1
|
Fang S, Zhang K, Liu D, Yang Y, Xi H, Xie W, Diao K, Rao Z, Wang D, Yang W. Polyphenol-based polymer nanoparticles for inhibiting amyloid protein aggregation: recent advances and perspectives. Front Nutr 2024; 11:1408620. [PMID: 39135555 PMCID: PMC11317421 DOI: 10.3389/fnut.2024.1408620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.
Collapse
Affiliation(s)
- Shuzhen Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea, Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Danqing Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Yulong Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Hu Xi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Wenting Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Ke Diao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhihong Rao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
2
|
Espay AJ, Lees AJ. Loss of monomeric alpha-synuclein (synucleinopenia) and the origin of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106077. [PMID: 38461037 DOI: 10.1016/j.parkreldis.2024.106077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Andrew J Lees
- The National Hospital, Queen Square and Reta Lila Weston Institute for Neurological Studies University College London, London, UK
| |
Collapse
|
3
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
4
|
Neupane S, Khadka J, Rayamajhi S, Pandey AS. Binding modes of potential anti-prion phytochemicals to PrP C structures in silico. J Ayurveda Integr Med 2023; 14:100750. [PMID: 37453159 PMCID: PMC10368899 DOI: 10.1016/j.jaim.2023.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Prion diseases involve the conversion of a normal, cell-surface glycoprotein (PrPC) into a misfolded pathogenic form (PrPSc). One possible strategy to inhibit PrPSc formation is to stabilize the native conformation of PrPC and interfere with the conversion of PrPC to PrPSc. Many compounds have been shown to inhibit the conversion process, however, no promising drugs have been identified to cure prion diseases. OBJECTIVE This study aims to identify potential anti-prion compounds from plant phytochemicals by integrating traditional ethnobotanical knowledge with modern in silico drug design approaches. MATERIALS AND METHODS In the current study medicinal phytochemicals were docked with swapped and non-swapped crystal structures of PrPCin silico to identify potential anti-prions to determine their binding modes and interactions. RESULTS Eleven new phytochemicals were identified based on their binding energies and pharmacokinetic properties. The binding sites and interactions of the known and new anti-prion compounds are similar, and differences in binding modes occur in structures with very subtle differences in side chain conformations. Binding of these compounds poses steric hindrance to neighbouring molecules. Residues shown to be associated with the inhibition of PrPC to PrPSc conversion form interactions with most of the compounds. CONCLUSION Identified compounds might act as potent inhibitors of PrPC to PrPSc conversion. These might be attractive candidates for the development of novel anti-prion therapy although further tests in vitro cell cultures and in vivo mouse models are needed to confirm these findings.
Collapse
Affiliation(s)
- Sandesh Neupane
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Jenisha Khadka
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Sandesh Rayamajhi
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Arti S Pandey
- Department of Biochemistry, Kathmandu Medical College (Basic Sciences), Bhaktapur, 44800, Nepal.
| |
Collapse
|
5
|
Ezzat K, Espay AJ. The allure and pitfalls of the prion-like aggregation in neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:17-22. [PMID: 36803809 DOI: 10.1016/b978-0-323-85555-6.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders where the formation of amyloids is thought to be infectious by templating their conformation on to natively-folded counterparts. Postulated nearly four decades ago, the search for the mechanism behind the conformational templating has proceeded to no avail. Here, we extend the thermodynamic hypothesis of protein folding (Anfinsen's dogma) to the amyloid phenomenon and illustrate that the amyloid conformation (cross-β) is one of two conformational states that are thermodynamically accessible to any protein sequence depending on concentration. A protein spontaneously assumes its native conformation below supersaturation and the amyloid cross-β conformation above supersaturation. The information to adopt the native conformation and the amyloid conformation is present in the primary sequence and the backbone of the protein, respectively, and does not require templating. The rate-limiting step for proteins to adopt the cross-β conformation of amyloid is termed nucleation, which can be catalyzed by surfaces (heterogeneous nucleation) or preformed amyloid fragments (seeding). Irrespective of the nucleation pathway, once triggered, amyloid formation proceeds spontaneously in fractal-like fashion, where the surfaces of the growing fibrils act as heterogeneous nucleation catalysts for new fibrils, a phenomenon known as secondary nucleation. This pattern is in contrast to the linear growth assumptions that the prion hypothesis necessitates for faithful prion strain replication. Additionally, the cross-β conformation buries the majority of the protein side chain inside the fibrils, making the fibrils inert, generic, and extremely stable. As such, the source of toxicity in prion disorders may come to a greater extent from the loss of proteins in their normal, soluble, and therefore functional state rather than from their transformation into stable, insoluble, nonfunctioning amyloids.
Collapse
Affiliation(s)
- Kariem Ezzat
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
6
|
Flach M, Leu C, Martinisi A, Skachokova Z, Frank S, Tolnay M, Stahlberg H, Winkler DT. Trans-seeding of Alzheimer-related tau protein by a yeast prion. Alzheimers Dement 2022; 18:2481-2492. [PMID: 35142027 PMCID: PMC10078693 DOI: 10.1002/alz.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."
Collapse
Affiliation(s)
- Martin Flach
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Cedric Leu
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Alfonso Martinisi
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Zhiva Skachokova
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Frank
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - David T Winkler
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neurology, Medical University Clinic, Kantonsspital Baselland, Liestal, Switzerland
| |
Collapse
|
7
|
Ezzat K, Sturchio A, Espay AJ. Proteins Do Not Replicate, They Precipitate: Phase Transition and Loss of Function Toxicity in Amyloid Pathologies. BIOLOGY 2022; 11:biology11040535. [PMID: 35453734 PMCID: PMC9031251 DOI: 10.3390/biology11040535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Protein aggregation into amyloid fibrils affects many proteins in a variety of diseases, including neurodegenerative disorders, diabetes, and cancer. Physicochemically, amyloid formation is a phase transition process, where soluble proteins are transformed into solid fibrils with the characteristic cross-β conformation responsible for their fibrillar morphology. This phase transition proceeds via an initial, rate-limiting nucleation step followed by rapid growth. Several well-defined nucleation pathways exist, including homogenous nucleation (HON), which proceeds spontaneously; heterogeneous nucleation (HEN), which is catalyzed by surfaces; and seeding via preformed nuclei. It has been hypothesized that amyloid aggregation represents a protein-only (nucleic-acid free) replication mechanism that involves transmission of structural information via conformational templating (the prion hypothesis). While the prion hypothesis still lacks mechanistic support, it is also incompatible with the fact that proteins can be induced to form amyloids in the absence of a proteinaceous species acting as a conformational template as in the case of HEN, which can be induced by lipid membranes (including viral envelopes) or polysaccharides. Additionally, while amyloids can be formed from any protein sequence and via different nucleation pathways, they invariably adopt the universal cross-β conformation; suggesting that such conformational change is a spontaneous folding event that is thermodynamically favorable under the conditions of supersaturation and phase transition and not a templated replication process. Finally, as the high stability of amyloids renders them relatively inert, toxicity in some amyloid pathologies might be more dependent on the loss of function from protein sequestration in the amyloid state rather than direct toxicity from the amyloid plaques themselves.
Collapse
Affiliation(s)
- Kariem Ezzat
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden
- Correspondence:
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, 171 76 Stockholm, Sweden;
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
8
|
Novel regulators of PrPC biosynthesis revealed by genome-wide RNA interference. PLoS Pathog 2021; 17:e1010013. [PMID: 34705895 PMCID: PMC8575309 DOI: 10.1371/journal.ppat.1010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64’752 unique siRNAs targeting 21’584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51’128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies. The cellular prion protein (PrPC) acts as both, the substrate for prion formation and mediator of prion toxicity during the progression of all prion diseases. Suppressing the levels of PrPC is a viable therapeutic strategy as PRNP null animals are resistant to prion disease and the knockout of PRNP is not associated with any severe phenotypes. Motivated by the scarcity of knowledge regarding the molecular regulators of PrPC biosynthesis and degradation, which might serve as valuable targets to control its expression, here, we present a cell-based genome wide RNAi screen in arrayed format. The screening effort led to the identification of 54 regulators, nine of which were confirmed by an independent CRISPR-based method. Among the final nine targets, we identified PUM1 as a regulator of PRNP mRNA by acting on the 3’UTR promoting its degradation. The newly identified factors involved in the life cycle of PrPC provided by our study may also represent themselves as therapeutic targets for the intervention of prion diseases.
Collapse
|
9
|
Winter SN, Kirchgessner MS, Frimpong EA, Escobar LE. A Landscape Epidemiological Approach for Predicting Chronic Wasting Disease: A Case Study in Virginia, US. Front Vet Sci 2021; 8:698767. [PMID: 34504887 PMCID: PMC8421794 DOI: 10.3389/fvets.2021.698767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Many infectious diseases in wildlife occur under quantifiable landscape ecological patterns useful in facilitating epidemiological surveillance and management, though little is known about prion diseases. Chronic wasting disease (CWD), a fatal prion disease of the deer family Cervidae, currently affects white-tailed deer (Odocoileus virginianus) populations in the Mid-Atlantic United States (US) and challenges wildlife veterinarians and disease ecologists from its unclear mechanisms and associations within landscapes, particularly in early phases of an outbreak when CWD detections are sparse. We aimed to provide guidance for wildlife disease management by identifying the extent to which CWD-positive cases can be reliably predicted from landscape conditions. Using the CWD outbreak in Virginia, US from 2009 to early 2020 as a case study system, we used diverse algorithms (e.g., principal components analysis, support vector machines, kernel density estimation) and data partitioning methods to quantify remotely sensed landscape conditions associated with CWD cases. We used various model evaluation tools (e.g., AUC ratios, cumulative binomial testing, Jaccard similarity) to assess predictions of disease transmission risk using independent CWD data. We further examined model variation in the context of uncertainty. We provided significant support that vegetation phenology data representing landscape conditions can predict and map CWD transmission risk. Model predictions improved when incorporating inferred home ranges instead of raw hunter-reported coordinates. Different data availability scenarios identified variation among models. By showing that CWD could be predicted and mapped, our project adds to the available tools for understanding the landscape ecology of CWD transmission risk in free-ranging populations and natural conditions. Our modeling framework and use of widely available landscape data foster replicability for other wildlife diseases and study areas.
Collapse
Affiliation(s)
- Steven N Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | - Emmanuel A Frimpong
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States.,Global Change Center, Virginia Tech, Blacksburg, VA, United States.,Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Wang LQ, Zhao K, Yuan HY, Li XN, Dang HB, Ma Y, Wang Q, Wang C, Sun Y, Chen J, Li D, Zhang D, Yin P, Liu C, Liang Y. Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. SCIENCE ADVANCES 2021; 7:eabg9676. [PMID: 34516876 PMCID: PMC8442898 DOI: 10.1126/sciadv.abg9676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Prion diseases are caused by the conformational conversion of prion protein (PrP). Forty-two different mutations were identified in human PrP, leading to genetic prion diseases with distinct clinical syndromes. Here, we report the cryo–electron microscopy structure of an amyloid fibril formed by full-length human PrP with E196K mutation, a genetic Creutzfeldt-Jakob disease–related mutation. This mutation disrupts key interactions in the wild-type PrP fibril, forming an amyloid fibril with a conformation distinct from the wild-type PrP fibril and hamster brain–derived prion fibril. The E196K fibril consists of two protofibrils. Each subunit forms five β strands stabilized by a disulfide bond and an unusual hydrophilic cavity stabilized by a salt bridge. Four pairs of amino acids from opposing subunits form four salt bridges to stabilize the zigzag interface of the two protofibrils. Our results provide structural evidences of the diverse prion strains and highlight the importance of familial mutations in inducing different strains.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bin Dang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Espay AJ, Sturchio A, Schneider LS, Ezzat K. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1403-1415. [PMID: 34151810 DOI: 10.3233/jad-210415] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain proteins function in their soluble, native conformation and cease to function when transformed into insoluble aggregates, also known as amyloids. Biophysically, the soluble-to-insoluble phase transformation represents a process of polymerization, similar to crystallization, dependent on such extrinsic factors as concentration, pH, and a nucleation surface. The resulting cross-β conformation of the insoluble amyloid is markedly stable, making it an unlikely source of toxicity. The spread of brain amyloidosis can be fully explained by mechanisms of spontaneous or catalyzed polymerization and phase transformation instead of active replication, which is an enzyme- and energy-requiring process dependent on a specific nucleic acid code for the transfer of biological information with high fidelity. Early neuronal toxicity in Alzheimer's disease may therefore be mediated to a greater extent by a reduction in the pool of soluble, normal-functioning protein than its accumulation in the polymerized state. This alternative loss-of-function hypothesis of pathogenicity can be examined by assessing the clinical and neuroimaging effects of administering non-aggregating peptide analogs to replace soluble amyloid-β levels above the threshold below which neuronal toxicity may occur. Correcting the depletion of soluble amyloid-β, however, would only exemplify 'rescue medicine.' Precision medicine will necessitate identifying the pathogenic factors catalyzing the protein aggregation in each affected individual. Only then can we stratify patients for etiology-specific treatments and launch precision medicine for Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
13
|
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021; 121:8285-8307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-β-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Portz B, Lee BL, Shorter J. FUS and TDP-43 Phases in Health and Disease. Trends Biochem Sci 2021; 46:550-563. [PMID: 33446423 PMCID: PMC8195841 DOI: 10.1016/j.tibs.2020.12.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The distinct prion-like domains (PrLDs) of FUS and TDP-43, modulate phase transitions that result in condensates with a range of material states. These assemblies are implicated in both health and disease. In this review, we examine how sequence, structure, post-translational modifications, and RNA can affect the self-assembly of these RNA-binding proteins (RBPs). We discuss how our emerging understanding of FUS and TDP-43 liquid-liquid phase separation (LLPS) and aggregation, could be leveraged to design new therapies for neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE).
Collapse
Affiliation(s)
- Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Temussi PA, Tartaglia GG, Pastore A. The seesaw between normal function and protein aggregation: How functional interactions may increase protein solubility. Bioessays 2021; 43:e2100031. [PMID: 33783021 DOI: 10.1002/bies.202100031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation has been studied for at least 3 decades, and many of the principles that regulate this event are relatively well understood. Here, however, we present a different perspective to explain why proteins aggregate: we argue that aggregation may occur as a side-effect of the lack of one or more natural partners that, under physiologic conditions, would act as chaperones. This would explain why the same surfaces that have evolved for functional purposes are also those that favour aggregation. In the course of reviewing this field, we substantiate our hypothesis with three paradigmatic examples that argue for the generality of our proposal. An obvious corollary of this hypothesis is, of course, that targeting the physiological partners of a protein could be the most direct and specific approach to designing anti-aggregation molecules. Our analysis may thus inform a different strategy for combating diseases of protein aggregation and misfolding.
Collapse
Affiliation(s)
- Piero Andrea Temussi
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Charles Darwin Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| |
Collapse
|
16
|
Celia's Encephalopathy ( BSCL2-Gene-Related): Current Understanding. J Clin Med 2021; 10:jcm10071435. [PMID: 33916074 PMCID: PMC8037292 DOI: 10.3390/jcm10071435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Seipin, encoded by the BSCL2 gene, is a protein that in humans is expressed mainly in the central nervous system. Uniquely, certain variants in BSCL2 can cause both generalized congenital lipodystrophy type 2, upper and/or lower motor neuron diseases, or progressive encephalopathy, with a poor prognosis during childhood. The latter, Celia's encephalopathy, which may or may not be associated with generalized lipodystrophy, is caused by the c.985C >T variant. This cytosine to thymine transition creates a cryptic splicing zone that leads to intronization of exon 7, resulting in an aberrant form of seipin, Celia seipin. It has been proposed that the accumulation of this protein, both in the endoplasmic reticulum and in the nucleus of neurons, might be the pathogenetic mechanism of this neurodegenerative condition. In recent years, other variants in BSCL2 associated with generalized lipodystrophy and progressive epileptic encephalopathy have been reported. Interestingly, most of these variants could also lead to the loss of exon 7. In this review, we analyzed the molecular bases of Celia's encephalopathy and its pathogenic mechanisms, the clinical features of the different variants, and a therapeutic approach in order to slow down the progression of this fatal neurological disorder.
Collapse
|
17
|
Neuroinflammation in Prion Disease. Int J Mol Sci 2021; 22:ijms22042196. [PMID: 33672129 PMCID: PMC7926464 DOI: 10.3390/ijms22042196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation, typically manifest as microglial activation and astrogliosis accompanied by transcriptomic alterations, represents a common hallmark of various neurodegenerative conditions including prion diseases. Microglia play an overall neuroprotective role in prion disease, whereas reactive astrocytes with aberrant phenotypes propagate prions and contribute to prion-induced neurodegeneration. The existence of heterogeneous subpopulations and dual functions of microglia and astrocytes in prion disease make them potential targets for therapeutic intervention. A variety of neuroinflammation-related molecules are involved in prion pathogenesis. Therapeutics targeting neuroinflammation represents a novel approach to combat prion disease. Deciphering neuroinflammation in prion disease will deepen our understanding of pathogenesis of other neurodegenerative disorders.
Collapse
|
18
|
Henzi A, Aguzzi A. The prion protein is not required for peripheral nerve de- and remyelination after crush injury. PLoS One 2021; 16:e0245944. [PMID: 33481951 PMCID: PMC7822300 DOI: 10.1371/journal.pone.0245944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrP) is essential to the long-term maintenance of myelin sheaths in peripheral nerves. PrP activates the adhesion G-protein coupled receptor Adgrg6 on Schwann cells and initiates a pro-myelination cascade of molecular signals. Because Adgrg6 is crucial for peripheral myelin development and regeneration after nerve injury, we investigated the role of PrP in peripheral nerve repair. We performed experimental sciatic nerve crush injuries in co-isogenic wild-type and PrP-deficient mice, and examined peripheral nerve repair processes. Generation of repair Schwann cells, macrophage recruitment and remyelination were similar in PrP-deficient and wild-type mice. We conclude that PrP is dispensable for sciatic nerve de- and remyelination after crush injury. Adgrg6 may sustain its function in peripheral nerve repair independently of its activation by PrP.
Collapse
Affiliation(s)
- Anna Henzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|