1
|
Brutscher F, Basler K. Functions of Drosophila Toll/NF-κB signaling in imaginal tissue homeostasis and cancer. Front Cell Dev Biol 2025; 13:1559753. [PMID: 40143968 PMCID: PMC11936955 DOI: 10.3389/fcell.2025.1559753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The Toll/NF-κB pathway plays a central role in patterning the Drosophila embryo and in orchestrating the innate immune response against microbial infections. Both discoveries were associated with a Nobel Prize award and led to the recognition of the Toll-like receptor pathway in mammals, which has significant implications for diseases. Recent discoveries have revealed that the Toll/NF-κB pathway also maintains epithelial homeostasis of imaginal tissues during development: local Toll/NF-κB signaling activity monitors internal cellular fitness, and precancerous mutant cells can trigger systemic Toll/NF-κB pathway activation. However, this signaling can be exploited in diseases like cancer, in which Toll/NF-κB signaling is often co-opted or subverted. Various models have been proposed to explain how Toll/NF-κB signaling contributes to different types of cancer. Here we provide an overview of the functions of Toll/NF-κB signaling in imaginal tissue homeostasis with a focus on their misuse in pathological contexts, particularly their significance for tumor formation.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Padash Barmchi M, Hassan RN, Afkhami M, Masly JP, Brown H, Collins QP, Grunsted MJ. Drosophila model of HPV18-Induced pathogenesis reveals a role for E6 oncogene in regulation of NF-κB and Wnt to inhibit apoptosis. Tumour Virus Res 2025; 19:200316. [PMID: 40074036 PMCID: PMC12008589 DOI: 10.1016/j.tvr.2025.200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025] Open
Abstract
Cancers caused by high-risk human papillomavirus (HPV) remain a significant health threat resulting in more than 300,000 deaths, annually. Persistent expression of two HPV oncogenes, E6 and E7, are necessary for cancer development and progression. E6 has several functions contributing to tumorigenesis one of which is blocking programmed cell death, apoptosis. The detailed mechanism of anti-apoptosis function of E6 is not fully understood. Here, using a Drosophila model of HPV18E6 and the human UBE3A-induced pathogenesis, we show that anti-apoptotic function of E6 is conserved in Drosophila. We demonstrate that the Drosophila homologs of human NF-κB transcription factors, Dorsal and Dif are proapoptotic. They induce the expression of Wingless (Wg, the Drosophila homolog of human Wnt), leading to apoptosis. Our results indicate that E6 oncogene inhibits apoptosis by downregulating the expression of Wg, Dorsal, and Dif. Additionally, we find that Dorsal and Dif, not only promote apoptosis but also regulate autophagy and necrosis. Dorsal promotes autophagy while Dif counteracts it, inducing the formation of acidic vacuoles and necrosis. Interestingly, although E6 blocks the proapoptotic function of Dorsal and Dif, it lacks the ability to interfere with their role in apoptosis-independent cell death. Given the high conservation of NF-κB transcription factors our results provide new insight into potential mechanisms mediated by NF-κB to intervene with cell immortalization action of E6 oncoprotein in HPV-infected cells.
Collapse
Affiliation(s)
| | - Rami N Hassan
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John P Masly
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Harrison Brown
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Quincy P Collins
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, BC, Canada
| | - Michael J Grunsted
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
4
|
Ramos CV, Ballesteros-Arias L, Silva JG, Paiva RA, Nogueira MF, Carneiro J, Gjini E, Martins VC. Cell Competition, the Kinetics of Thymopoiesis, and Thymus Cellularity Are Regulated by Double-Negative 2 to 3 Early Thymocytes. Cell Rep 2020; 32:107910. [DOI: 10.1016/j.celrep.2020.107910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
|
5
|
Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J 2018; 285:4565-4574. [DOI: 10.1111/febs.14651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rafael A. Paiva
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Camila V. Ramos
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Vera C. Martins
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
6
|
How Myxobacteria Cooperate. J Mol Biol 2015; 427:3709-21. [PMID: 26254571 DOI: 10.1016/j.jmb.2015.07.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states.
Collapse
|
7
|
Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc Natl Acad Sci U S A 2015; 112:E2939-46. [PMID: 26038568 DOI: 10.1073/pnas.1503553112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial cells in their native environments must cope with factors that compromise the integrity of the cell. The mechanisms of coping with damage in a social or multicellular context are poorly understood. Here we investigated how a model social bacterium, Myxococcus xanthus, approaches this problem. We focused on the social behavior of outer membrane exchange (OME), in which cells transiently fuse and exchange their outer membrane (OM) contents. This behavior requires TraA, a homophilic cell surface receptor that identifies kin based on similarities in a polymorphic region, and the TraB cohort protein. As observed by electron microscopy, TraAB overexpression catalyzed a prefusion OM junction between cells. We then showed that damage sustained by the OM of one population was repaired by OME with a healthy population. Specifically, LPS mutants that were defective in motility and sporulation were rescued by OME with healthy donors. In addition, a mutant with a conditional lethal mutation in lpxC, an essential gene required for lipid A biosynthesis, was rescued by Tra-dependent interactions with a healthy population. Furthermore, lpxC cells with damaged OMs, which were more susceptible to antibiotics, had resistance conferred to them by OME with healthy donors. We also show that OME has beneficial fitness consequences to all cells. Here, in merged populations of damaged and healthy cells, OME catalyzed a dilution of OM damage, increasing developmental sporulation outcomes of the combined population by allowing it to reach a threshold density. We propose that OME is a mechanism that myxobacteria use to overcome cell damage and to transition to a multicellular organism.
Collapse
|
8
|
Labi V, Erlacher M. How cell death shapes cancer. Cell Death Dis 2015; 6:e1675. [PMID: 25741600 PMCID: PMC4385913 DOI: 10.1038/cddis.2015.20] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis.
Collapse
Affiliation(s)
- V Labi
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert Rössle-Strasse 10, 13125 Berlin, Germany. Tel: +49 30 9406 3462; Fax: +49 30 9406 2390; E-mail:
| | - M Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center of Freiburg, Freiburg 79106, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|