1
|
Qiu R, Wang X, Jiang S, Meng J, Zhou Z. Two new compsognathid-like theropods show diversified predation strategies in theropod dinosaurs. Natl Sci Rev 2025; 12:nwaf068. [PMID: 40191255 PMCID: PMC11970238 DOI: 10.1093/nsr/nwaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
The Compsognathidae was originally considered an early-diverging clade of coelurosaur theropods. However, recent study suggests that Compsognathidae is not monophyletic. Here, we describe two new compsognathid-like species, Sinosauropteryx lingyuanensis sp. nov. and Huadanosaurus sinensis gen. et sp. nov. from the Lower Cretaceous Yixian Formation of Dawangzhangzi (Lingyuan, Western Liaoning, China). The phylogenetic results indicate that all compsognathid-like theropods from the Early Cretaceous Jehol Biota form a monophyletic group Sinosauropterygidae nested among early-diverging coelurosaurs. Morphological comparison between various species of sinosauropterygids from the Early Cretaceous of Northeast China, combined with the phylogenetic results, suggests that at least three distinct hunting strategies were present among coeval species. The diversification of theropods should be attributed to the landscape caused by the destruction of the North China craton.
Collapse
Affiliation(s)
- Rui Qiu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Natural History Museum of China, Beijing 100050, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunxing Jiang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Edens BM, Bronner ME. Making sense of vertebrate senses from a neural crest and cranial placode evo-devo perspective. Trends Neurosci 2025; 48:213-226. [PMID: 39848838 PMCID: PMC11903184 DOI: 10.1016/j.tins.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs. Here, we explore the embryonic origins of the vertebrate senses from the neural crest and cranial placodes and discuss the evolutionary trajectory of the senses in the context of adaptation to novel environments.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
McParland ED, Mitchell JK, Laurence-Chasen JD, Aspinwall LC, Afolabi O, Takahashi K, Ross CF, Gidmark NJ. The Kinematics of Proal Chewing in Rats. Integr Org Biol 2024; 6:obae023. [PMID: 39086740 PMCID: PMC11290364 DOI: 10.1093/iob/obae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Indexed: 08/02/2024] Open
Abstract
Chewing kinematics are well-documented in several mammal species with fused mandibular symphyses, but relatively understudied in mammals with an unfused symphysis, despite the fact that more than half of extant Mammalia have an unfused mandibular symphysis. The Wistar brown rat (Rattus norvegicus) is widely used in human health research, including studies of mastication or neurological studies where mastication is the output behavior. These animals are known to have unfused mandibular symphyses and proal jaw (rostrocaudal) motion during occlusion, but the lack of high resolution, 3-dimensional analysis of rat chewing leaves the functional significance of symphyseal mobility unknown. We used biplanar fluoroscopy and the X-ray reconstruction of moving morphology workflow to quantify chewing kinematics in 3 brown rats, quantifying overall jaw kinematics, including motions about the temporomandibular joint and unfused mandibular symphysis. During occlusion, the teeth and the mandibular condyle translate almost exclusively anteriorly (proal) during occlusion, with little motion in any other degrees of freedom. At the symphysis, we observed minimal flexion throughout the chew cycle. Overall, there are fundamental differences in jaw kinematics between rats and other mammals and therefore rats are not an appropriate proxy for ancestral mammal jaw mechanics. Additionally, differences between humans and rat chewing kinematics must be considered when using rats as a clinical model for pathological feeding research.
Collapse
Affiliation(s)
- E D McParland
- Department of Biology, Knox College, Galesburg, IL 61401, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - J K Mitchell
- Department of Biology, Knox College, Galesburg, IL 61401, USA
| | - J D Laurence-Chasen
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - L C Aspinwall
- Department of Biology, Knox College, Galesburg, IL 61401, USA
| | - O Afolabi
- Department of Biology, Knox College, Galesburg, IL 61401, USA
- College of Medicine, American University of Antigua, Osbourn, Antigua & Barbuda
| | - K Takahashi
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - C F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - N J Gidmark
- Department of Biology, Knox College, Galesburg, IL 61401, USA
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Meng J, Mao F. On the earliest evolution of the mammaliaform teeth, jaw joint and middle ear. Clin Transl Med 2024; 14:e1768. [PMID: 39031974 PMCID: PMC11259600 DOI: 10.1002/ctm2.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Affiliation(s)
- Jin Meng
- Division of PaleontologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- Earth and Environmental SciencesGraduate CenterCity University of New YorkNew York CityNew YorkUSA
| | - Fangyuan Mao
- Key Laboratory of Vertebrate Evolution and Human OriginsInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Mao F, Zhang C, Ren J, Wang T, Wang G, Zhang F, Rich T, Vickers-Rich P, Meng J. Fossils document evolutionary changes of jaw joint to mammalian middle ear. Nature 2024; 628:576-581. [PMID: 38570677 DOI: 10.1038/s41586-024-07235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
The dual jaw joint of Morganucodon1,2 consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1-5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular-quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular-quadrate jaw joint-a prerequisite for the detachment of the post-dentary bones from the dentary7-12 and the eventual breakdown of the Meckel's cartilage13-15 during the evolution of mammaliaforms.
Collapse
Affiliation(s)
- Fangyuan Mao
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
| | - Chi Zhang
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Jicheng Ren
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Bureau of Land and Resources of Lufeng County, Lufeng, China
| | - Guofu Wang
- Fossil Research Center of Chuxiong Prefecture, Chuxiong, China
| | - Fakui Zhang
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Thomas Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Patricia Vickers-Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- School of Earth and Planetary Science, Curtin University, Perth, Western Australia, Australia
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
6
|
Mao F, Li Z, Wang Z, Zhang C, Rich T, Vickers-Rich P, Meng J. Jurassic shuotheriids show earliest dental diversification of mammaliaforms. Nature 2024; 628:569-575. [PMID: 38570681 DOI: 10.1038/s41586-024-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.
Collapse
Affiliation(s)
- Fangyuan Mao
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
| | - Zhiyu Li
- Inner Mongolia Museum of Natural History, Hohhot, China
| | - Zhili Wang
- Inner Mongolia Museum of Natural History, Hohhot, China
| | - Chi Zhang
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Thomas Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Patricia Vickers-Rich
- Museums Victoria, Melbourne, Victoria, Australia
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.
- Earth and Environmental Sciences, City University of New York, New York, NY, USA.
| |
Collapse
|
7
|
Edens BM, Bronner ME. Making developmental sense of the senses, their origin and function. Curr Top Dev Biol 2024; 159:132-167. [PMID: 38729675 DOI: 10.1016/bs.ctdb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
8
|
Wang H, Wang Y. Middle ear innovation in Early Cretaceous eutherian mammals. Nat Commun 2023; 14:6831. [PMID: 37884521 PMCID: PMC10603157 DOI: 10.1038/s41467-023-42606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The middle ear ossicles in modern mammals are repurposed from postdentary bones in non-mammalian cynodonts. Recent discoveries by palaeontological and embryonic studies have developed different models for the middle ear evolution in mammaliaforms. However, little is known about the evolutionary scenario of the middle ear in early therians. Here we report a detached middle ear preserved in a new eutherian mammal from the Early Cretaceous Jehol Biota. The well-preserved articulation of the malleus and incus suggest that the saddle-shaped incudomallear joint is a major apomorphy of Early Cretaceous eutherians. By contrast to the distinct saddle-like incudomallear articulation in therians, differences between the overlapping versus the half-overlapping incudomallear joints in monotremes and stem mammals would be relatively minor. The middle ear belongs to the microtype by definition, indicating its adaptation to high-frequency hearing. Current evidence indicates that significant evolutionary innovations of the middle ear in modern therians evolved in Early Cretaceous.
Collapse
Affiliation(s)
- Haibing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
| | - Yuanqing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044, Beijing, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
Tseng ZJ, Garcia-Lara S, Flynn JJ, Holmes E, Rowe TB, Dickson BV. A switch in jaw form-function coupling during the evolution of mammals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220091. [PMID: 37183899 PMCID: PMC10184249 DOI: 10.1098/rstb.2022.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The evolutionary shift from a single-element ear, multi-element jaw to a multi-element ear, single-element jaw during the transition to crown mammals marks one of the most dramatic structural transformations in vertebrates. Research on this transformation has focused on mammalian middle-ear evolution, but a mandible comprising only the dentary is equally emblematic of this evolutionary radiation. Here, we show that the remarkably diverse jaw shapes of crown mammals are coupled with surprisingly stereotyped jaw stiffness. This strength-based morphofunctional regime has a genetic basis and allowed mammalian jaws to effectively resist deformation as they radiated into highly disparate forms with markedly distinct diets. The main functional consequences for the mandible of decoupling hearing and mastication were a trade-off between higher jaw stiffness versus decreased mechanical efficiency and speed compared with non-mammals. This fundamental and consequential shift in jaw form-function underpins the ecological and taxonomic diversification of crown mammals. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Z Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Sergio Garcia-Lara
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
| | - Emily Holmes
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Timothy B Rowe
- Jackson School of Geological Sciences, University of Texas, Austin, TX 78712, USA
| | - Blake V Dickson
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Norton LA, Abdala F, Benoit J. Craniodental anatomy in Permian-Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220084. [PMID: 37183903 PMCID: PMC10184251 DOI: 10.1098/rstb.2022.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals are diagnosed by more than 30 osteological characters (e.g. squamosal-dentary jaw joint, three inner ear ossicles, etc.) that are readily preserved in the fossil record. However, it is the suite of physiological, soft tissue and behavioural characters (e.g. endothermy, hair, lactation, isocortex and parental care), the evolutionary origins of which have eluded scholars for decades, that most prominently distinguishes living mammals from other amniotes. Here, we review recent works that illustrate how evolutionary changes concentrated in the cranial and dental morphology of mammalian ancestors, the Permian-Jurassic Cynodontia and Mammaliaformes, can potentially be used to document the origin of some of the most crucial defining features of mammals. We discuss how these soft tissue and behavioural traits are highly integrated, and how their evolution is intermingled with that of craniodental traits, thus enabling the tracing of their previously out-of-reach phylogenetic history. Most of these osteological and dental proxies, such as the maxillary canal, bony labyrinth and dental replacement only recently became more easily accessible-thanks, in large part, to the widespread use of X-ray microtomography scanning in palaeontology-because they are linked to internal cranial characters. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Luke A Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Fernando Abdala
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Miguel Lillo 251, Tucumán 4000, Argentina
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
11
|
Lipovsek M, Elgoyhen AB. The evolutionary tuning of hearing. Trends Neurosci 2023; 46:110-123. [PMID: 36621369 DOI: 10.1016/j.tins.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
After the transition to life on land, tympanic middle ears emerged separately in different groups of tetrapods, facilitating the efficient detection of airborne sounds and paving the way for high frequency sensitivity. The processes that brought about high-frequency hearing in mammals are tightly linked to the accumulation of coding sequence changes in inner ear genes; many of which were selected during evolution. These include proteins involved in hair bundle morphology, mechanotransduction and high endolymphatic potential, somatic electromotility for sound amplification, ribbon synapses for high-fidelity transmission of sound stimuli, and efferent synapses for the modulation of sound amplification. Here, we review the molecular evolutionary processes behind auditory functional innovation. Overall, the evidence to date supports the hypothesis that changes in inner ear proteins were central to the fine tuning of mammalian hearing.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Wang HB, Hoffmann S, Wang DC, Wang YQ. A new mammal from the Lower Cretaceous Jehol Biota and implications for eutherian evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210042. [PMID: 35125007 PMCID: PMC8819371 DOI: 10.1098/rstb.2021.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here we report on a new Early Cretaceous eutherian represented by a partial skeleton from the Jiufotang Formation at Sihedang site, Lingyuan City, Liaoning Province that fills a crucial gap between the earliest eutherians from the Yixian Formation and later Cretaceous eutherians. The new specimen reveals, to our knowledge for the first time in eutherians, that the Meckelian cartilage was ossified but reduced in size, confirming a complete detachment of the middle ear from the lower jaw. Seven hyoid elements, including paired stylohyals, epihyals and thyrohyals and the single basihyal are preserved. For the inner ear the ossified primary lamina, base of the secondary lamina, ossified cochlear ganglion and secondary crus commune are present and the cochlear canal is coiled through 360°. In addition, plesiomorphic features of the dentition include weak conules, lack of pre- and post-cingula and less expanded protocones on the upper molars and height differential between the trigonid and talonid, a large protoconid and a small paraconid on the lower molars. The new taxon displays an alternating pattern of tooth replacement with P3 being the last upper premolar to erupt similar to the basal eutherian Juramaia. Parsimony analysis places the new taxon with Montanalestes, Sinodelphys and Ambolestes as a sister group to other eutherians. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Hai-Bing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, People's Republic of China.,Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Simone Hoffmann
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Dian-Can Wang
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, 22 South Zhongguancun Avenue, Beijing, People's Republic of China
| | - Yuan-Qing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, People's Republic of China.,Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Newham E, Gill PG, Corfe IJ. New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time. Bioessays 2022; 44:e2100060. [PMID: 35170781 DOI: 10.1002/bies.202100060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022]
Abstract
We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.
Collapse
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Department of Palaeontology, Institute for Geosciences, University of Bonn, Bonn, Germany
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK.,Earth Sciences Department, Natural History Museum, London, UK
| | - Ian J Corfe
- Jernvall Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Geological Survey of Finland, Espoo, Finland
| |
Collapse
|
14
|
Wible JR, Shelley SL, Bi S. Response to 'Monotreme middle ear is not primitive for Mammalia'. Natl Sci Rev 2021; 8:nwab132. [PMID: 34858617 PMCID: PMC8566169 DOI: 10.1093/nsr/nwab132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- John R Wible
- Section of Mammals, Carnegie Museum of Natural History, USA
- Centre for Vertebrate Evolutionary Biology, Yunnan University, China
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, USA
- School of Geosciences, University of Edinburgh, UK
| | - Shundong Bi
- Section of Mammals, Carnegie Museum of Natural History, USA
- Centre for Vertebrate Evolutionary Biology, Yunnan University, China
- Department of Biology, Indiana University of Pennsylvania, USA
| |
Collapse
|
15
|
Grossnickle DM, Weaver LN, Jäger KRK, Schultz JA. The evolution of anteriorly directed molar occlusion in mammals. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
In non-mammalian synapsids and early mammals, evolutionary transformations in the feeding and hearing apparatuses are posited to have been prerequisites for the radiation of extant mammals. Unlike most vertebrates, including many early synapsids, mammals have precise dental occlusion, a lower jaw composed of one bone, and middle ear ossicles derived from ancestral jaw bones. We illuminate a related functional transition: therian mammals (eutherians and metatherians) evolved anteriorly directed chewing strokes, which are absent in other synapsid lineages. Anteriorly directed jaw movement during occlusion necessitates anteriorly directed muscle force vectors, and we posit that a shift in muscle orientation is reflected in the fossil record by the evolutionary appearance of a posteriorly positioned angular process in cladotherians (therians and their close kin). Anteriorly directed occlusion might have been absent in earlier synapsids because of the presence of attached middle ear elements in the posterior region of the jaw that prohibited the posterior insertion of jaw musculature. These changes to the masticatory apparatus in cladotherians are likely to have permitted the evolution of novel masticatory movements, including grinding in both the anterior and medial directions (e.g. rodents and ungulates, respectively). Thus, this evolutionary transition might have been a crucial prerequisite for the dietary diversification of therians.
Collapse
Affiliation(s)
- David M Grossnickle
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA, USA
| | - Lucas N Weaver
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA, USA
| | - Kai R K Jäger
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn, Germany
| | - Julia A Schultz
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn, Germany
| |
Collapse
|
16
|
Fleury V, Peaucelle A, Abourachid A, Plateau O. Second-order division in sectors as a prepattern for sensory organs in vertebrate development. Theory Biosci 2021; 141:141-163. [PMID: 34128197 DOI: 10.1007/s12064-021-00350-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
We present in vivo observations of chicken embryo development which show that the early chicken embryo presents a principal structure made out of concentric rings and a secondary structure composed of radial sectors. During development, physical forces deform the main rings into axially directed, antero-posterior tubes, while the sectors roll up to form cylinders that are perpendicular to the antero-posterior axis. As a consequence, the basic structure of the chicken embryo is a series of encased antero-posterior tubes (gut, neural tube, body envelope, amnion, chorion) decorated with smaller orifices (ear duct, eye stalk, nasal duct, gills, mouth) forming at right angles to the main body axis. We argue that the second-order divisions reflect the early pattern of cell cleavage, and that the transformation of radial and orthoradial lines into a body with sensory organs is a generic biophysical mechanism more general than the chicken embryo.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.
| | - Alexis Peaucelle
- UMR 1318, Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Anick Abourachid
- Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France
| | - Olivia Plateau
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.,Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France.,Département de Géosciences, Université de Fribourg, Ch. du Musée 6, 1700, Fribourg, Switzerland
| |
Collapse
|
17
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
18
|
Mao F, Liu C, Chase MH, Smith AK, Meng J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci Rev 2021; 8:nwaa188. [PMID: 34691634 PMCID: PMC8288399 DOI: 10.1093/nsr/nwaa188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023] Open
Abstract
We report a new Cretaceous multituberculate mammal with 3D auditory bones preserved. Along with other fossil and extant mammals, the unequivocal auditory bones display features potentially representing ancestral phenotypes of the mammalian middle ear. These phenotypes show that the ectotympanic and the malleus-incus complex changed notably during their retreating from the dentary at various evolutionary stages and suggest convergent evolution of some features to extant mammals. In contrast, the incudomalleolar joint was conservative in having a braced hinge configuration, which narrows the morphological gap between the quadroarticular jaw joint of non-mammalian cynodonts and the incudomalleolar articulations of extant mammals. The saddle-shaped and abutting malleus-incus complexes in therians and monotremes, respectively, could have evolved from the braced hinge joint independently. The evolutionary changes recorded in the Mesozoic mammals are largely consistent with the middle ear morphogenesis during the ontogeny of extant mammals, supporting the relation between evolution and development.
Collapse
Affiliation(s)
- Fangyuan Mao
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Cunyu Liu
- Beipiao Pterosaur Museum of China, Beipiao 122100, China
| | - Morgan Hill Chase
- Microscopy and Imaging Facility, American Museum of Natural History, New York, NY 10024, USA
| | - Andrew K Smith
- Microscopy and Imaging Facility, American Museum of Natural History, New York, NY 10024, USA
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
19
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
20
|
Morales-García NM, Gill PG, Janis CM, Rayfield EJ. Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Commun Biol 2021; 4:242. [PMID: 33623117 PMCID: PMC7902851 DOI: 10.1038/s42003-021-01757-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Jaw morphology is closely linked to both diet and biomechanical performance, and jaws are one of the most common Mesozoic mammal fossil elements. Knowledge of the dietary and functional diversity of early mammals informs on the ecological structure of palaeocommunities throughout the longest era of mammalian evolution: the Mesozoic. Here, we analyse how jaw shape and mechanical advantage of the masseter (MAM) and temporalis (MAT) muscles relate to diet in 70 extant and 45 extinct mammals spanning the Late Triassic-Late Cretaceous. In extant mammals, jaw shape discriminates well between dietary groups: insectivores have long jaws, carnivores intermediate to short jaws, and herbivores have short jaws. Insectivores have low MAM and MAT, carnivores have low MAM and high MAT, and herbivores have high MAM and MAT. These traits are also informative of diet among Mesozoic mammals (based on previous independent determinations of diet) and set the basis for future ecomorphological studies.
Collapse
Affiliation(s)
| | - Pamela G Gill
- School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Christine M Janis
- School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Emily J Rayfield
- School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Wang J, Wible JR, Guo B, Shelley SL, Hu H, Bi S. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan. Nature 2021; 590:279-283. [PMID: 33505017 DOI: 10.1038/s41586-020-03137-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023]
Abstract
Among extant vertebrates, mammals are distinguished by having a chain of three auditory ossicles (the malleus, incus and stapes) that transduce sound waves and promote an increased range of audible-especially high-frequencies1. By contrast, the homologous bones in early fossil mammals and relatives also functioned in chewing through their bony attachments to the lower jaw2. Recent discoveries of well-preserved Mesozoic mammals have provided glimpses into the transition from the dual (masticatory and auditory) to the single auditory function for the ossicles, which is now widely accepted to have occurred at least three times in mammal evolution3-6. Here we report a skull and postcranium that we refer to the haramiyidan Vilevolodon diplomylos (dating to the Middle Jurassic epoch (160 million years ago)) and that shows excellent preservation of the malleus, incus and ectotympanic (which supports the tympanic membrane). After comparing this fossil with other Mesozoic and extant mammals, we propose that the overlapping incudomallear articulation found in this and other Mesozoic fossils, in extant monotremes and in early ontogeny in extant marsupials and placentals is a morphology that evolved in several groups of mammals in the transition from the dual to the single function for the ossicles.
Collapse
Affiliation(s)
- Junyou Wang
- Centre for Vertebrate Evolutionary Biology, Institute of Palaeontology, Yunnan University, Kunming, China.,Inner Mongolia Museum of Natural History, Hohhot, China
| | - John R Wible
- Centre for Vertebrate Evolutionary Biology, Institute of Palaeontology, Yunnan University, Kunming, China. .,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA.
| | - Bin Guo
- Inner Mongolia Museum of Natural History, Hohhot, China
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA.,School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Han Hu
- Zoology Division, School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia
| | - Shundong Bi
- Centre for Vertebrate Evolutionary Biology, Institute of Palaeontology, Yunnan University, Kunming, China. .,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA.
| |
Collapse
|
22
|
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Front Cell Dev Biol 2020; 8:821. [PMID: 32984323 PMCID: PMC7484903 DOI: 10.3389/fcell.2020.00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meckel's cartilage was first described by the German anatomist Johann Friedrich Meckel the Younger in 1820 from his analysis of human embryos. Two hundred years after its discovery this paper follows the development and largely transient nature of the mammalian Meckel's cartilage, and its role in jaw development. Meckel's cartilage acts as a jaw support during early development, and a template for the later forming jaw bones. In mammals, its anterior domain links the two arms of the dentary together at the symphysis while the posterior domain ossifies to form two of the three ear ossicles of the middle ear. In between, Meckel's cartilage transforms to a ligament or disappears, subsumed by the growing dentary bone. Several human syndromes have been linked, directly or indirectly, to abnormal Meckel's cartilage formation. Herein, the evolution, development and fate of the cartilage and its impact on jaw development is mapped. The review focuses on developmental and cellular processes that shed light on the mechanisms behind the different fates of this cartilage, examining the control of Meckel's cartilage patterning, initiation and maturation. Importantly, human disorders and mouse models with disrupted Meckel's cartilage development are highlighted, in order to understand how changes in this cartilage impact on later development of the dentary and the craniofacial complex as a whole. Finally, the relative roles of tissue interactions, apoptosis, autophagy, macrophages and clast cells in the removal process are discussed. Meckel's cartilage is a unique and enigmatic structure, the development and function of which is starting to be understood but many interesting questions still remain.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
23
|
Heffner RS, Koay G, Heffner HE. Hearing and sound localization in Cottontail rabbits, Sylvilagus floridanus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:543-552. [PMID: 32488424 DOI: 10.1007/s00359-020-01424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
Cottontail rabbits represent the first wild species of the order of lagomorphs whose hearing abilities have been determined. Cottontails, Sylvilagus floridanus, evolved in the New World, but have spread worldwide. Their hearing was tested behaviorally using a conditioned-avoidance procedure. At a level of 60 dB SPL, their hearing ranged from 300 Hz to 32 kHz, a span of 7.5 octaves. Mammalian low-frequency hearing is bimodally distributed and Cottontail rabbits fall into the group that hears below 400 Hz. However, their 300-Hz limit puts them near the gap that separates the two populations. The minimum audible angle of cottontails is 27.6°, making them less acute than most other species of mammals. Their large sound-localization threshold is consistent with the observation that mammals with broad fields of best vision require less acuity to direct their eyes to the sources of sound.
Collapse
Affiliation(s)
- Rickye S Heffner
- Department of Psychology, University of Toledo, Toledo, OH, 43606, USA.
| | - Gimseong Koay
- Department of Psychology, University of Toledo, Toledo, OH, 43606, USA
| | - Henry E Heffner
- Department of Psychology, University of Toledo, Toledo, OH, 43606, USA
| |
Collapse
|
24
|
Le Maître A, Grunstra NDS, Pfaff C, Mitteroecker P. Evolution of the Mammalian Ear: An Evolvability Hypothesis. Evol Biol 2020; 47:187-192. [PMID: 32801400 PMCID: PMC7399675 DOI: 10.1007/s11692-020-09502-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
Encapsulated within the temporal bone and comprising the smallest elements of the vertebrate skeleton, the ear is key to multiple senses: balance, posture control, gaze stabilization, and hearing. The transformation of the primary jaw joint into the mammalian ear ossicles is one of the most iconic transitions in vertebrate evolution, but the drivers of this complex evolutionary trajectory are not fully understood. We propose a novel hypothesis: The incorporation of the bones of the primary jaw joint into the middle ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear. This increase in the number of genetic and developmental factors may, in turn, have increased the evolutionary degrees of freedom for independent adaptations of the different functional ear units. The simpler ear anatomy in birds and reptiles may be less susceptible to developmental instabilities and disorders than in mammals but also more constrained in its evolution. Despite the tight spatial entanglement of functional ear components, the increased "evolvability" of the mammalian ear may have contributed to the evolutionary success and adaptive diversification of mammals in the vast diversity of ecological and behavioral niches observable today. A brief literature review revealed supporting evidence for this hypothesis.
Collapse
Affiliation(s)
- Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Palaeontology, University of Vienna, Vienna, Austria
- PALEVOPRIM - UMR 7262CNRS INEE, Université de Poitiers, Poitiers, France
| | - Nicole D. S. Grunstra
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
25
|
Mao F, Meng J. Making a mammalian ear. Modular decoupling of the mammalian middle ear and jaw discovered in a new species of Cretaceous stem therian mammals. ZOOLOGY 2020; 140:125767. [PMID: 32408123 DOI: 10.1016/j.zool.2020.125767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/18/2022]
Abstract
Evolution of the definitive mammalian middle ear (DMME) as a textbook example in vertebrate evolution has been extensively studied during the last 200 years. Fossils provide the direct evidence on evolutionary stages of the DMME, but because of delicacy of the miniscule ossicles, unequivocal evidence about them has always been rare. Recent work on a stem therian mammal (124 million years old) shows presence of the surangular bone in the basal mammals as a primitive feature and potentially retained in the embryonic stage of some extant mammals. The work also proposed that the DMME and mammalian jaw evolved in a modular fashion. It started as a highly integrated complex in structures and functions, the two modules were regulated by similar developmental genetic mechanisms and eventually decoupled under natural selection so that the physical constraint the two modules imposed on each other was removed, allowing future improvement of each module for better function.
Collapse
Affiliation(s)
- Fangyuan Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China; Division of Paleontology, American Museum of Natural History, Central Park West at 79(th) Street, New York, NY, 10024, USA.
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, Central Park West at 79(th) Street, New York, NY, 10024, USA; Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Julia A Schultz
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Geowissenschaften, Bonn, Germany.
| |
Collapse
|