1
|
Lauko A, Pellock SJ, Sumida KH, Anishchenko I, Juergens D, Ahern W, Jeung J, Shida AF, Hunt A, Kalvet I, Norn C, Humphreys IR, Jamieson C, Krishna R, Kipnis Y, Kang A, Brackenbrough E, Bera AK, Sankaran B, Houk KN, Baker D. Computational design of serine hydrolases. Science 2025; 388:eadu2454. [PMID: 39946508 DOI: 10.1126/science.adu2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
The design of enzymes with complex active sites that mediate multistep reactions remains an outstanding challenge. With serine hydrolases as a model system, we combined the generative capabilities of RFdiffusion with an ensemble generation method for assessing active site preorganization at each step in the reaction to design enzymes starting from minimal active site descriptions. Experimental characterization revealed catalytic efficiencies (kcat/Km) up to 2.2 × 105 M-1 s-1 and crystal structures that closely match the design models (Cα root mean square deviations <1 angstrom). Selection for structural compatibility across the reaction coordinate enabled identification of new catalysts remove with five different folds distinct from those of natural serine hydrolases. Our de novo approach provides insight into the geometric basis of catalysis and a roadmap for designing enzymes that catalyze multistep transformations.
Collapse
Affiliation(s)
- Anna Lauko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Samuel J Pellock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kiera H Sumida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jihun Jeung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Alexander F Shida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew Hunt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Indrek Kalvet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Rohith Krishna
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yakov Kipnis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Kim S, Lee W, Kim HI, Kim MK, Choi TS. Recent advances and future challenges in predictive modeling of metalloproteins by artificial intelligence. Mol Cells 2025; 48:100191. [PMID: 39938866 PMCID: PMC11919430 DOI: 10.1016/j.mocell.2025.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Metal coordination is essential for structural/catalytic functions of metalloproteins that mediate a wide range of biological processes in living organisms. Advances in bioinformatics have significantly enhanced our understanding of metal-binding sites and their functional roles in metalloproteins. State-of-the-art computational models developed for metal-binding sites seamlessly integrate protein sequence and structural data to unravel the complexities of metal coordination environments. Our goal in this mini-review is to give an overview of these tools and highlight the current challenges (predicting dynamic metal-binding sites, determining functional metalation states, and designing intricate coordination networks) remaining in the predictive models of metal-binding sites. Addressing these challenges will not only deepen our knowledge of natural metalloproteins but also accelerate the development of artificial metalloproteins with novel and precisely engineered functionalities.
Collapse
Affiliation(s)
- Soohyeong Kim
- Departments of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Wonseok Lee
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hugh I. Kim
- Departments of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Min Kyung Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
La Gatta S, Pecoraro VL. Recent advances in de novo designed metallopeptides as tailored enzyme mimics. Curr Opin Chem Biol 2025; 86:102586. [PMID: 40117715 DOI: 10.1016/j.cbpa.2025.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025]
Abstract
Advances in de novo design of metallopeptides have paved the way for customized metalloenzyme mimics with impressive catalytic capabilities. Over the last few years, incorporation of transition metals into simplified peptide scaffolds has allowed for catalytic efficiencies similar to or greater than those found in natural metalloenzymes. Artificial de novo peptide scaffolds highlight how precise modifications to metal coordination environments can improve scaffold stability and catalytic efficiency for a wide range of applications towards redox, non redox, synthetic, and energy conversion chemistry. These insights deepen our understanding of enzyme evolution and set a solid foundation for new directions in biocatalysis.
Collapse
Affiliation(s)
- Salvatore La Gatta
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Mahato C, Pal S, Kuiry H, Das D. Pathway-Dependent Catalytic Activity of Short-Peptide-Based Metallozyme: From Promiscuous Activity to Cascade Reaction. NANO LETTERS 2025; 25:2538-2546. [PMID: 39893659 DOI: 10.1021/acs.nanolett.4c06230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Many natural enzymes contain metal ions as cofactors in the active site for biological activity. However, the pathway of the introduction of metal ions in the earliest protein folds for the emergence of higher catalytic activity remains an intriguing open question. Herein, we demonstrate that pathway-dependent self-assembly of short-peptide-based metallozymes results in differences in catalytic activity. Short-peptide-based amyloids with solvent exposed arrays of colocalized catalytic units are able to bind highly soluble Cu2+ ions to demonstrate oxidase-like and RNase-like activity (promiscuity). Further, the metallozyme was able to exhibit higher hydrolase-oxidase cascade activity compared to the mixture of natural enzymes, esterase, and laccase. The collaboration between short-peptide-based amyloid microphases and metal ions suggests that metallozymes might have played a pivotal role in early metabolic processes and biopolymer evolution on the prebiotic earth.
Collapse
Affiliation(s)
- Chiranjit Mahato
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sumit Pal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Himangshu Kuiry
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
5
|
Petrenas R, Hawkins OA, Jones JF, Scott DA, Fletcher JM, Obst U, Lombardi L, Pirro F, Leggett GJ, Oliver TA, Woolfson DN. Confinement and Catalysis within De Novo Designed Peptide Barrels. J Am Chem Soc 2025; 147:3796-3803. [PMID: 39813445 PMCID: PMC11783595 DOI: 10.1021/jacs.4c16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
De novo protein design has advanced such that many peptide assemblies and protein structures can be generated predictably and quickly. The drive now is to bring functions to these structures, for example, small-molecule binding and catalysis. The formidable challenge of binding and orienting multiple small molecules to direct chemistry is particularly important for paving the way to new functionalities. To address this, here we describe the design, characterization, and application of small-molecule:peptide ternary complexes in aqueous solution. This uses α-helical barrel (αHB) peptide assemblies, which comprise 5 or more α helices arranged around central channels. These channels are solvent accessible, and their internal dimensions and chemistries can be altered predictably. Thus, αHBs are analogous to "molecular flasks" made in supramolecular, polymer, and materials chemistry. Using Förster resonance energy transfer as a readout, we demonstrate that specific αHBs can accept two different organic dyes, 1,6-diphenyl-1,3,5-hexatriene and Nile red, in close proximity. In addition, two anthracene molecules can be accommodated within an αHB to promote anthracene photodimerization. However, not all ternary complexes are productive, either in energy transfer or photodimerization, illustrating the control that can be exerted by judicious choice and design of the αHB.
Collapse
Affiliation(s)
- Rokas Petrenas
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Olivia A. Hawkins
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Jacob F. Jones
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - D. Arne Scott
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Jordan M. Fletcher
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Ulrike Obst
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Lucia Lombardi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Fabio Pirro
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Graham J. Leggett
- School
of Mathematical and Physical Sciences, University
of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas A.A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Bristol BioDesign
Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Medical Sciences Building, Bristol BS8 1TD, U.K.
| |
Collapse
|
6
|
Bui TT, Zhao Y. Molecularly Imprinted Nanozymes for Selective Hydrolysis of Aromatic Carbonates Under Mild Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:169. [PMID: 39940145 PMCID: PMC11820003 DOI: 10.3390/nano15030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 106 for diphenyl carbonate.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA
| |
Collapse
|
7
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
8
|
Mukherjee A, Roy S. Understanding the Directed Evolution of a Natural-like Efficient Artificial Metalloenzyme. J Phys Chem B 2024; 128:12122-12132. [PMID: 39588805 DOI: 10.1021/acs.jpcb.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The artificial metalloenzyme containing iridium in place of iron along with four directed evolution mutations C317G, T213G, L69V, and V254L in a natural cytochrome P450 presents an important milestone in merging the extraordinary efficiency of biocatalysts with the versatility of small molecule chemical catalysts in catalyzing a new-to-nature carbene insertion reaction. This is a show-stopper enzyme, as it exhibits a catalytic efficiency similar to that of natural enzymes. Despite this remarkable discovery, there is no mechanistic and structural understanding as to why it displays extraordinary efficiency after the incorporation of the four active site mutations by directed evolution methods, which so far has been intractable to any experimental methods. In this study, we have deciphered how directed evolution mutations gradually alter the protein conformational ensemble to populate a catalytically active conformation to boost a multistep catalysis in a natural-like artificial metalloenzyme using large-scale molecular dynamics simulations, rigorous quantum chemical (QM), and multiscale quantum chemical/molecular mechanics (QM/MM) calculations. It reveals how evolution precisely positions the cofactor-substrate in an unusual but effective orientation within a reshaped active site in the catalytically active conformation stabilized by C-H···π interactions from more ordered mutated L69V and V254L residues to achieve preferential transition state stabilization compared to the ground state. This work essentially tracks down in atomistic detail the shift in the conformational ensemble of the highly active conformation from the less efficient single mutant to the most efficient quadruple mutant and offers valuable insights for designing better enzymes. The active conformation correctly reproduces the experimental barrier height and also accounts for the catalytic effect, which is in good agreement with experimental observations. Moreover, this conformation features an unusual bonding interaction in a metal-carbene species that preferentially stabilizes the rate-determining formation of an iridium porphyrin carbene intermediate to render the observed high catalytic rate acceleration. Our study provides crucial insights into the underlying rationale for directed evolution, reports the major catalytic role of nonelectrostatic interactions in enzyme catalysis different from the electrostatic model, and suggests a crucial principle toward designing enzymes with natural efficiency.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Subhendu Roy
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Xu H, Ge L, Zhou S, Guo Q, Mondarte EAQ, Jiang X, Yu J. Enzyme-Mimetic, Cascade Catalysis-Based Triblock Polypeptide-Assembled Micelles for Enhanced Chemodynamic Therapy. Biomacromolecules 2024; 25:7349-7360. [PMID: 39479882 DOI: 10.1021/acs.biomac.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Peptides and their conjugates are appealing as molecular scaffolds for constructing supramolecular biomaterials from the bottom up. Through strategic sequence design and interaction modulation, these peptides can self-assemble into diverse nanostructures that can, in turn, mimic the structural and catalytic functions of contemporary proteins. Here, inspired by the histidine brace active site identified in the metalloenzyme, we developed a triblock polypeptide with a hydrophobic polyleucine segment, a hydrophilic polylysine segment, and a terminal oligohistidine segment. This polypeptide demonstrates tunable and adaptive self-assembly morphologies. Moreover, copper ions can interact with the oligohistidine chelator and mediate the supramolecular assembly, generating metal-ligand centers for redox flow. The triblock polypeptide-based peptide micelles show Fenton-type activity with high substrate affinity when coassembled with copper ions. We have also engineered therapeutic micelles by coassembling two polypeptides, one integrated with copper ions and the other conjugated with glucose oxidase. This coassembled nanoplatform shows high in vitro and in vivo antitumor efficacy through a mechanism that combines triggered starvation and chemodynamic therapy. The versatility of this polypeptide sequence, which is compatible with various metal ions and functional ligands, paves the way for a broad spectrum of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hanyan Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lei Ge
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| | - Sensen Zhou
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | | | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
10
|
Lakavathu M, Zhao Y. Direct Synthesis of Artificial Esterase through Molecular Imprinting Using a Substrate-Mimicking Acylthiourea Template. J Org Chem 2024; 89:15336-15340. [PMID: 39382034 DOI: 10.1021/acs.joc.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Most reported artificial esterases hydrolyze only activated esters. We here report a one-pot synthesis of artificial esterases via molecular imprinting. An acylthiourea template hydrogen bonds with 4-vinylbenzoic acid and coordinates to a polymerizable zinc complex inside a cross-linkable surfactant micelle. Double cross-linking of the micelle yields a polymeric nanoparticle catalyst that mimics a metalloenzyme to activate a water molecule for nucleophilic attack on the bound ester. The catalyst hydrolyzes both activated and unactivated esters under mild conditions with selectivity.
Collapse
Affiliation(s)
- Mohan Lakavathu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
11
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Chen D, Zhang X, Vorobieva AA, Tachibana R, Stein A, Jakob RP, Zou Z, Graf DA, Li A, Maier T, Correia BE, Ward TR. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat Chem 2024; 16:1656-1664. [PMID: 39030420 DOI: 10.1038/s41557-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 07/21/2024]
Abstract
While natural terpenoid cyclases generate complex terpenoid structures via cationic mechanisms, alternative radical cyclization pathways are underexplored. The metal-catalysed H-atom transfer reaction (M-HAT) offers an attractive means for hydrofunctionalizing olefins, providing access to terpenoid-like structures. Artificial metalloenzymes offer a promising strategy for introducing M-HAT reactivity into a protein scaffold. Here we report our efforts towards engineering an artificial radical cyclase (ARCase), resulting from anchoring a biotinylated [Co(Schiff-base)] cofactor within an engineered chimeric streptavidin. After two rounds of directed evolution, a double mutant catalyses a radical cyclization to afford bicyclic products with a cis-5-6-fused ring structure and up to 97% enantiomeric excess. The involvement of a histidine ligation to the Co cofactor is confirmed by crystallography. A time course experiment reveals a cascade reaction catalysed by the ARCase, combining a radical cyclization with a conjugate reduction. The ARCase exhibits tolerance towards variations in the dienone substrate, highlighting its potential to access terpenoid scaffolds.
Collapse
Affiliation(s)
- Dongping Chen
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Anastassia Andreevna Vorobieva
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
| | - Alina Stein
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | | | - Zhi Zou
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Damian Alexander Graf
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland.
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland.
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland.
| |
Collapse
|
13
|
Raczyńska A. Highlights from the Biocatalysis Faraday Discussion, May 2024, London, United Kingdom. Chem Commun (Camb) 2024; 60:10431-10438. [PMID: 39239919 DOI: 10.1039/d4cc90306d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The Biocatalysis Faraday Discussion was held from May 22 to 24, 2024, at the Royal Society of Chemistry in Burlington House, London. This meeting brought together established and early-career scientists, PhD students, and industrial researchers from around the world to engage in rigorous scientific dialogue on the latest advancements in biocatalysis. The conference featured a unique format, where speakers submitted full papers in advance and presented concise summaries, sparking in-depth discussions among participants. This report summarises the event, the presented results, and the concluding remarks, underscoring the collaborative and intellectually stimulating atmosphere of the Faraday Discussions.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex 04, France
- Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Jing X, Zhang S, Zhang F, Chi C, Cui S, Ding H, Li J. Ultra-strong and tough cellulose-based conductive hydrogels via orientation inspired by noodles pre-stretching. Carbohydr Polym 2024; 340:122286. [PMID: 38858003 DOI: 10.1016/j.carbpol.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Due to the unsatisfactory mechanical properties of natural polymer-based conductive hydrogels, their applications are limited. Shaanxi Biangbiang noodles can be toughened by applying external mechanical forces through stretching and beating movements; this process provides inspiration for the preparation of high-strength hydrogels. In this paper, we propose a strategy for the preparation of ultrastrong and ultratough conductive hydrogels by directional prestretching and solvent exchange. Neatly arranged fiber bundles containing many intermolecular hydrogen bonds and metal ion coordination bonds are successfully constructed inside the prepared hydrogels. The hydrogel has exceptional mechanical properties, with a fracture stress exceeding 50 MPa, fracture strain approaching 105 %, fracture toughness exceeding 30 MJ m-3, and high conductivity reaching 11.738 ± 0.06 mS m-1. Impressively, the hydrogel can maintain its high mechanical properties after being frozen at an ultralow temperature of -80 °C for 7 days. Compared with other tough hydrogels, natural tendons and synthetic rubbers, the hydrogel exhibits excellent mechanical properties. The cellulose-based conductive hydrogel prepared in this study can be applied to robotic soft tissues (such as the Achilles tendon) that require high strength and are operated in extreme environments.
Collapse
Affiliation(s)
- Xiaokai Jing
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Fengjiao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Congcong Chi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Shuyuan Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Hao Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Jinrui Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| |
Collapse
|
15
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
16
|
Bornscheuer UT. Concluding remarks: biocatalysis. Faraday Discuss 2024; 252:507-515. [PMID: 38958033 DOI: 10.1039/d4fd00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biocatalysis is a rapidly evolving field with increasing impact in organic synthesis, chemical manufacturing and medicine. The Faraday Discussion reflected the current state of biocatalysis, covering the design of de novo enzymatic activities, but especially methods for the improvement of enzymes targeting a broad range of applications (i.e., hydroxylations by P450 monooxygenases, enzymatic deprotection of organic compounds under mild conditions, synthesis of chiral intermediates, plastic degradation, silicone polymer synthesis, and peptide synthesis). Central themes have been how to improve an enzyme using methods of rational design and directed evolution, informed by computer modelling and machine learning, and the incorporation of new catalytic functionalities to create hybrid and artificial enzymes.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany.
| |
Collapse
|
17
|
Lauko A, Pellock SJ, Anischanka I, Sumida KH, Juergens D, Ahern W, Shida A, Hunt A, Kalvet I, Norn C, Humphreys IR, Jamieson C, Kang A, Brackenbrough E, Bera AK, Sankaran B, Houk KN, Baker D. Computational design of serine hydrolases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610411. [PMID: 39257749 PMCID: PMC11384011 DOI: 10.1101/2024.08.29.610411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies (k cat /K m ) up to 3.8 x 103 M-1 s-1, closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.
Collapse
Affiliation(s)
- Anna Lauko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
- These authors contributed equally: Anna Lauko, Samuel J. Pellock
| | - Samuel J Pellock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- These authors contributed equally: Anna Lauko, Samuel J. Pellock
| | - Ivan Anischanka
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kiera H Sumida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Alex Shida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew Hunt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Indrek Kalvet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Vornholt T, Mutný M, Schmidt GW, Schellhaas C, Tachibana R, Panke S, Ward TR, Krause A, Jeschek M. Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning. ACS CENTRAL SCIENCE 2024; 10:1357-1370. [PMID: 39071060 PMCID: PMC11273458 DOI: 10.1021/acscentsci.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
Tailored enzymes are crucial for the transition to a sustainable bioeconomy. However, enzyme engineering is laborious and failure-prone due to its reliance on serendipity. The efficiency and success rates of engineering campaigns may be improved by applying machine learning to map the sequence-activity landscape based on small experimental data sets. Yet, it often proves challenging to reliably model large sequence spaces while keeping the experimental effort tractable. To address this challenge, we present an integrated pipeline combining large-scale screening with active machine learning, which we applied to engineer an artificial metalloenzyme (ArM) catalyzing a new-to-nature hydroamination reaction. Combining lab automation and next-generation sequencing, we acquired sequence-activity data for several thousand ArM variants. We then used Gaussian process regression to model the activity landscape and guide further screening rounds. Critical characteristics of our pipeline include the cost-effective generation of information-rich data sets, the integration of an explorative round to improve the model's performance, and the inclusion of experimental noise. Our approach led to an order-of-magnitude boost in the hit rate while making efficient use of experimental resources. Search strategies like this should find broad utility in enzyme engineering and accelerate the development of novel biocatalysts.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Mojmír Mutný
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Gregor W. Schmidt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Schellhaas
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Sven Panke
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Thomas R. Ward
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andreas Krause
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Markus Jeschek
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Institute
of Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
20
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
21
|
Bell EL, Hutton AE, Burke AJ, O'Connell A, Barry A, O'Reilly E, Green AP. Strategies for designing biocatalysts with new functions. Chem Soc Rev 2024; 53:2851-2862. [PMID: 38353665 PMCID: PMC10946311 DOI: 10.1039/d3cs00972f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 03/19/2024]
Abstract
The engineering of natural enzymes has led to the availability of a broad range of biocatalysts that can be used for the sustainable manufacturing of a variety of chemicals and pharmaceuticals. However, for many important chemical transformations there are no known enzymes that can serve as starting templates for biocatalyst development. These limitations have fuelled efforts to build entirely new catalytic sites into proteins in order to generate enzymes with functions beyond those found in Nature. This bottom-up approach to enzyme development can also reveal new fundamental insights into the molecular origins of efficient protein catalysis. In this tutorial review, we will survey the different strategies that have been explored for designing new protein catalysts. These methods will be illustrated through key selected examples, which demonstrate how highly proficient and selective biocatalysts can be developed through experimental protein engineering and/or computational design. Given the rapid pace of development in the field, we are optimistic that designer enzymes will begin to play an increasingly prominent role as industrial biocatalysts in the coming years.
Collapse
Affiliation(s)
- Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Pham TL, Conde González MR, Fazliev S, Kishore A, Comba P, Thomas F. Relationship of Thermostability and Binding Affinity in Metal-binding WW-Domain Minireceptors. Chembiochem 2024; 25:e202300715. [PMID: 38127995 DOI: 10.1002/cbic.202300715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The design of metallo-miniproteins advances our understanding of the structural and functional roles of metals in proteins. We recently designed a metal-binding WW domain, WW-CA-Nle, which displays three histidine residues on its surface for coordination of divalent metals Ni(II), Zn(II) and Cu(II). However, WW-CA-Nle is a molten globule in the apo state and thus showed only moderate binding affinities with Kd values in the μM regime. In this report, we hypothesize that improved thermal stability of the apo state of the metal binding WW-domain scaffold should lead to improved preorganization of the metal-binding site and consequently to higher metal-binding affinities. By redesigning WW-CA-Nle, we obtained WW-CA variants, WW-CA-min and WW-CA-ANG, which were fully folded in the apo states and displayed moderate to excellent thermostabilities in the apo and holo states. We were able to show that the improved thermal stabilities led to improved metal binding, which was reflected in Kd values that were at least one order of magnitude lower compared to WW-CA-Nle. EPR spectroscopy and ITC measurements revealed a better defined and predisposed metal binding site in WW-CA-ANG.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcos R Conde González
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
| | - Sunnatullo Fazliev
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Agi Kishore
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Takezawa Y, Kudo N, Fuse N, Shionoya M. DNA three-way junction structures with amino acid side chains prepared via post-synthetic amide condensation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-14. [PMID: 38359331 DOI: 10.1080/15257770.2024.2314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
DNA three-way junction (3WJ) structures with three amino acid side chains in the core have been synthesized via post-synthetic DNA modification. Amide condensation reactions of oligonucleotides containing 2'-aminouridine with activated esters yielded DNA strands modified with His, Cys and Asp side chains to form modified 3WJs. Even a 3WJ with three negatively charged Asp side chains formed stably at room temperature. Furthermore, DNA hybridization alone placed two (His and Asp) and three (His, Cys, and Asp) side chains within the 3WJs, indicating that the DNA 3WJs are a useful platform for spatial arrangement of amino acid side chains.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naofumi Kudo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Fuse
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Sakuma K, Kobayashi N, Sugiki T, Nagashima T, Fujiwara T, Suzuki K, Kobayashi N, Murata T, Kosugi T, Tatsumi-Koga R, Koga N. Design of complicated all-α protein structures. Nat Struct Mol Biol 2024; 31:275-282. [PMID: 38177681 PMCID: PMC11377298 DOI: 10.1038/s41594-023-01147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.
Collapse
Affiliation(s)
- Koya Sakuma
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | | | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naoya Kobayashi
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of National Sciences, Okazaki, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Takahiro Kosugi
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of National Sciences, Okazaki, Japan
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institutes of National Sciences, Okazaki, Japan
| | - Rie Tatsumi-Koga
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of National Sciences, Okazaki, Japan
| | - Nobuyasu Koga
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of National Sciences, Okazaki, Japan.
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institutes of National Sciences, Okazaki, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
25
|
Der BS, Edwards DR, Kuhlman B. Correction to "Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering". Biochemistry 2023; 62:2893. [PMID: 37722065 DOI: 10.1021/acs.biochem.0c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
|
26
|
Bahrami F, Zhao Y. Carbonic anhydrase mimics with rationally designed active sites for fine-tuned catalytic activity and selectivity in ester hydrolysis. Catal Sci Technol 2023; 13:5702-5709. [PMID: 38013842 PMCID: PMC10544069 DOI: 10.1039/d3cy00704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
Numerous hydrolytic enzymes utilize zinc as a cofactor for catalysis. We here report water-soluble polymeric nanoparticles with zinc ions in active sites and a nearby base as a mimic of carbonic anhydrase (CA). Their pKa of 6.3-6.4 for zinc-bound water is lower than the 6.8-7.3 value for natural enzymes, which allows the catalyst to hydrolyze nonactivated alkyl esters under neutral conditions-a long sought-after goal for artificial esterases. The size and shape of the active site can be rationally tuned through a template used in molecular imprinting. Subtle structural changes in the template, including shifting an ethyl group by one C-N bond and removal of a methylene group, correlate directly with catalytic activity. A catalyst can be made to be highly specific or have broad substrate specificity through modular synthesis of templates.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| |
Collapse
|
27
|
Jeong WJ, Lee J, Eom H, Song WJ. A Specific Guide for Metalloenzyme Designers: Introduction and Evolution of Metal-Coordination Spheres Embedded in Protein Environments. Acc Chem Res 2023; 56:2416-2425. [PMID: 37643364 DOI: 10.1021/acs.accounts.3c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Woo Jae Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Wang J, Liu S, Tang M, Fu W, Wang Y, Yin K, Dai Y. Thermodynamically and Kinetically Stabilized Pt Clusters Against Sintering on CeO 2 Nanofibers Through Enclosing CeO 2 Nanocubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300547. [PMID: 37093186 DOI: 10.1002/smll.202300547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Sintering is a major concern for the deactivation of supported metals catalysts, which is driven by the force of decreasing the total surface energy of the entire catalytic system. In this work, a double-confinement strategy is demonstrated to stabilize 2.6 nm-Pt clusters against sintering on electrospun CeO2 nanofibers decorated by CeO2 nanocubes (m-CeO2 ). Thermodynamically, with the aid of CeO2 -nanocubes, the intrinsically irregular surface of polycrystalline CeO2 nanofibers becomes smooth, offering adjacent Pt clusters with decreased chemical potential differences on a relatively uniform surface. Kinetically, the Pt clusters are physically restricted on each facet of CeO2 nanocubes in a nanosized region. In situ high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation reveals that the Pt clusters can be stabilized up to 800 °C even in a high density, which is far beyond their Tammann temperature, without observable size growth or migration. Such a sinter-resistant catalytic system is endowed with boosted catalytic activity toward both the hydrogenation of p-nitrophenol after being aged at 500 °C and the sinter-promoting exothermic oxidation reactions (e.g., soot oxidation) at high temperatures over 700 °C. This work offers new opportunities for exploring sinter-resistant nanocatalysts, starting from the rational design of whole catalytic system in terms of thermodynamic and kinetic aspects.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Suting Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunpeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
29
|
Bose I, Bahrami F, Zhao Y. Artificial Esterase for Cooperative Catalysis of Ester Hydrolysis at pH 7. MATERIALS TODAY. CHEMISTRY 2023; 30:101576. [PMID: 37997572 PMCID: PMC10665026 DOI: 10.1016/j.mtchem.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ester is one of the most prevalent functional groups in natural and man-made products. Natural esterases hydrolyze nonactivated alkyl esters readily but artificial esterases generally use highly activated p-nitrophenyl esters as substrates. We report synthetic esterases constructed through molecular imprinting in cross-linked micelles. The water-soluble nanoparticle catalysts contain a thiouronium cation to mimic the oxyanion hole and a nearby base to assist the hydrolysis. Whereas this catalytic motif readily affords large rate acceleration for the hydrolysis of p-nitrophenyl hexanoate, nonactivated cyclopentyl hexanoate demands catalytic groups that can generate a strong nucleophile (hydroxide) in the active site. The hydroxide is stabilized by the protonated base when the external solution is at pH 7, enabling the hydrolysis of activated and nonactivated esters under neutral conditions.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| |
Collapse
|
30
|
Dürr SL, Levy A, Rothlisberger U. Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins. Nat Commun 2023; 14:2713. [PMID: 37169763 PMCID: PMC10175565 DOI: 10.1038/s41467-023-37870-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.
Collapse
Affiliation(s)
- Simon L Dürr
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Levy
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
31
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
32
|
Kato S, Onoda A, Schwaneberg U, Hayashi T. Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. J Am Chem Soc 2023; 145. [PMID: 36892401 PMCID: PMC10119979 DOI: 10.1021/jacs.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 03/10/2023]
Abstract
Evolutionary engineering of our previously reported Cp*Rh(III)-linked artificial metalloenzyme was performed based on a DNA recombination strategy to improve its catalytic activity toward C(sp2)-H bond functionalization. Improved scaffold design was achieved with α-helical cap domains of fatty acid binding protein (FABP) embedded within the β-barrel structure of nitrobindin (NB) as a chimeric protein scaffold for the artificial metalloenzyme. After optimization of the amino acid sequence by directed evolution methodology, an engineered variant, designated NBHLH1(Y119A/G149P) with enhanced performance and enhanced stability was obtained. Additional rounds of metalloenzyme evolution provided a Cp*Rh(III)-linked NBHLH1(Y119A/G149P) variant with a >35-fold increase in catalytic efficiency (kcat/KM) for cycloaddition of oxime and alkyne. Kinetic studies and MD simulations revealed that aromatic amino acid residues in the confined active-site form a hydrophobic core which binds to aromatic substrates adjacent to the Cp*Rh(III) complex. The metalloenzyme engineering process based on this DNA recombination strategy will serve as a powerful method for extensive optimization of the active-sites of artificial metalloenzymes.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
33
|
Arifuzzaman MD, Zhao Y. Selective Hydrolysis of Nonactivated Aryl Esters at pH 7 through Cooperative Catalysis. J Org Chem 2023; 88:3282-3287. [PMID: 36795622 PMCID: PMC10183976 DOI: 10.1021/acs.joc.2c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Most reported artificial esterases only hydrolyze highly activated substrates. We here report synthetic catalysts that hydrolyze nonactivated aryl esters at pH 7, via cooperative action of a thiourea group that mimics the oxyanion hole of a serine protease and a nearby nucleophilic/basic pyridyl group. The molecularly imprinted active site distinguishes subtle structural changes in the substrate, including elongation of the acyl chain by two carbons or shift of a remote methyl group by one carbon.
Collapse
Affiliation(s)
- M D Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
34
|
Artificial peroxidase of short peptide and hemin co-assemblies with selective chiral catalytic activity in DOPA oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
35
|
Guffy SL, Pulavarti SVSRK, Harrison J, Fleming D, Szyperski T, Kuhlman B. Inside-Out Design of Zinc-Binding Proteins with Non-Native Backbones. Biochemistry 2023; 62:770-781. [PMID: 36634348 PMCID: PMC9939277 DOI: 10.1021/acs.biochem.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The de novo design of functional proteins requires specification of tertiary structure and incorporation of molecular binding sites. Here, we develop an inside-out design strategy in the molecular modeling program Rosetta that begins with amino acid side chains from one or two α-helices making well-defined contacts with a ligand. A full-sized protein is then built around the ligand by adding additional helices that promote the formation of a protein core and allow additional contacts with the ligand. The protocol was tested by designing 12 zinc-binding proteins, each with 4-5 helices. Four of the designs were folded and bound to zinc with equilibrium dissociation constants varying between 95 nM and 1.1 μM. The design with the tightest affinity for zinc, N12, adopts a unique conformation in the folded state as assessed with nuclear magnetic resonance (NMR) and the design model closely matches (backbone root-mean-square deviation (RMSD) < 1 Å) an AlphaFold model of the sequence. Retrospective analysis with AlphaFold suggests that the sequences of many of the failed designs did not encode the desired tertiary packing.
Collapse
Affiliation(s)
- Sharon L. Guffy
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Joseph Harrison
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Drew Fleming
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York, Buffalo, NY, 14260, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
36
|
Liu N, Li SB, Zheng YZ, Xu SY, Shen JS. Minimalistic Artificial Catalysts with Esterase-Like Activity from Multivalent Nanofibers Formed by the Self-Assembly of Dipeptides. ACS OMEGA 2023; 8:2491-2500. [PMID: 36687071 PMCID: PMC9851029 DOI: 10.1021/acsomega.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Imitating and incorporating the multiple key structural features observed in natural enzymes into a minimalistic molecule to develop an artificial catalyst with outstanding catalytic efficiency is an attractive topic for chemists. Herein, we designed and synthesized one class of minimalistic dipeptide molecules containing a terminal -SH group and a terminal His-Phe dipeptide head linked by a hydrophobic alkyl chain with different lengths, marked as HS-C n+1-His-Phe (n = 4, 7, 11, 15, and 17; n + 1 represents the carbon atom number of the alkyl chain). The His (-imidazole), Phe (-CO2 -) moieties, the terminal -SH group, and a long hydrophobic alkyl chain were found to have important contributions to achieve high binding ability leading to outstanding absolute catalytic efficiency (k cat/K M) toward the hydrolysis reactions of carboxylic ester substrates.
Collapse
Affiliation(s)
- Ning Liu
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai-Bing Li
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yan-Zhen Zheng
- College
of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Su-Ying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang-Shan Shen
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
37
|
Pirro F, La Gatta S, Arrigoni F, Famulari A, Maglio O, Del Vecchio P, Chiesa M, De Gioia L, Bertini L, Chino M, Nastri F, Lombardi A. A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211552. [PMID: 36334012 DOI: 10.1002/anie.202211552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Abstract
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy.,Department of Condensed Matter Physics, University of of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
38
|
Li X, Cao Y, Xiong J, Li J, Xiao H, Li X, Gou Q, Ge J. Enzyme-metal-single-atom hybrid catalysts for one-pot chemoenzymatic reactions. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Yang L, Zhang J, Wang M, Wang Y, Qi W, He Z. Probing the effect of microenvironment on the enzyme-like behavior of catalytic peptide assemblies. J Colloid Interface Sci 2023; 629:683-693. [PMID: 36183647 DOI: 10.1016/j.jcis.2022.09.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure-function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; School of Life Sciences. Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
40
|
Ożga K, Berlicki Ł. Miniprotein-Based Artificial Retroaldolase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
41
|
Choi TS, Tezcan FA. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior. J Am Chem Soc 2022; 144:18090-18100. [PMID: 36154053 PMCID: PMC9949983 DOI: 10.1021/jacs.2c08050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selective metal binding is a key requirement not only for the functions of natural metalloproteins but also for the potential applications of artificial metalloproteins in heterogeneous environments such as cells and environmental samples. The selection of transition-metal ions through protein design can, in principle, be achieved through the appropriate choice and the precise positioning of amino acids that comprise the primary metal coordination sphere. However, this task is made difficult by the intrinsic flexibility of proteins and the fact that protein design approaches generally lack the sub-Å precision required for the steric selection of metal ions. We recently introduced a flexible/probabilistic protein design strategy (MASCoT) that allows metal ions to search for optimal coordination geometry within a flexible, yet covalently constrained dimer interface. In an earlier proof-of-principle study, we used MASCoT to generate an artificial metalloprotein dimer, (AB)2, which selectively bound CoII and NiII over CuII (as well as other first-row transition-metal ions) through the imposition of a rigid octahedral coordination geometry, thus countering the Irving-Williams trend. In this study, we set out to redesign (AB)2 to examine the applicability of MASCoT to the selective binding of other metal ions. We report here the design and characterization of a new flexible protein dimer, B2, which displays ZnII selectivity over all other tested metal ions including CuII both in vitro and in cellulo. Selective, anti-Irving-Williams ZnII binding by B2 is achieved through the formation of a unique trinuclear Zn coordination motif in which His and Glu residues are rigidly placed in a tetrahedral geometry. These results highlight the utility of protein flexibility in the design and discovery of selective binding motifs.
Collapse
|
42
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
43
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Arifuzzaman MD, Bose I, Bahrami F, Zhao Y. Imprinted Polymeric Nanoparticles as Artificial Enzymes for Ester Hydrolysis at Room Temperature and pH 7. CHEM CATALYSIS 2022; 2:2049-2065. [PMID: 38098612 PMCID: PMC10720975 DOI: 10.1016/j.checat.2022.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Natural esterases hydrolyze esters under physiological pHs but chemists often have to use strongly acidic or basic conditions for the same hydrolysis. We report synthetic nanoparticle catalysts that hydrolyze nonactivated alkyl esters at room temperature and neutral pH, with enzyme-like catalytic mechanisms and exquisite substrate selectivity. Unlike natural enzymes that denature easily at elevated temperatures, the synthetic catalysts become more active at higher temperatures.
Collapse
Affiliation(s)
| | | | - Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| |
Collapse
|
45
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
46
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
47
|
Prakash D, Mitra S, Murphy M, Chakraborty S. Oxidation and Peroxygenation of C–H Bonds by Artificial Cu Peptides (ArCuPs): Improved Catalysis via Selective Outer Sphere Modifications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Divyansh Prakash
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Suchitra Mitra
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Morgan Murphy
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
48
|
Abstract
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Collapse
|
49
|
Choi TS, Tezcan FA. Overcoming universal restrictions on metal selectivity by protein design. Nature 2022; 603:522-527. [PMID: 35236987 PMCID: PMC9157509 DOI: 10.1038/s41586-022-04469-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Selective metal coordination is central to the functions of metalloproteins:1,2 each metalloprotein must pair with its cognate metallocofactor to fulfil its biological role3. However, achieving metal selectivity solely through a three-dimensional protein structure is a great challenge, because there is a limited set of metal-coordinating amino acid functionalities and proteins are inherently flexible, which impedes steric selection of metals3,4. Metal-binding affinities of natural proteins are primarily dictated by the electronic properties of metal ions and follow the Irving-Williams series5 (Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+) with few exceptions6,7. Accordingly, metalloproteins overwhelmingly bind Cu2+ and Zn2+ in isolation, regardless of the nature of their active sites and their cognate metal ions1,3,8. This led organisms to evolve complex homeostatic machinery and non-equilibrium strategies to achieve correct metal speciation1,3,8-10. Here we report an artificial dimeric protein, (AB)2, that thermodynamically overcomes the Irving-Williams restrictions in vitro and in cells, favouring the binding of lower-Irving-Williams transition metals over Cu2+, the most dominant ion in the Irving-Williams series. Counter to the convention in molecular design of achieving specificity through structural preorganization, (AB)2 was deliberately designed to be flexible. This flexibility enabled (AB)2 to adopt mutually exclusive, metal-dependent conformational states, which led to the discovery of structurally coupled coordination sites that disfavour Cu2+ ions by enforcing an unfavourable coordination geometry. Aside from highlighting flexibility as a valuable element in protein design, our results illustrate design principles for constructing selective metal sequestration agents.
Collapse
Affiliation(s)
- Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Nat Chem 2022; 14:313-320. [PMID: 34916595 PMCID: PMC7612480 DOI: 10.1038/s41557-021-00833-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022]
Abstract
The combination of computational design and directed evolution could offer a general strategy to create enzymes with new functions. So far, this approach has delivered enzymes for a handful of model reactions. Here we show that new catalytic mechanisms can be engineered into proteins to accelerate more challenging chemical transformations. Evolutionary optimization of a primitive design afforded an efficient and enantioselective enzyme (BH32.14) for the Morita-Baylis-Hillman (MBH) reaction. BH32.14 is suitable for preparative-scale transformations, accepts a broad range of aldehyde and enone coupling partners and is able to promote selective monofunctionalizations of dialdehydes. Crystallographic, biochemical and computational studies reveal that BH32.14 operates via a sophisticated catalytic mechanism comprising a His23 nucleophile paired with a judiciously positioned Arg124. This catalytic arginine shuttles between conformational states to stabilize multiple oxyanion intermediates and serves as a genetically encoded surrogate of privileged bidentate hydrogen-bonding catalysts (for example, thioureas). This study demonstrates that elaborate catalytic devices can be built from scratch to promote demanding multi-step processes not observed in nature.
Collapse
|