1
|
Wang C, Xie Y, Ma L. Flower traits and breeding system of Rhododendron platypodum diels, an endangered plant species in China. PLoS One 2025; 20:e0319513. [PMID: 40146704 PMCID: PMC11949358 DOI: 10.1371/journal.pone.0319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/03/2025] [Indexed: 03/29/2025] Open
Abstract
Rhododendron platypodum Diels is an endangered ornamental plant distributed in the high-elevation subtropical regions of China. Known as one of the "queen flower", its population is restricted to three sites in China, with only few individuals. To explore the reasons for poor population regeneration and provide theoretical basis for genetic breeding to support its popularization and application of this native garden tree species, field investigation and artificial pollination experiment were conducted to test the flowering characteristics and breeding system of R. platypodum in Zhaoyun Mountain, Chongqing. The results revealed that: (1) the flowering period of R. platypodum began in mid-April and ended in late May, lasting 36 days, with an average flowering duration of 9.15 days per flower. (2) Pollen viability was highest in the morning and evening, peaking on third day after flowering, while stigma receptivity was highest between the second and third days. (3) The value of hybridization index and the pollen-ovule ratio indicated a partial self-compatibility and facultative outbreeding of this species. (4) Artificial pollination experiments showed no evidence of parthenogenesis or automatic self-pollination, and the fruit set rates for xenogamy, geitonogamy were higher than those for self-pollination, with artificial pollination yielding higher fruit set rate than natural pollination. (5) The primary effective pollinators of R. platypodum were identified as Bombus sp. and Apis cerana sinensis. Our research found that instead of long flowering period, high pollen viability and simultaneous mature of stigma and pollen, high geitonogamy relying on pollinators for effective production and the pollen restriction are more likely to have adverse effects on the population of R. platypodum. Further factors such as limitation in seed dispersal, germination challenges, and environmental requirement for seedlings and saplings may contribute to the endangerment of R. platypodum.
Collapse
Affiliation(s)
- Chaoying Wang
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Yingzan Xie
- Chongqing Urban Ecosystem National Positioning Observation and Research Station, Chongqing Academy of Forestry Sciences, Chongqing, China
| | - Lihui Ma
- Chongqing Urban Ecosystem National Positioning Observation and Research Station, Chongqing Academy of Forestry Sciences, Chongqing, China
| |
Collapse
|
2
|
Gao R, Li Y, Shan X, Wang Y, Yang S, Ma S, Xia Z, Zheng H, Wei C, Tong L, Qin J, Gao X, Cronk Q. A single nucleotide polymorphism affects protein translation and leads to post-anthesis color change variation in closely related Lotus species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17188. [PMID: 39636691 DOI: 10.1111/tpj.17188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Flower color change, a common phenomenon that is important in pollination ecology, has intrigued scientists for decades. While previous flower color studies have mainly focused on color diversity among different plant species, our focus is on unraveling the mechanism of post-anthesis color change (PACC) and the molecular basis for its presence and absence, respectively, in two closely related species of Lotus, Lotus filicaulis and Lotus japonicus MG20. Metabolomic analysis reveals anthocyanins as the key metabolites responsible for the observed PACC. Differential expression of anthocyanin biosynthetic and transport genes causes the variation in PACC between the two Lotus species. Crucially, the significant upregulation of a functionally characterized MYB regulator, LfPAP1, is linked to the accumulation of anthocyanins and visible color alterations in L. filicaulis flowers. Notably, we uncover a nucleotide polymorphism in the initiation codon of LjPAP1. Although this mutation does not affect transcription, we show that it has a major effect in attenuating protein translation, reducing its capacity to activate anthocyanin biosynthesis, and leading to a failure of PACC in L. japonicus MG20. Our study sheds light on mechanisms of PACC phenomenon and highlights the potential for mutations in initiation sequences to generate phenotypic differences between species in evolution.
Collapse
Affiliation(s)
- Ruifang Gao
- College of Plant Science, Jilin University, Changchun, 130062, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Siqi Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Saiyu Ma
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Ziyi Xia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Huibo Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Chao Wei
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Linna Tong
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024, China
| | - Quentin Cronk
- The Biodiversity Research Center and Department of Botany, University of British Columbia, 6804 SW Marine Drive, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
3
|
Yue J, Yan Z, Liu W, Liu J, Yang D. A visual pollination mechanism of a new specialized pollinating weevil-plant reciprocity system. FRONTIERS IN PLANT SCIENCE 2024; 15:1432263. [PMID: 39220015 PMCID: PMC11362035 DOI: 10.3389/fpls.2024.1432263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction Pollinating flower-consuming mutualisms are considered exemplary models for studying coevolution due to their rarity. Visual cues are considered to have a major role in facilitating the evolution of floral patterns in these systems. We present a new specialized pollinating flower-consuming mutualism from the plant Wurfbainia villosa, which is a traditional Chinese herbal medicine, by a pollinating weevil, Xenysmoderes sp. Methods In this study, We utilized monochrome plates for binary-choice tests to determine weevil color preferences, conducted behavioral choice experiments, using trackballs, photographed flowers and weevils, and employed blue sticky boards to attract weevils in the field. Results Tests were conducted using colorpreferring weevils in both indoor and outdoor field systems, and validation experiments were performed. Behavioral tests were conducted to investigate the role of the visual cues in the pollinator attraction of W. villosa, which is a selfcompatible insect-pollinated plant that relies primarily on the Xenysmoderes sp. weevil for pollination due to its specialized gynandrium-like structure. Behavioral tests demonstrated that a blue color wavelength of 480 nm and the blue color system, as along with the UV-style pattern of the flowers, particularly the parts with specialized gynandrium-like structures in the labellum, were significantly attractive to both male and female weevils. These results were further confirmed through the field blue sticky board trap method. Discussion These findings indicated that the interaction between W. villosa and Xenysmoderes sp. weevil was a novel symbiotic relationship involving pollinator flower consumption. Additionally, Wurfbainia villosa flowers developed specific visual cues of UV patterns and specialized structures that played a crucial role in attracting pollinators.
Collapse
Affiliation(s)
- Jianjun Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China
| | - Zhen Yan
- Yunnan Key Laboratory of Southern Medicine Utilization, Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
| | - Wei Liu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China
| | - Ju Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Ruiz-Hernández V, Joubert L, Rodríguez-Gómez A, Artuso S, Pattrick JG, Gómez PA, Eckerstorfer S, Brandauer SS, Trcka-Rojas CGI, Martínez-Reina L, Booth J, Lau-Zhu A, Weiss J, Bielza P, Glover BJ, Junker RR, Egea-Cortines M. Humans Share More Preferences for Floral Phenotypes With Pollinators Than With Pests. FRONTIERS IN PLANT SCIENCE 2021; 12:647347. [PMID: 34497617 PMCID: PMC8419516 DOI: 10.3389/fpls.2021.647347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Studies on the selection of floral traits usually consider pollinators and sometimes herbivores. However, humans also exert selection on floral traits of ornamental plants. We compared the preferences of bumblebees (Bombus terrestris), thrips (Frankliniella occidentalis), and humans for flowers of snapdragon. From a cross of two species, Antirrhinum majus and Antirrhinum linkianum, we selected four Recombinant Inbred Lines (RILs). We characterised scent emission from whole flowers and stamens, pollen content and viability, trichome density, floral shape, size and colour of floral parts. We tested the preferences of bumblebees, thrips, and humans for whole flowers, floral scent bouquets, stamen scent, and individual scent compounds. Humans and bumblebees showed preferences for parental species, whereas thrips preferred RILs. Colour and floral scent, in combination with other floral traits, seem relevant phenotypes for all organisms. Remarkably, visual traits override scent cues for bumblebees, although, scent is an important trait when bumblebees cannot see the flowers, and methyl benzoate was identified as a key attractant for them. The evolutionary trajectory of flowers is the result of multiple floral traits interacting with different organisms with different habits and modes of interaction.
Collapse
Affiliation(s)
- Victoria Ruiz-Hernández
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Biosciences, University Salzburg, Salzburg, Austria
| | - Lize Joubert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Amador Rodríguez-Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Silvia Artuso
- Department of Biosciences, University Salzburg, Salzburg, Austria
| | - Jonathan G. Pattrick
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Perla A. Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
| | | | | | | | - Luis Martínez-Reina
- Departamento de Arquitectura y Tecnología de la Edificación, Escuela Técnica Superior de Arquitectura y Edificación, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Josh Booth
- Department of Sociology, University of Cambridge, Cambridge, United Kingdom
| | - Alex Lau-Zhu
- Oxford Institute of Clinical Psychology Training and Research, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Julia Weiss
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Pablo Bielza
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robert R. Junker
- Department of Biosciences, University Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Marcos Egea-Cortines
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
5
|
Rodríguez-Castañeda NL, Ortiz PL, Arista M, Narbona E, Buide ML. Indirect Selection on Flower Color in Silene littorea. FRONTIERS IN PLANT SCIENCE 2020; 11:588383. [PMID: 33424884 PMCID: PMC7785944 DOI: 10.3389/fpls.2020.588383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Flower color, as other floral traits, may suffer conflicting selective pressures mediated by both mutualists and antagonists. The maintenance of intraspecific flower color variability has been usually explained as a result of direct selection by biotic agents. However, flower color might also be under indirect selection through correlated traits, since correlations among flower traits are frequent. In this study, we aimed to find out how flower color variability is maintained in two nearby populations of Silene littorea that consistently differ in the proportions of white-flowered plants. To do that, we assessed natural selection on floral color and correlated traits by means of phenotypic selection analysis and path analysis. Strong directional selection on floral display and flower production was found in both populations through either male or female fitness. Flower color had a negative indirect effect on the total male and female fitness in Melide population, as plants with lighter corollas produced more flowers. In contrast, in Barra population, plants with darker corollas produced more flowers and have darker calices, which in turn were selected. Our results suggest that the prevalence of white-flowered plants in Melide and pink-flowered plants in Barra is a result of indirect selection through correlated flower traits and not a result of direct selection of either pollinators or herbivores on color.
Collapse
Affiliation(s)
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Mª Luisa Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|