1
|
Malik D, Deshmukh A, Bilokapic S, Halic M. Mechanisms of chromatin remodeling by an Snf2-type ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630910. [PMID: 39803580 PMCID: PMC11722347 DOI: 10.1101/2024.12.31.630910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member. Our work reveals conformational changes in SNF2H, DNA and histones during nucleosome sliding and provides the structural basis for DNA translocation. ATP hydrolysis induces conformational changes in SNF2H that pull the DNA tracking strand, distorting DNA and histones at SHL2. This is followed by SNF2H rotation on the nucleosome, which first pulls the DNA guide strand and creates one-base pair bulge at SHL2, and then releases the pulled DNA. Given the high conservation of the catalytic motors among ATP-dependent chromatin remodelers, the mechanisms we describe likely apply to other families.
Collapse
Affiliation(s)
- Deepshikha Malik
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ashish Deshmukh
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| |
Collapse
|
2
|
Lei ZC, Wang X, Yang L, Qu H, Sun Y, Yang Y, Li W, Zhang WB, Cao XY, Fan C, Li G, Wu J, Tian ZQ. What can molecular assembly learn from catalysed assembly in living organisms? Chem Soc Rev 2024; 53:1892-1914. [PMID: 38230701 DOI: 10.1039/d3cs00634d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science, Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
3
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
4
|
Singh A, Modak SB, Chaturvedi MM, Purohit JS. SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications. Cell Biochem Biophys 2023:10.1007/s12013-023-01140-5. [PMID: 37119511 DOI: 10.1007/s12013-023-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
The nuclear events of a eukaryotic cell, such as replication, transcription, recombination and repair etc. require the transition of the compactly arranged chromatin into an uncompacted state and vice-versa. This is mediated by post-translational modification of the histones, exchange of histone variants and ATP-dependent chromatin remodeling. The SWI/SNF chromatin remodeling complexes are one of the most well characterized families of chromatin remodelers. In addition to their role in modulating chromatin, they have also been assigned roles in cancer and health-related anomalies such as developmental, neurocognitive, and intellectual disabilities. Owing to their vital cellular and medical connotations, developing an understanding of the structural and functional aspects of the complex becomes imperative. However, due to the intricate nature of higher-order chromatin as well as compositional heterogeneity of the SWI/SNF complex, intra-species isoforms and inter-species homologs, this often becomes challenging. To this end, the present review attempts to present an amalgamated perspective on the discovery, structure, function, and regulation of the SWI/SNF complex.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Madan M Chaturvedi
- Department of Zoology, University of Delhi, Delhi, 110007, India
- SGT University, Gurugram (Delhi-NCR), Haryana, 122505, India
| | | |
Collapse
|
5
|
Fan J, Moreno AT, Baier AS, Loparo JJ, Peterson CL. H2A.Z deposition by SWR1C involves multiple ATP-dependent steps. Nat Commun 2022; 13:7052. [PMID: 36396651 PMCID: PMC9672302 DOI: 10.1038/s41467-022-34861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.
Collapse
Affiliation(s)
- Jiayi Fan
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Andrew T. Moreno
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Alexander S. Baier
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Joseph J. Loparo
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Craig L. Peterson
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
6
|
Sabantsev A, Mao G, Aguirre Rivera J, Panfilov M, Arseniev A, Ho O, Khodorkovskiy M, Deindl S. Spatiotemporally controlled generation of NTPs for single-molecule studies. Nat Chem Biol 2022; 18:1144-1151. [PMID: 36131148 PMCID: PMC9512701 DOI: 10.1038/s41589-022-01100-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
Abstract
Many essential processes in the cell depend on proteins that use nucleoside triphosphates (NTPs). Methods that directly monitor the often-complex dynamics of these proteins at the single-molecule level have helped to uncover their mechanisms of action. However, the measurement throughput is typically limited for NTP-utilizing reactions, and the quantitative dissection of complex dynamics over multiple sequential turnovers remains challenging. Here we present a method for controlling NTP-driven reactions in single-molecule experiments via the local generation of NTPs (LAGOON) that markedly increases the measurement throughput and enables single-turnover observations. We demonstrate the effectiveness of LAGOON in single-molecule fluorescence and force spectroscopy assays by monitoring DNA unwinding, nucleosome sliding and RNA polymerase elongation. LAGOON can be readily integrated with many single-molecule techniques, and we anticipate that it will facilitate studies of a wide range of crucial NTP-driven processes.
Collapse
Affiliation(s)
- Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Javier Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oanh Ho
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Williams MR, Xiaokang Y, Hathaway NA, Kireev D. A simulation model of heterochromatin formation at submolecular detail. iScience 2022; 25:104590. [PMID: 35800764 PMCID: PMC9254115 DOI: 10.1016/j.isci.2022.104590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/16/2021] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Heterochromatin is a physical state of the chromatin fiber that maintains gene repression during cell development. Although evidence exists on molecular mechanisms involved in heterochromatin formation, a detailed structural mechanism of heterochromatin formation needs a better understanding. We made use of a simple Monte Carlo simulation model with explicit representation of key molecular events to observe molecular self-organization leading to heterochromatin formation. Our simulations provide a structural interpretation of several important traits of the heterochromatinization process. In particular, this study provides a depiction of how small amounts of HP1 are able to induce a highly condensed chromatin state through HP1 dimerization and bridging of sequence-remote nucleosomes. It also elucidates structural roots of a yet poorly understood phenomenon of a nondeterministic nature of heterochromatin formation and subsequent gene repression. Experimental chromatin in vivo assay provides an unbiased estimate of time scale of repressive response to a heterochromatin-triggering event.
Collapse
Affiliation(s)
- Michael R. Williams
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
| | - Yan Xiaokang
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC 27513, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Surprising Twists in Nucleosomal DNA with Implication for Higher-order Folding. J Mol Biol 2021; 433:167121. [PMID: 34192585 DOI: 10.1016/j.jmb.2021.167121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
While nucleosomes are dynamic entities that must undergo structural deformations to perform their functions, the general view from available high-resolution structures is a largely static one. Even though numerous examples of twist defects have been documented, the DNA wrapped around the histone core is generally thought to be overtwisted. Analysis of available high-resolution structures from the Protein Data Bank reveals a heterogeneous distribution of twist along the nucleosomal DNA, with clear patterns that are consistent with the literature, and a significant fraction of structures that are undertwisted. The subtle differences in nucleosomal DNA folding, which extend beyond twist, have implications for nucleosome disassembly and modeled higher-order structures. Simulations of oligonucleosome arrays built with undertwisted models behave very differently from those constructed from overtwisted models, in terms of compaction and inter-nucleosome contacts, introducing configurational changes equivalent to those associated with 2-3 base-pair changes in nucleosome spacing. Differences in the nucleosomal DNA pathway, which underlie the way that DNA enters and exits the nucleosome, give rise to different nucleosome-decorated minicircles and affect the topological mix of configurational states.
Collapse
|
9
|
Autoinhibitory elements of the Chd1 remodeler block initiation of twist defects by destabilizing the ATPase motor on the nucleosome. Proc Natl Acad Sci U S A 2021; 118:2014498118. [PMID: 33468676 DOI: 10.1073/pnas.2014498118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodelers are ATP (adenosine triphosphate)-powered motors that reposition nucleosomes throughout eukaryotic chromosomes. Remodelers possess autoinhibitory elements that control the direction of nucleosome sliding, but underlying mechanisms of inhibition have been unclear. Here, we show that autoinhibitory elements of the yeast Chd1 remodeler block nucleosome sliding by preventing initiation of twist defects. We show that two autoinhibitory elements-the chromodomains and bridge-reinforce each other to block sliding when the DNA-binding domain is not bound to entry-side DNA. Our data support a model where the chromodomains and bridge target nucleotide-free and ADP-bound states of the ATPase motor, favoring a partially disengaged state of the ATPase motor on the nucleosome. By bypassing distortions of nucleosomal DNA prior to ATP binding, we propose that autoinhibitory elements uncouple the ATP binding/hydrolysis cycle from DNA translocation around the histone core.
Collapse
|
10
|
Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat Commun 2021; 12:2387. [PMID: 33888707 PMCID: PMC8062685 DOI: 10.1038/s41467-021-22636-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleosomes are elementary building blocks of chromatin in eukaryotes. They tightly wrap ∼147 DNA base pairs around an octamer of histone proteins. How nucleosome structural dynamics affect genome functioning is not completely clear. Here we report all-atom molecular dynamics simulations of nucleosome core particles at a timescale of 15 microseconds. At this timescale, functional modes of nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping, twisting, and sliding were observed. We identified atomistic mechanisms of these processes by analyzing the accompanying structural rearrangements of the histone octamer and histone-DNA contacts. Octamer dynamics and plasticity were found to enable DNA unwrapping and sliding. Through multi-scale modeling, we showed that nucleosomal DNA dynamics contribute to significant conformational variability of the chromatin fiber at the supranucleosomal level. Our study further supports mechanistic coupling between fine details of histone dynamics and chromatin functioning, provides a framework for understanding the effects of various chromatin modifications.
Collapse
|
11
|
Abstract
As primary carriers of epigenetic information and gatekeepers of genomic DNA, nucleosomes are essential for proper growth and development of all eukaryotic cells. Although they are intrinsically dynamic, nucleosomes are actively reorganized by ATP-dependent chromatin remodelers. Chromatin remodelers contain helicase-like ATPase motor domains that can translocate along DNA, and a long-standing question in the field is how this activity is used to reposition or slide nucleosomes. In addition to ratcheting along DNA like their helicase ancestors, remodeler ATPases appear to dictate specific alternating geometries of the DNA duplex, providing an unexpected means for moving DNA past the histone core. Emerging evidence supports twist-based mechanisms for ATP-driven repositioning of nucleosomes along DNA. In this review, we discuss core experimental findings and ideas that have shaped the view of how nucleosome sliding may be achieved.
Collapse
Affiliation(s)
- Ilana M Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
12
|
Hrabina O, Malina J, Scott P, Brabec V. Cationic Fe
II
Triplex‐Forming Metallohelices as DNA Bulge Binders. Chemistry 2020; 26:16554-16562. [DOI: 10.1002/chem.202004060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ondrej Hrabina
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Jaroslav Malina
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Peter Scott
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Viktor Brabec
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| |
Collapse
|
13
|
Abstract
ATP-dependent chromatin remodelling enzymes are molecular machines that act to reconfigure the structure of nucleosomes. Until recently, little was known about the structure of these enzymes. Recent progress has revealed that their interaction with chromatin is dominated by ATPase domains that contact DNA at favoured locations on the nucleosome surface. Contacts with histones are limited but play important roles in modulating activity. The ATPase domains do not act in isolation but are flanked by diverse accessory domains and subunits. New structures indicate how these subunits are arranged in multi-subunit complexes providing a framework from which to understand how a common motor is applied to distinct functions.
Collapse
Affiliation(s)
- Ramasubramian Sundaramoorthy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
14
|
Jungblut A, Hopfner KP, Eustermann S. Megadalton chromatin remodelers: common principles for versatile functions. Curr Opin Struct Biol 2020; 64:134-144. [PMID: 32771531 DOI: 10.1016/j.sbi.2020.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
ATP-dependent chromatin remodelers are enigmatic macromolecular machines that govern the arrangement and composition of nucleosomes across eukaryotic genomes. Here, we review the recent breakthrough provided by cryo-electron microscopy that reveal the first high-resolution insights into all four families of remodelers. We highlight the emerging structural and mechanistic principles with a particular focus on multi-subunit SWI/SNF and INO80/SWR1 complexes. A conserved architecture comprising a motor, rotor, stator and grip suggests a unifying mechanism for how stepwise DNA translocation enables large scale reconfigurations of nucleosomes. A molecular circuitry involving the nuclear actin containing module establishes a framework for understanding allosteric regulation. Remodelers emerge as programable hubs that enable differential processing of genetic and epigenetic information in response to the physiological state of a cell.
Collapse
Affiliation(s)
- Anna Jungblut
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany; Candidate for joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
15
|
Bacic L, Sabantsev A, Deindl S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr Opin Struct Biol 2020; 65:61-68. [PMID: 32634693 DOI: 10.1016/j.sbi.2020.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/30/2023]
Abstract
Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Takada S, Brandani GB, Tan C. Nucleosomes as allosteric scaffolds for genetic regulation. Curr Opin Struct Biol 2020; 62:93-101. [PMID: 31901887 DOI: 10.1016/j.sbi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites. ATP-dependent chromatin remodelers induce a series of DNA deformations, which allosterically propagate throughout the nucleosome to induce DNA sliding or histone exchange.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan.
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan
| | - Cheng Tan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo, Kobe, 650-0047 Japan
| |
Collapse
|