1
|
Leseigneur G, Bredehöft JH, Gautier T, Giri C, Krüger H, MacDermott AJ, Meierhenrich UJ, Caro GMM, Raulin F, Steele A, Steininger H, Szopa C, Thiemann W, Ulamec S, Goesmann F. ESA's Cometary Mission Rosetta—Re‐Characterization of the COSAC Mass Spectrometry Results. Angew Chem Int Ed Engl 2022; 61:e202201925. [PMID: 35460531 PMCID: PMC9400906 DOI: 10.1002/anie.202201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/10/2022]
Abstract
The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov–Gerasimenko in situ. Twenty‐five minutes after the initial touchdown of Philae on the surface of comet 67P in November 2014, a mass spectrum was recorded by the time‐of‐flight mass spectrometer COSAC onboard Philae. The new characterization of this mass spectrum through non‐negative least squares fitting and Monte Carlo simulations reveals the chemical composition of comet 67P. A suite of 12 organic molecules, 9 of which also found in the original analysis of this data, exhibit high statistical probability to be present in the grains sampled from the cometary nucleus. These volatile molecules are among the most abundant in the comet's chemical composition and represent an inventory of the first raw materials present in the early Solar System.
Collapse
Affiliation(s)
- Guillaume Leseigneur
- Université Côte d'Azur, CNRS UMR 7272 Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice France
| | - Jan Hendrik Bredehöft
- University of Bremen Department 02 Biology/Chemistry Institute for Applied and Physical Chemistry Leobener Str. 5 28359 Bremen Germany
| | - Thomas Gautier
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS) LATMOS/IPSL UVSQ Université Paris-Saclay Sorbonne Université, CNRS 11 Bd d'Alembert 78280 Guyancourt France
- LESIA, Observatoire de Paris Université PSL, CNRS Sorbonne Université Université de Paris 5 place Jules Janssen 92195 Meudon France
| | - Chaitanya Giri
- Research and Information System for Developing Countries India Habitat Centre Lodhi Road New Delhi 110 003 India
- Earth-Life Science Institute Tokyo Institute of Technology 2-12-1-IE-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Harald Krüger
- Max Planck Institute for Solar System Research Justus von Liebig Weg 3 37077 Göttingen Germany
| | | | - Uwe J. Meierhenrich
- Université Côte d'Azur, CNRS UMR 7272 Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice France
| | - Guillermo M. Muñoz Caro
- Centro de Astrobiología (CSIC-INTA) Ctra. de Ajalvir, km 4, Torrejón de Ardoz 28850 Madrid Spain
| | - François Raulin
- Univ Paris Est Créteil and Université de Paris, CNRS LISA F-94010 Créteil France
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington Washington, DC USA
| | - Harald Steininger
- Design Assurance Department OHB System AG Universitätsallee 27 28359 Bremen Germany
| | - Cyril Szopa
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS) LATMOS/IPSL UVSQ Université Paris-Saclay Sorbonne Université, CNRS 11 Bd d'Alembert 78280 Guyancourt France
| | - Wolfram Thiemann
- University of Bremen Institute for Applied and Physical Chemistry Leobener Strasse NW2 28359 Bremen Germany
| | - Stephan Ulamec
- German Aerospace Center (DLR) Space Operations and Astronaut Training Linder Höhe 51147 Cologne Germany
| | - Fred Goesmann
- Max Planck Institute for Solar System Research Justus von Liebig Weg 3 37077 Göttingen Germany
| |
Collapse
|
2
|
Walsh KJ, Ballouz RL, Jawin ER, Avdellidou C, Barnouin OS, Bennett CA, Bierhaus EB, Bos BJ, Cambioni S, Connolly HC, Delbo M, DellaGiustina DN, DeMartini J, Emery JP, Golish DR, Haas PC, Hergenrother CW, Ma H, Michel P, Nolan MC, Olds R, Rozitis B, Richardson DC, Rizk B, Ryan AJ, Sánchez P, Scheeres DJ, Schwartz SR, Selznick SH, Zhang Y, Lauretta DS. Near-zero cohesion and loose packing of Bennu's near subsurface revealed by spacecraft contact. SCIENCE ADVANCES 2022; 8:eabm6229. [PMID: 35857450 PMCID: PMC9262326 DOI: 10.1126/sciadv.abm6229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
When the OSIRIS-REx spacecraft pressed its sample collection mechanism into the surface of Bennu, it provided a direct test of the poorly understood near-subsurface physical properties of rubble-pile asteroids, which consist of rock fragments at rest in microgravity. Here, we find that the forces measured by the spacecraft are best modeled as a granular bed with near-zero cohesion that is half as dense as the bulk asteroid. The low gravity of a small rubble-pile asteroid such as Bennu effectively weakens its near subsurface by not compressing the upper layers, thereby minimizing the influence of interparticle cohesion on surface geology. The underdensity and weak near subsurface should be global properties of Bennu and not localized to the contact point.
Collapse
Affiliation(s)
- Kevin J. Walsh
- Southwest Research Institute, Boulder, CO, USA
- Corresponding author.
| | - Ronald-Louis Ballouz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Erica R. Jawin
- National Air and Space Museum, Smithsonian Institution, Washington, DC, USA
| | - Chrysa Avdellidou
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | | | - Carina A. Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - Brent J. Bos
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Saverio Cambioni
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harold C. Connolly
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
- Department of Geology, Rowan University, Glassboro, NJ, USA
| | - Marco Delbo
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | | | - Joseph DeMartini
- Department of Astronomy, University of Maryland, College Park, MD, USA
| | - Joshua P. Emery
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, USA
| | - Dathon R. Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | | | - Huikang Ma
- Lockheed Martin Space, Littleton, CO, USA
| | - Patrick Michel
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - Michael C. Nolan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Ryan Olds
- Lockheed Martin Space, Littleton, CO, USA
| | - Benjamin Rozitis
- School of Physical Sciences, The Open University, Milton Keynes, UK
| | | | - Bashar Rizk
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Andrew J. Ryan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Paul Sánchez
- Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel J. Scheeres
- Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO, USA
- Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA
| | - Stephen R. Schwartz
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
- Planetary Science Institute, Tucson, AZ, USA
| | | | - Yun Zhang
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - Dante S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Leseigneur G, Bredehöft JH, Gautier T, Giri C, Krüger H, MacDermott AJ, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Steele A, Szopa C, Thiemann W, Ulamec S, Goesmann F. COSAC's Only Gas Chromatogram Taken on Comet 67P/Churyumov-Gerasimenko. Chempluschem 2022; 87:e202200116. [PMID: 35608832 DOI: 10.1002/cplu.202200116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Indexed: 11/09/2022]
Abstract
The Philae lander of the Rosetta space mission made a non-nominal landing on comet 67P/Churyumov-Gerasimenko on November 12, 2014. Shortly after, using the limited power available from Philae's batteries, the COSAC instrument performed a single 18-minutes gas chromatogram, which has remained unpublished until now due to the lack of identifiable elution. This work shows that, despite the unsuccessful drilling of the comet and deposition of surface material in the SD2 ovens, the measurements from the COSAC instrument were executed nominally. We describe an automated search for extremely small deviations from noise and discuss the possibility of a signal from ethylene glycol at m/z 31. Arguments for and against this detection are listed, but the results remain inconclusive. Still, the successful operations of an analytical chemistry laboratory on a cometary nucleus gives great hope for the future of space exploration.
Collapse
Affiliation(s)
- Guillaume Leseigneur
- Université Côte d'Azur, CNRS UMR 7272, Institut de Chimie de Nice, 28 Avenue Valrose, 06108, Nice, France
| | - Jan Hendrik Bredehöft
- University of Bremen, Department 02 Biology/Chemistry, Institute for Applied and Physical Chemistry, Leobener Str.5, 28359, Bremen, Germany
| | - Thomas Gautier
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS), LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195, Meudon, France
| | - Chaitanya Giri
- Research and Information System for Developing Countries, India Habitat Centre, Lodhi Road, New Delhi, 110 003, India
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Harald Krüger
- Max Planck Institute for Solar System Research, Justus von Liebig Weg 3, 37077, Göttingen, Germany
| | | | - Uwe J Meierhenrich
- Université Côte d'Azur, CNRS UMR 7272, Institut de Chimie de Nice, 28 Avenue Valrose, 06108, Nice, France
| | - Guillermo M Muñoz Caro
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - François Raulin
- Univ Paris Est Créteil and Université de Paris, CNRS LISA, 94010, Créteil, France
| | - Andrew Steele
- Geophysical Laboratory, Carnegie, Institution of Washington, Washington, DC, USA
| | - Cyril Szopa
- Laboratoire Atmosphère, Milieux, Observations Spatiales (LATMOS), LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - Wolfram Thiemann
- Institute for Applied and Physical Chemistry, University of Bremen, Leobener Strasse NW2, 28359, Bremen, Germany
| | - Stephan Ulamec
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Linder Höhe, 51147, Cologne, Germany
| | - Fred Goesmann
- Max Planck Institute for Solar System Research, Justus von Liebig Weg 3, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Leseigneur G, Bredehöft JH, Gautier T, Giri C, Krüger H, MacDermott AJ, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Steele A, Steininger H, Szopa C, Thiemann W, Ulamec S, Goesmann F. ESA’s Cometary Mission Rosetta – Re‐Characterization of the COSAC Mass Spectrometry Results. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guillaume Leseigneur
- Universite Cote d'Azur Institut de Chimie de Nice 28 Avenue Valrose 06108 Nice FRANCE
| | - Jan Hendrik Bredehöft
- University of Bremen Faculty 2 Biology Chemistry: Universitat Bremen Fachbereich 2 Biologie Chemie Institute for Applied and Physical Chemistry Leobener Str.5 28359 Bremen GERMANY
| | | | - Chaitanya Giri
- Tokyo Institute of Technology ILA: Tokyo Kogyo Daigaku Liberal Arts Kenkyu Kyoikuin Earth-Life Science Institute JAPAN
| | - Harald Krüger
- Max Planck Institute for Solar System Research: Max-Planck-Institut fur Sonnensystemforschung MPI Justus von Liebig Weg 3 37077 Göttingen GERMANY
| | | | - Uwe J. Meierhenrich
- Universite Cote d'Azur Chemistry Parc ValroseFaculté de Sciences 6108 Nice FRANCE
| | | | | | - Andrew Steele
- Carnegie Institution of Washington: Carnegie Institution for Science Geophysical Laboratory UNITED STATES
| | - Harald Steininger
- OHB System AG Design Assurance Department Universitätsallee 27 28359 Bremen GERMANY
| | - Cyril Szopa
- Université Paris-Saclay: Universite Paris-Saclay LATMOS FRANCE
| | - Wolfram Thiemann
- University of Bremen Faculty 2 Biology Chemistry: Universitat Bremen Fachbereich 2 Biologie Chemie Fachbereich 2 Biologie Chemie GERMANY
| | - Stephan Ulamec
- DLR Bonn: Deutsches Zentrum fur Luft- und Raumfahrt DLR Standort Bonn Space Operations and Astronaut Training GERMANY
| | - Fred Goesmann
- Max Planck Institute for Solar System Research: Max-Planck-Institut fur Sonnensystemforschung MPI GERMANY
| |
Collapse
|
5
|
Rudin N, Kolvenbach H, Tsounis V, Hutter M. Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep Reinforcement Learning. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3084374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Feng R, Zhang Y, Liu J, Zhang Y, Li J, Baoyin H. Soft Robotic Perspective and Concept for Planetary Small Body Exploration. Soft Robot 2021; 9:889-899. [PMID: 34939854 DOI: 10.1089/soro.2021.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tens of thousands of planetary small bodies (asteroids, comets, and small moons) are flying beside our Earth with little understanding. Explorers on the surfaces of these bodies, unlike the Lunar or Mars rovers, have only few attempts and no sophisticated solution. Current concerns mainly focus on landing uncertainties and mobility limitations, which soft robots may suitably aid utilizing their compliance and adaptivity. In this study, we present a perspective of designating soft robots for the surface exploration. Based on the lessons from recent space missions and an astronomy survey, we summarize the surface features of typical small bodies and the associated challenges for possible soft robotic design. Different kinds of soft mobile robots are reviewed, whose morphology and locomotion are analyzed for the microgravity, rugged environment. We also propose an alternative to current asteroid hoppers, as a case of applying progress in soft material. Specifically, the structure is a deployable cube whose outer shell is made of shape memory polymer, so that it can achieve morphing and variable stiffness between liftoff and landing phases. Dynamic simulations of the free-fall landing are carried out with a rigid counterpart for comparison. The results show that the soft deployed shell can effectively contribute to dissipating the kinetic energy and attenuating the excessive rebounds.
Collapse
Affiliation(s)
- Ruoyu Feng
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Jinyu Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yonglong Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Junfeng Li
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Hexi Baoyin
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Wright E, Quillen AC, South J, Nelson RC, Sánchez P, Siu J, Askari H, Nakajima M, Schwartz SR. Ricochets on Asteroids: Experimental study of low velocity grazing impacts into granular media. ICARUS 2020; 351:113963. [PMID: 33087944 PMCID: PMC7571586 DOI: 10.1016/j.icarus.2020.113963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spin off events and impacts can eject boulders from an asteroid surface and rubble pile asteroids can accumulate from debris following a collision between large asteroids. These processes produce a population of gravitational bound objects in orbit that can impact an asteroid surface at low velocity and with a distribution of impact angles. We present laboratory experiments of low velocity spherical projectiles into a fine granular medium, sand. We delineate velocity and impact angles giving ricochets, those giving projectiles that roll-out from the impact crater and those that stop within their impact crater. With high speed camera images and fluorescent markers on the projectiles we track spin and projectile trajectories during impact. We find that the projectile only reaches a rolling without slipping condition well after the marble has reached peak penetration depth. The required friction coefficient during the penetration phase of impact is 4-5 times lower than that of the sand suggesting that the sand is fluidized near the projectile surface during penetration. We find that the critical grazing impact critical angle dividing ricochets from roll-outs, increases with increasing impact velocity. The critical angles for ricochet and for roll-out as a function of velocity can be matched by an empirical model during the rebound phase that balances a lift force against gravity. We estimate constraints on projectile radius, velocity and impact angle that would allow projectiles on asteroids to ricochet or roll away from impact, finally coming to rest distant from their initial impact sites.
Collapse
Affiliation(s)
- Esteban Wright
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Alice C Quillen
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Juliana South
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Randal C Nelson
- Dept. of Computer Science, University of Rochester, Rochester, NY, 14627, USA
| | - Paul Sánchez
- Colorado Center for Astrodynamics Research, The University of Colorado Boulder, 3775 Discovery Drive, 429 UCB - CCAR, Boulder, CO 80303, USA
| | - John Siu
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Hesam Askari
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Miki Nakajima
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Stephen R Schwartz
- Lunar and Planetary Lab, University of Arizona, Tucson, AZ, USA
- Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, C.S. 34229, 06304 Nice Cedex 4, France
| |
Collapse
|
8
|
O'Rourke L, Heinisch P, Blum J, Fornasier S, Filacchione G, Van Hoang H, Ciarniello M, Raponi A, Gundlach B, Blasco RA, Grieger B, Glassmeier KH, Küppers M, Rotundi A, Groussin O, Bockelée-Morvan D, Auster HU, Oklay N, Paar G, Perucha MDPC, Kovacs G, Jorda L, Vincent JB, Capaccioni F, Biver N, Parker JW, Tubiana C, Sierks H. The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature 2020; 586:697-701. [PMID: 33116289 DOI: 10.1038/s41586-020-2834-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/28/2020] [Indexed: 11/09/2022]
Abstract
On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.
Collapse
Affiliation(s)
- Laurence O'Rourke
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain.
| | - Philip Heinisch
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Blum
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sonia Fornasier
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France.,Institut Universitaire de France (IUF), Paris, France
| | - Gianrico Filacchione
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Hong Van Hoang
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France.,Université Grenoble Alpes, CNRS, Institut de Planétologie et Astrophysique de Grenoble (IPAG), UMR, Grenoble, France
| | - Mauro Ciarniello
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Andrea Raponi
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Bastian Gundlach
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rafael Andrés Blasco
- Telespazio Vega UK Ltd for the European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Björn Grieger
- Aurora Technology BV for the European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Karl-Heinz Glassmeier
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Küppers
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Alessandra Rotundi
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy.,Dipartimento di Scienze e Tecnologie, Universitá degli Studi di Napoli Parthenope, Naples, Italy
| | | | - Dominique Bockelée-Morvan
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France
| | - Hans-Ulrich Auster
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gerhard Paar
- Joanneum Research Forschungsgesellschaft, Graz, Austria
| | | | - Gabor Kovacs
- Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Laurent Jorda
- Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
| | | | - Fabrizio Capaccioni
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Nicolas Biver
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France
| | - Joel Wm Parker
- Planetary Science Directorate, Southwest Research Institute (SwRI), Boulder, CO, USA
| | - Cecilia Tubiana
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy.,Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | - Holger Sierks
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| |
Collapse
|
9
|
Eye of a skull reveals details of cometary materials. Nature 2020; 586:675-676. [DOI: 10.1038/d41586-020-02941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Abstract
Landing safely is the key to successful exploration of the solar system; the mitigation of the connected effects of collision in mechanical systems relies on the conversion of kinetic energy into heat or potential energy. An effective landing-system design should minimize the acceleration acting on the payload. In this paper, we focus on the application of a special class of nonlinear preloaded mechanisms, which take advantage of a variable radius drum (VRD) to produce a constant reactive force during deceleration. Static and dynamic models of the mechanism are presented. Numerical results show that the system allows for very efficient kinetic energy accumulation during impact, approaching the theoretical limit.
Collapse
|
11
|
Wurm G. Traveling to the origins of the Solar System. Science 2019; 364:230-231. [DOI: 10.1126/science.aax3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asteroid data from the Hayabusa2 mission support collisional evolution of a pristine body
Collapse
Affiliation(s)
- Gerhard Wurm
- University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
12
|
Boehnhardt H, Bibring JP, Apathy I, Auster HU, Ercoli Finzi A, Goesmann F, Klingelhöfer G, Knapmeyer M, Kofman W, Krüger H, Mottola S, Schmidt W, Seidensticker K, Spohn T, Wright I. The Philae lander mission and science overview. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0248. [PMID: 28554970 PMCID: PMC5454222 DOI: 10.1098/rsta.2016.0248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 05/25/2023]
Abstract
The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- Hermann Boehnhardt
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | | | - Istvan Apathy
- Atomic Energy Research Institute, PO Box 49, 1525 Budapest, Hungary
| | - Hans Ulrich Auster
- Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
| | | | - Fred Goesmann
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Göstar Klingelhöfer
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University, Staudinger Weg 9, 55099 Mainz, Germany
| | - Martin Knapmeyer
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Wlodek Kofman
- UGA-Grenoble CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274, 38058 Grenoble, France
| | - Harald Krüger
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Stefano Mottola
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Walter Schmidt
- Space Research Division, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Klaus Seidensticker
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Tilman Spohn
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ian Wright
- Planetary and Space Science Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
13
|
Taylor MGGT, Altobelli N, Buratti BJ, Choukroun M. The Rosetta mission orbiter science overview: the comet phase. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0262. [PMID: 28554981 PMCID: PMC5454230 DOI: 10.1098/rsta.2016.0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov-Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
| | - N Altobelli
- ESA/ESAC, 28692 Villanueva de la Cañada, Spain
| | - B J Buratti
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| | - M Choukroun
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
14
|
A'Hearn MF. Comets: looking ahead. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0261. [PMID: 28554980 PMCID: PMC5454229 DOI: 10.1098/rsta.2016.0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 05/25/2023]
Abstract
We outline the key questions about comets that must be answered in order to understand cometary formation in the context of the protoplanetary disc and the role of comets in the formation and evolution of the solar system. We then discuss the new understanding of comets from Rosetta and from other recent advances, including work presented by others at the discussion meeting. Finally, we suggest some key directions for future projects to better address the above questions.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- Michael F A'Hearn
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| |
Collapse
|
15
|
Asphaug E, Thangavelautham J, Klesh A, Chandra A, Nallapu R, Raura L, Herreras-Martinez M, Schwartz S. A cubesat centrifuge for long duration milligravity research. NPJ Microgravity 2017. [PMID: 28649638 PMCID: PMC5459807 DOI: 10.1038/s41526-017-0021-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We advocate a low-cost strategy for long-duration research into the ‘milligravity’ environment of asteroids, comets and small moons, where surface gravity is a vector field typically less than 1/1000 the gravity of Earth. Unlike the microgravity environment of space, there is a directionality that gives rise, over time, to strangely familiar geologic textures and landforms. In addition to advancing planetary science, and furthering technologies for hazardous asteroid mitigation and in situ resource utilization, simplified access to long-duration milligravity offers significant potential for advancing human spaceflight, biomedicine and manufacturing. We show that a commodity 3U (10 × 10 × 34 cm3) cubesat containing a laboratory of loose materials can be spun to 1 r.p.m. = 2π/60 s−1 on its long axis, creating a centrifugal force equivalent to the surface gravity of a kilometer-sized asteroid. We describe the first flight demonstration, where small meteorite fragments will pile up to create a patch of real regolith under realistic asteroid conditions, paving the way for subsequent missions where landing and mobility technology can be flight-proven in the operational environment, in low-Earth orbit. The 3U design can be adapted for use onboard the International Space Station to allow for variable gravity experiments under ambient temperature and pressure for a broader range of experiments.
Collapse
Affiliation(s)
| | | | - Andrew Klesh
- Arizona State University, Tempe, AZ USA.,Jet Propulsion Laboratory, Pasadena, CA USA
| | | | | | | | | | | |
Collapse
|
16
|
Sunday C, Murdoch N, Cherrier O, Morales Serrano S, Valeria Nardi C, Janin T, Avila Martinez I, Gourinat Y, Mimoun D. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:084504. [PMID: 27587140 DOI: 10.1063/1.4961575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.
Collapse
Affiliation(s)
- C Sunday
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - N Murdoch
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - O Cherrier
- Département Mécanique des Structures et Matériaux (DMSM), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - S Morales Serrano
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - C Valeria Nardi
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - T Janin
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - I Avila Martinez
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - Y Gourinat
- Département Mécanique des Structures et Matériaux (DMSM), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| | - D Mimoun
- Département Electronique, Optronique et Signal (DEOS), Systèmes Spatiaux (SSPA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, France
| |
Collapse
|
17
|
Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko. Nature 2016; 534:352-5. [PMID: 27281196 DOI: 10.1038/nature17670] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The solid, central part of a comet--its nucleus--is subject to destructive processes, which cause nuclei to split at a rate of about 0.01 per year per comet. These destructive events are due to a range of possible thermophysical effects; however, the geophysical expressions of these effects are unknown. Separately, over two-thirds of comet nuclei that have been imaged at high resolution show bilobate shapes, including the nucleus of comet 67P/Churyumov-Gerasimenko (67P), visited by the Rosetta spacecraft. Analysis of the Rosetta observations suggests that 67P's components were brought together at low speed after their separate formation. Here, we study the structure and dynamics of 67P's nucleus. We find that sublimation torques have caused the nucleus to spin up in the past to form the large cracks observed on its neck. However, the chaotic evolution of its spin state has so far forestalled its splitting, although it should eventually reach a rapid enough spin rate to do so. Once this occurs, the separated components will be unable to escape each other; they will orbit each other for a time, ultimately undergoing a low-speed merger that will result in a new bilobate configuration. The components of four other imaged bilobate nuclei have volume ratios that are consistent with a similar reconfiguration cycle, pointing to such cycles as a fundamental process in the evolution of short-period comet nuclei. It has been shown that comets were not strong contributors to the so-called late heavy bombardment about 4 billion years ago. The reconfiguration process suggested here would preferentially decimate comet nuclei during migration to the inner solar system, perhaps explaining this lack of a substantial cometary flux.
Collapse
|
18
|
Spohn T, Knollenberg J, Ball AJ, Banaszkiewicz M, Benkhoff J, Grott M, Grygorczuk J, Hüttig C, Hagermann A, Kargl G, Kaufmann E, Kömle N, Kührt E, Kossacki KJ, Marczewski W, Pelivan I, Schrödter R, Seiferlin K. COMETARY SCIENCE. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science 2015; 349:aab0464. [PMID: 26228152 DOI: 10.1126/science.aab0464] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 ± 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.
Collapse
Affiliation(s)
- T Spohn
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany.
| | - J Knollenberg
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - A J Ball
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | | | - J Benkhoff
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - M Grott
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | | | - C Hüttig
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - A Hagermann
- Department of Physical Sciences, The Open University, Milton Keynes, UK
| | - G Kargl
- Space Research Institute, Austrian Academy of Sciences Graz, Austria
| | - E Kaufmann
- Department of Physical Sciences, The Open University, Milton Keynes, UK
| | - N Kömle
- Space Research Institute, Austrian Academy of Sciences Graz, Austria
| | - E Kührt
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - K J Kossacki
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | - I Pelivan
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - R Schrödter
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - K Seiferlin
- Physics Institute, University of Berne, Berne, Switzerland
| |
Collapse
|
19
|
Kofman W, Herique A, Barbin Y, Barriot JP, Ciarletti V, Clifford S, Edenhofer P, Elachi C, Eyraud C, Goutail JP, Heggy E, Jorda L, Lasue J, Levasseur-Regourd AC, Nielsen E, Pasquero P, Preusker F, Puget P, Plettemeier D, Rogez Y, Sierks H, Statz C, Svedhem H, Williams I, Zine S, Van Zyl J. COMETARY SCIENCE. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 2015; 349:aab0639. [PMID: 26228153 DOI: 10.1126/science.aab0639] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae's final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites.
Collapse
Affiliation(s)
- Wlodek Kofman
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Alain Herique
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Yves Barbin
- MIO, UM 110, CNRS-Institut National des Sciences de l'Univers (INSU), Université de Toulon, Aix-Marseille Université, IRD 83957 La Garde, France
| | | | - Valérie Ciarletti
- Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) (UPSay); Université Pierre et Marie Curie (UPMC) (Sorbonne Univ.); CNRS/INSU; Laboratoire Atmosphéres, Milieux, Observations Spatiales (LATMOS)-Institut Pierre-Simon Laplace (IPSL), 11 Boulevard d'Alembert, 78280 Guyancourt, France
| | - Stephen Clifford
- Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA
| | - Peter Edenhofer
- Ruhr-University of Bochum, Faculty of Electrical Engineering and Information Technology, 44780 Bochum, Germany
| | - Charles Elachi
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA
| | - Christelle Eyraud
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Jean-Pierre Goutail
- Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) (UPSay); Université Pierre et Marie Curie (UPMC) (Sorbonne Univ.); CNRS/INSU; Laboratoire Atmosphéres, Milieux, Observations Spatiales (LATMOS)-Institut Pierre-Simon Laplace (IPSL), 11 Boulevard d'Alembert, 78280 Guyancourt, France
| | - Essam Heggy
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA. University of Southern California, Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, Los Angeles, CA 90089, USA
| | - Laurent Jorda
- Laboratoire d'Astrophysique de Marseille Pôle de l'Étoile Site de Château-Gombert 38, Rue Frédéric Joliot-Curie 13388 Marseille, France
| | - Jérémie Lasue
- Université de Toulouse; UPS-OMP; IRAP; (2) CNRS; IRAP; 9 Avenue Colonel Roche, BP 44 346, F-31028 Toulouse Cedex 4, Toulouse, France
| | | | - Erling Nielsen
- Max-Planck-Institüt fur Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Pierre Pasquero
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Frank Preusker
- German Aerospace Center (DLR) Rutherfordstraße 2 12489 Berlin, Germany
| | - Pascal Puget
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Dirk Plettemeier
- Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Germany
| | - Yves Rogez
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Holger Sierks
- Max-Planck-Institüt fur Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Christoph Statz
- Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Germany
| | - Hakan Svedhem
- European Space Agency (ESA)/European Space Research and Technology Centre (ESTEC) Noordwijk, Netherlands
| | - Iwan Williams
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sonia Zine
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Jakob Van Zyl
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA
| |
Collapse
|
20
|
Mottola S, Arnold G, Grothues HG, Jaumann R, Michaelis H, Neukum G, Bibring JP, Schröder SE, Hamm M, Otto KA, Pelivan I, Proffe G, Scholten F, Tirsch D, Kreslavsky M, Remetean E, Souvannavong F, Dolives B. COMETARY SCIENCE. The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging. Science 2015; 349:aab0232. [PMID: 26228151 DOI: 10.1126/science.aab0232] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle "splashing" is responsible for the observed formations.
Collapse
Affiliation(s)
- S Mottola
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany.
| | - G Arnold
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - H-G Grothues
- DLR, Space Management, Space Science. Bonn, Germany
| | - R Jaumann
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - H Michaelis
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - G Neukum
- Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - J-P Bibring
- Institute of Space Astrophysics, Orsay, France
| | - S E Schröder
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - M Hamm
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany. Humboldt University Berlin, Germany
| | - K A Otto
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - I Pelivan
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - G Proffe
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - F Scholten
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - D Tirsch
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - M Kreslavsky
- Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
| | - E Remetean
- Centre National d'Études Spatiales, Toulouse, France
| | | | - B Dolives
- Magellium, Ramonville Saint-Agne, France
| |
Collapse
|
21
|
Wright IP, Sheridan S, Barber SJ, Morgan GH, Andrews DJ, Morse AD. CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy. Science 2015; 349:aab0673. [DOI: 10.1126/science.aab0673] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- I. P. Wright
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S. Sheridan
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S. J. Barber
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - G. H. Morgan
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - D. J. Andrews
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - A. D. Morse
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
22
|
Goesmann F, Rosenbauer H, Bredehoft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Kruger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Caro GMM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 2015; 349:aab0689. [DOI: 10.1126/science.aab0689] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Gibney E. Philae's comet discoveries create series of conundrums. Nature 2015. [DOI: 10.1038/nature.2015.18102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|