.1016/s0006-3495(96)79595-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Self-assembly of extended structures via cross-linking of individual biomolecules often occurs in solutions at concentrations well below the estimated threshold for random cross-link percolation. This requires solute-solute correlations. Here we study bovine serum albumin. Its unfolding causes the appearance of an instability region of the sol, not observed for native bovine serum albumin. As a consequence, spinodal demixing of the sol is observed. The thermodynamic phase transition corresponding to this demixing is the determinative symmetry-breaking step allowing the subsequent occurrence of (correlated) cross-linking and its progress up to the topological phase transition of gelation. The occurrence of this sequence is of marked interest to theories of spontaneous symmetry-breaking leading to morphogenesis, as well as to percolation theories. The present results extend the validity of conclusions drawn from our previous studies of other systems, by showing in one single case, system features that we have hitherto observed separately in different systems. Time-resolved experimental observations of the present type also bring kinetic and diffusional processes and solute-solvent interactions into the picture of cross-link percolation.
Collapse
|
23
|
Brugè F, Cottone G, Fornili S. Solute-solute solvent-induced interaction: molecular dynamics simulation of a mixed model system in water. Chem Phys Lett 1995. [DOI: 10.1016/0009-2614(95)00176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Brugè F, Fornili SL, Palma‐Vittorelli MB. Solvent‐induced forces between solutes: A time‐ and space‐resolved molecular dynamics study. J Chem Phys 1994. [DOI: 10.1063/1.467681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Bulone D, San Biagio P, Vittorelli M, Palma M. Water-mediated interactions of biosolutes: Aspects of dynamics, structure, and configuration lifetime of the solvent. J Mol Liq 1993. [DOI: 10.1016/0167-7322(93)80064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|