1
|
Iwata R, Casimir P, Erkol E, Boubakar L, Planque M, Gallego López IM, Ditkowska M, Gaspariunaite V, Beckers S, Remans D, Vints K, Vandekeere A, Poovathingal S, Bird M, Vlaeminck I, Creemers E, Wierda K, Corthout N, Vermeersch P, Carpentier S, Davie K, Mazzone M, Gounko NV, Aerts S, Ghesquière B, Fendt SM, Vanderhaeghen P. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 2023; 379:eabn4705. [PMID: 36705539 DOI: 10.1126/science.abn4705] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal development in the human cerebral cortex is considerably prolonged compared with that of other mammals. We explored whether mitochondria influence the species-specific timing of cortical neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and cell resolution, we found a slower mitochondria development in human cortical neurons compared with that in the mouse, together with lower mitochondria metabolic activity, particularly that of oxidative phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated development in vitro and in vivo, leading to maturation of cells weeks ahead of time, whereas its inhibition in mouse neurons led to decreased rates of maturation. Mitochondria are thus important regulators of the pace of neuronal development underlying human-specific brain neoteny.
Collapse
Affiliation(s)
- Ryohei Iwata
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Pierre Casimir
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Leïla Boubakar
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| | - Isabel M Gallego López
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Martyna Ditkowska
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Daan Remans
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Katlijn Vints
- KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, 3000 Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| | | | - Matthew Bird
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Eline Creemers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Pieter Vermeersch
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium, and Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sébastien Carpentier
- SYBIOMA, KU Leuven Center for SYstems BIOlogy based MAss spectrometry, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Natalia V Gounko
- KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, KU Leuven, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.,Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| |
Collapse
|
2
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
3
|
Herrera CL, Bowman ME, McIntire DD, Nelson DB, Smith R. Revisiting the placental clock: Early corticotrophin-releasing hormone rise in recurrent preterm birth. PLoS One 2021; 16:e0257422. [PMID: 34529698 PMCID: PMC8445461 DOI: 10.1371/journal.pone.0257422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To determine if maternal plasma CRH and preterm birth history were associated with recurrent preterm birth risk in a high-risk cohort. Study design Secondary analysis of pregnant women with a prior preterm birth ≤35 weeks receiving 17-alpha hydroxyprogesterone caproate for the prevention of recurrent spontaneous preterm birth. All women with a 24-week blood sample were included. Maternal plasma CRH level at 24- and 32-weeks’ gestation was measured using both enzyme-linked immunosorbent assay (ELISA) and extracted radioimmunoassay (RIA) technologies. The primary outcome was spontaneous preterm birth <37 weeks. The association of CRH, prior preterm birth history, and the two combined was assessed in relation to recurrent preterm birth risk. Results Recurrent preterm birth in this cohort of 169 women was 24.9%. Comparing women who subsequently delivered <37 versus ≥37 weeks, mean levels of CRH measured by RIA were significantly different at 24 weeks (111.1±87.5 vs. 66.1±45.4 pg/mL, P = .002) and 32 weeks (440.9±275.6 vs. 280.2±214.5 pg/mL, P = .003). The area under the receiver operating curve (AUC) at 24 and 32 weeks for (1) CRH level was 0.68 (95% CI 0.59–0.78) and 0.70 (95% CI 0.59–0.81), (2) prior preterm birth history was 0.75 (95% CI 0.67–0.83) and 0.78 (95% CI 0.69–0.87), and (3) combined was 0.81 (95% CI 0.73–0.88, P = .001) and 0.81 (95% CI 0.72–0.90, P = .01) respectively for delivery <37 weeks. CRH measured by ELISA failed to correlate with gestational age or other clinical parameters. Conclusion In women with a prior preterm birth, CRH levels were higher and had an earlier rise in women who experienced recurrent preterm birth. Second trimester CRH may be useful in identifying a sub-group of women with preterm birth due to early activation of the placenta-fetal adrenal axis. Assay methodology is a variable that contributes to difficulties in reproducibility of CRH levels in the obstetric literature.
Collapse
Affiliation(s)
- Christina L. Herrera
- Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Maria E. Bowman
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Donald D. McIntire
- Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David B. Nelson
- Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|