1
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Stammnitz MR, Gori K, Kwon YM, Harry E, Martin FJ, Billis K, Cheng Y, Baez-Ortega A, Chow W, Comte S, Eggertsson H, Fox S, Hamede R, Jones M, Lazenby B, Peck S, Pye R, Quail MA, Swift K, Wang J, Wood J, Howe K, Stratton MR, Ning Z, Murchison EP. The evolution of two transmissible cancers in Tasmanian devils. Science 2023; 380:283-293. [PMID: 37079675 PMCID: PMC7614631 DOI: 10.1126/science.abq6453] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.
Collapse
Affiliation(s)
- Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ed Harry
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastien Comte
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, Australia
| | | | - Samantha Fox
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
- Toledo Zoo, 2605 Broadway, Toledo, Ohio 43609, USA
| | - Rodrigo Hamede
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- CANCEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna Jones
- School of Nature Sciences, University of Tasmania, Hobart, Australia
| | - Billie Lazenby
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Sarah Peck
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Ruth Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michael A. Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kate Swift
- Mount Pleasant Laboratories, Tasmanian Department of Natural Resources and Environment, Prospect, Australia
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics 2021; 22:698. [PMID: 34579650 PMCID: PMC8477496 DOI: 10.1186/s12864-021-07994-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. RESULTS We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. CONCLUSIONS Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.
Collapse
|
4
|
Hamede R, Madsen T, McCallum H, Storfer A, Hohenlohe PA, Siddle H, Kaufman J, Giraudeau M, Jones M, Thomas F, Ujvari B. Darwin, the devil, and the management of transmissible cancers. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:748-751. [PMID: 32992406 PMCID: PMC8048418 DOI: 10.1111/cobi.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 05/05/2023]
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Thomas Madsen
- School of Biological SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Hamish McCallum
- School of Environment and ScienceGriffith University, Nathan CampusNathanQueenslandAustralia
| | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWAU.S.A.
| | - Paul A. Hohenlohe
- Department of Biological SciencesInstitute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowIDU.S.A.
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonSO17 1BJU.K.
| | - Jim Kaufman
- Department of PathologyUniversity of CambridgeCambridgeCB2 1QPU.K.
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre National de la Recherche ScientifiqueMontpellierFrance
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre National de la Recherche ScientifiqueMontpellierFrance
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
5
|
Pye R, Darby J, Flies AS, Fox S, Carver S, Elmer J, Swift K, Hogg C, Pemberton D, Woods G, Lyons AB. Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
ContextDisease is increasingly becoming a driver of wildlife population declines and an extinction risk. Vaccines are one of the most successful health interventions in human history, but few have been tested for mitigating wildlife disease. The transmissible cancer, devil facial tumour disease (DFTD), triggered the Tasmanian devil’s (Sarcophilus harrisii) inclusion on the international endangered species list. In 2016, 33 devils from a DFTD-free insurance population were given an experimental DFTD vaccination before their wild release on the Tasmanian northern coast.
AimTo determine the efficacy of the vaccination protocol and the longevity of the induced responses.
MethodSix trapping trips took place over the 2.5 years following release, and both vaccinated and incumbent devils had blood samples and tumour biopsies collected.
Key resultsIn all, 8 of the 33 vaccinated devils were re-trapped, and six of those developed DFTD within the monitoring period. Despite the lack of protection provided by the vaccine, we observed signs of immune activation not usually found in unvaccinated devils. First, sera collected from the eight devils showed that anti-DFTD antibodies persisted for up to 2 years post-vaccination. Second, tumour-infiltrating lymphocytes were found in three of four biopsies collected from vaccinated devils, which contrasts with the ‘immune deserts’ typical of DFTs; only 1 of the 20 incumbent devils with DFTD had a tumour biopsy exhibiting immune-cell infiltrate. Third, immunohistochemical analysis of the vaccinated devils’ tumour biopsies identified the functional immune molecules associated with antigen-presenting cells (MHC-II) and T-cells (CD3), and the immune checkpoint molecule PD-1, all being associated with anti-tumour immunity in other species.
ConclusionsThese results correlate with our previous study on captive devils in which a prophylactic vaccine primed the devil immune system and, following DFTD challenge and tumour growth, immunotherapy induced complete tumour regressions. The field trial results presented here provide further evidence that the devil immune system can be primed to recognise DFTD cells, but additional immune manipulation could be needed for complete protection or induction of tumour regressions.
ImplicationsA protective DFTD vaccine would provide a valuable management approach for conservation of the Tasmanian devil.
Collapse
|