1
|
Cardoch S, Timneanu N, Caleman C, Scheicher RH. Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study. ACS NANOSCIENCE AU 2022; 2:119-127. [PMID: 37101662 PMCID: PMC10125149 DOI: 10.1021/acsnanoscienceau.1c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.
Collapse
Affiliation(s)
- Sebastian Cardoch
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ralph H. Scheicher
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
2
|
Laps S, Atamleh F, Kamnesky G, Uzi S, Meijler MM, Brik A. Insight on the Order of Regioselective Ultrafast Formation of Disulfide Bonds in (Antimicrobial) Peptides and Miniproteins. Angew Chem Int Ed Engl 2021; 60:24137-24143. [PMID: 34524726 DOI: 10.1002/anie.202107861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 01/08/2023]
Abstract
Disulfide-rich peptides and proteins are among the most fascinating bioactive molecules. The difficulties associated with the preparation of these targets have prompted the development of various chemical strategies. Nevertheless, the production of these targets remains very challenging or elusive. Recently, we introduced a strategy for one-pot disulfide bond formation, tackling most of the previous limitations. However, the effect of the order of oxidation remained an underexplored issue. Herein we report on the complete synthetic flexibility of the approach with respect to the order of oxidation of three disulfide bonds in targets that lack the knot motif. In contrast, our study reveals an essential order of disulfide bond formation in the EETI-II knotted miniprotein. This synthetic strategy was applied for the synthesis of novel analogues of the plectasin antimicrobial peptide with enhanced activities against methicillin-resistant Staphylococcus aureus (MRSA), a notorious human pathogen.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Fatima Atamleh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Shaked Uzi
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Michael M Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
3
|
Laps S, Atamleh F, Kamnesky G, Uzi S, Meijler MM, Brik A. Insight on the Order of Regioselective Ultrafast Formation of Disulfide Bonds in (Antimicrobial) Peptides and Miniproteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Fatima Atamleh
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Shaked Uzi
- Department of Chemistry and National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Michael M. Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
4
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021; 60:16568-16575. [DOI: 10.1002/anie.202104111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
5
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
6
|
Pappas CG, Liu B, Marić I, Ottelé J, Kiani A, van der Klok ML, Onck PR, Otto S. Two Sides of the Same Coin: Emergence of Foldamers and Self-Replicators from Dynamic Combinatorial Libraries. J Am Chem Soc 2021; 143:7388-7393. [PMID: 33955219 PMCID: PMC8154527 DOI: 10.1021/jacs.1c00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of molecules
and systems to make copies of themselves
and the ability of molecules to fold into stable, well-defined three-dimensional
conformations are of considerable importance in the formation and
persistence of life. The question of how, during the emergence of
life, oligomerization reactions become selective and channel these
reactions toward a small number of specific products remains largely
unanswered. Herein, we demonstrate a fully synthetic chemical system
where structurally complex foldamers and self-replicating assemblies
emerge spontaneously and with high selectivity from pools of oligomers
as a result of forming noncovalent interactions. Whether foldamers
or replicators form depends on remarkably small differences in building
block structures and composition and experimental conditions. We also
observed the dynamic transformation of a foldamer into a replicator.
These results show that the structural requirements/design criteria
for building blocks that lead to foldamers are similar to those that
lead to replicators. What determines whether folding or replication
takes place is not necessarily the type of noncovalent interaction,
but only whether they occur intra- or intermolecularly. This work
brings together, for the first time, the fields of replicator and
foldamer chemistry.
Collapse
Affiliation(s)
- Charalampos G Pappas
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bin Liu
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivana Marić
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jim Ottelé
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Armin Kiani
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus L van der Klok
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Takahashi S, Tateishi T, Sasaki Y, Sato H, Hiraoka S. Towards kinetic control of coordination self-assembly: a case study of a Pd 3L 6 double-walled triangle to predict the outcomes by a reaction network model. Phys Chem Chem Phys 2020; 22:26614-26626. [PMID: 33201952 DOI: 10.1039/d0cp04623j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Numerical analysis of self-assembly process (NASAP) was performed for a [Pd3L6]6+ double-walled triangle (DWT) complex. With a chemical reaction network and a parameter set of the reaction rate constants obtained from a numerical search in an eighteen-dimensional parameter space to obtain a good fit to the data from the experimental counterpart (quantitative analysis of self-assembly process, QASAP), a refined calculation resulted in a detailed time evolution of each molecular species. Analysis based on those clues revealed dominant self-assembly pathways and a balance between inter- and intramolecular reactions, and enabled prediction of the reaction outcomes depending on the initial stoichiometric ratio under kinetic control.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | | | | | | | |
Collapse
|
8
|
Baker EG, Bartlett GJ, Porter Goff KL, Woolfson DN. Miniprotein Design: Past, Present, and Prospects. Acc Chem Res 2017; 50:2085-2092. [PMID: 28832117 DOI: 10.1021/acs.accounts.7b00186] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The design and study of miniproteins, that is, polypeptide chains <40 amino acids in length that adopt defined and stable 3D structures, is resurgent. Miniproteins offer possibilities for reducing the complexity of larger proteins and so present new routes to studying sequence-to-structure and sequence-to-stability relationships in proteins generally. They also provide modules for protein design by pieces and, with this, prospects for building more-complex or even entirely new protein structures. In addition, miniproteins are useful scaffolds for templating functional domains, for example, those involved in protein-protein interactions, catalysis, and biomolecular binding, leading to potential applications in biotechnology and medicine. Here we select examples from almost four decades of miniprotein design, development, and dissection. Simply because of the word limit for this Account, we focus on miniproteins that are cooperatively folded monomers in solution and not stabilized by cross-linking or metal binding. In these cases, the optimization of noncovalent interactions is even more critical for the maintenance of the folded states than in larger proteins. Our chronology and catalogue highlights themes in miniproteins, which we explore further and begin to put on a firmer footing through an analysis of the miniprotein structures that have been deposited in the Protein Data Bank (PDB) thus far. Specifically, and compared with larger proteins, miniproteins generally have a lower proportion of residues in regular secondary structure elements (α helices, β strands, and polyproline-II helices) and, concomitantly, more residues in well-structured loops. This allows distortions of the backbone enabling mini-hydrophobic cores to be made. This also contrasts with larger proteins, which can achieve hydrophobic cores through tertiary contacts between distant regions of sequence. On average, miniproteins have a higher proportion of aromatic residues than larger proteins, and specifically electron-rich Trp and Tyr, which are often found in combination with Pro and Arg to render networks of CH-π or cation-π interactions. Miniproteins also have a higher proportion of the long-chain charged amino acids (Arg, Glu, and Lys), which presumably reflects salt-bridge formation and their greater surface area-to-volume ratio. Together, these amino-acid preferences appear to support greater densities of noncovalent interactions in miniproteins compared with larger proteins. We anticipate that with recent developments such as parametric protein design, it will become increasingly routine to use computation to generate and evaluate models for miniproteins in silico ahead of experimental studies. This could include accessing new structures comprising secondary structure elements linked in previously unseen configurations. The improved understanding of the noncovalent interactions that stabilize the folded states of such miniproteins that we are witnessing through both in-depth bioinformatics analyses and experimental testing will feed these computational protein designs. With this in mind, we can expect a new and exciting era for miniprotein design, study, and application.
Collapse
Affiliation(s)
- Emily G. Baker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Gail J. Bartlett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
- BrisSynBio
and the Bristol BioDesign Institute, University of Bristol, Life Sciences
Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|