1
|
Lee TH, Balcik M, Ali Z, Joo T, Rivera MP, Pinnau I, Smith ZP. Microporous polyimine membranes for efficient separation of liquid hydrocarbon mixtures. Science 2025; 388:839-844. [PMID: 40403073 DOI: 10.1126/science.adv6886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/27/2025] [Indexed: 05/24/2025]
Abstract
Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation. The design strategies include (i) changing the linkage from amide to imine and (ii) subsequent introduction of shape-persistent units such as triptycene and spirobifluorene. The prepared polyimine membranes exhibit ultrahigh microporosity and enhanced swelling and plasticization resistance compared with conventional polyamide counterparts. These membranes, which feature fast and selective transport of hydrocarbons, including multicomponent and industrially relevant mixtures, outperform commercial and state-of-the-art benchmark membranes.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Future Energy Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zain Ali
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Osmoflo Water Management Pty Ltd., Burton, SA, Australia
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew P Rivera
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Lu Y, Deng H, Zhang L, Wang Y, Zhang S. Shape-Selective Molecular Separations Enabled by Rigid and Interconnected Confinements Engineered in Conjugated Microporous Polymer Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416266. [PMID: 40245263 DOI: 10.1002/advs.202416266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/01/2025] [Indexed: 04/19/2025]
Abstract
Separating molecules with similar sizes but different shapes is essential yet challenging. Here, conjugated microporous polymer (CMP) membranes with narrowly distributed network pores are prepared by diffusion-modulated electropolymerization. This approach precisely controls the monomer diffusion and coupling processes, regulating the crosslinking degree to prevent broad aggregate pores and microporous defects. By altering carbazole-based backbones, pore size and pore connectivity are adjusted. The rigid and interconnected confinements restrict molecular rotation and vibration, enforcing consistent shapes and orientations. This enables the separation of solute molecules (≈1000 g mol-1) with linear and bulky shapes, achieving separation factors of up to 134. When pore size is reduced to angstrom scale (≈5 Å), molecular shape significantly influences organic liquid transport. The CMP membranes demonstrate all-liquid phase separation of linear/branched alkane isomers (<100 g mol-1), enriching hexane to 63.35 mole% from equimolar isomer mixture and achieving permeance orders of magnitude higher than those of state-of-the-art membranes.
Collapse
Affiliation(s)
- Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Energy and Environment, Southeast University, No. 2 Sipailou, Nanjing, 210096, P. R. China
- Cambridge Centre for Advanced Research in Energy Efficiency in Singapore, 1 Create Way, Singapore, 138602, Singapore
| | - Hao Deng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liling Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Yong Wang
- School of Energy and Environment, Southeast University, No. 2 Sipailou, Nanjing, 210096, P. R. China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Cambridge Centre for Advanced Research in Energy Efficiency in Singapore, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
3
|
Shi X, Li H, Chen T, Ren J, Zhao W, Patra BC, Kang C, Zhang Z, Zhao D. Precise Separation of Complex Ultrafine Molecules through Solvating Two-Dimensional Covalent Organic Framework Membranes. Angew Chem Int Ed Engl 2025; 64:e202421661. [PMID: 39623892 DOI: 10.1002/anie.202421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Isoporous nanomaterials, with their proven potential for accurate molecular sieving, are of substantial interest in propelling sustainable membrane techniques. Covalent organic frameworks (COFs) are prominent due to their customizable isopores and chemistry. Still, the discrepancy in experimental and theoretical structures poses a challenge to developing COF membranes for molecular separations. Here, we report high-selectivity sieving of complex ultrafine molecules through solvating pore-to-pore-aligned two-dimensional COF membranes. Our structurally oriented membrane shows reversible interlayer expansion with intralayer shift in response to solvent exposure. This dynamic deformation induced by solvents leads to a reduction in the aperture of the membrane's sieving pores, which correlates with the number of COF layers. The resultant membranes yield largely improved molecular selectivity to discriminate binary and trinary complex mixtures, exceeding the conventional COF membranes. The membrane's robustness against solvents and physical aging permits extremely stable microporosity and reliable operation for over 3000 h. This exceptional performance positions our membrane as an alternative to enriching and purifying value-added chemicals, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Bidhan Chandra Patra
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
4
|
Fang F, Liu P, Lin W, Alimi LO, Moosa B, Maltseva E, Khashab NM. Supramolecular Interfacial Assembly: Integrating Supramolecular Hosts into Polymeric Membranes through an Aqueous Interface. Angew Chem Int Ed Engl 2025; 64:e202416050. [PMID: 39382223 DOI: 10.1002/anie.202416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Efficient incorporation of macrocycles in polymeric membranes can impart the overall matrix with new properties for a range of cutting-edge applications. Here, we introduce a Supramolecular Interfacial Assembly (SIA) method for the fabrication of polymeric membranes featuring embedded macrocycles. Through harnessing the quasi-liquid nature of the concentrated polymer solution, SIA orchestrates the homogeneous spreading of macrocycles in an aqueous layer on its surface, leading to the creation of an interface between "water/water" phases, subsequently forming a cross-linked membrane driven by supramolecular electrostatic interactions. Remarkably, compared to the traditional interfacial polymerization, SIA adheres to a "green" paradigm without the need for organic solvents. The resultant composite membrane exhibits superior performance in organic solvent nanofiltration (OSN), owing to the precise molecular sieving property provided by the macrocycles with well-defined permanent cavities. This fabrication method holds great promise for the innovative design and production of composite membranes that seamlessly integrates macrocycles with conventional polymers, which can greatly impact the design and preparation of advanced membrane materials in the future.
Collapse
Affiliation(s)
- Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elizaveta Maltseva
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Ren Y, Ma H, Kim J, Al Otmi M, Lin P, Dai C, Lee YJ, Zhai Z, Jang WJ, Yang S, Sarswat A, Feliachi Y, Sampath J, Realff MJ, Lively RP, Guo S. Fluorine-rich poly(arylene amine) membranes for the separation of liquid aliphatic compounds. Science 2025; 387:208-214. [PMID: 39787241 DOI: 10.1126/science.adp2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques. These materials exhibit good separation of liquid-phase alkane isomers at ambient temperatures. The integration of these polymeric membranes into fuel and chemical feedstock separation processes was investigated in a series of experiments. Technoeconomic analyses based on these experiments indicate that the best-performing membrane materials can substantially reduce the energy costs and associated carbon emissions of hydrocarbon separations (two to 10 times, depending on product specifications).
Collapse
Affiliation(s)
- Yi Ren
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jinsu Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Petrochemical Materials, Chonnam National University, Yeosu-si, Republic of Korea
| | - Mohammed Al Otmi
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Ping Lin
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Changhui Dai
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Young Joo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zihan Zhai
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Woo Jin Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shijie Yang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Akriti Sarswat
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yacine Feliachi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew J Realff
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ryan P Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sheng Guo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Górecki R, Bhaumik S, Qasem E, Loiola L, Emwas AH, Ntetsikas K, Hadjichristidis N, Nunes SP. Well-Defined Block Copolymer Vitrimer Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409139. [PMID: 39593261 DOI: 10.1002/smll.202409139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Indexed: 11/28/2024]
Abstract
A well-defined α,ω-dialdehyde polyisoprene-b-polystyrene block copolymer, synthesized using anionic polymerization high-vacuum techniques, is employed to prepare vitrimers with tris(2-aminoethyl)amine as the cross-linking agent. The vitrimer network, featuring dynamic imine cross-links, results in robust, flexible, and solvent-resistant films, which are applicable in thin film composite membranes. These vitrimer membranes, with molecular weight cut-offs in the nanofiltration range, are successfully used for organic solvent separation and evaluated for gas separation. The cross-linking density, controlled by the cross-linker, affects the material's gas permeability and affinity for CO₂. The dynamic nature of the imine cross-links enables the vitrimer's self-healing ability, activated by heat treatment at temperatures as low as 50 °C. Additionally, the vitrimer membranes can be reprocessed through solvent dissolution in the presence of the excess cross-linking agent.
Collapse
Affiliation(s)
- Radosław Górecki
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eyad Qasem
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Research & Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia
| | - Livia Loiola
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suzana P Nunes
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Nebesskaya A, Kanateva A, Borisov R, Yushkin A, Volkov V, Volkov A. Polyacrylonitrile Ultrafiltration Membrane for Separation of Used Engine Oil. Polymers (Basel) 2024; 16:2910. [PMID: 39458738 PMCID: PMC11511134 DOI: 10.3390/polym16202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The separation of used engine oil (UEO) with an ultrafiltration (UF) membrane made of commercial copolymer of poly(acrylonitrile-co-methyl acrylate) (P(AN-co-MA)) has been investigated. The P(AN-co-MA) sample was characterized by using FTIR spectroscopy, 13C NMR spectroscopy, and XRD. The UF membrane with a mean pore size of 23 nm was fabricated by using of non-solvent-induced phase separation method-the casting solution of 13 wt.% P(AN-co-MA) in dimethylsulfoxide (DMSO) was precipitated in the water bath. Before the experiment, the used engine oil was diluted with toluene, and the resulting UEO solution in toluene (100 g/L) was filtered through the UF membrane in the dead-end filtration mode. Special attention was given to the evaluation of membrane fouling; for instance, the permeability of UEO solution was dropped from its initial value of 2.90 L/(m2·h·bar) and then leveled off at 0.75 L/(m2·h·bar). However, the membrane cleaning (washing with toluene) allowed a recovery of 79% of the initial pure toluene flux (flux recovery ratio), indicating quite attractive membrane resistance toward irreversible fouling with engine oil components. The analysis of the feed, retentate, and permeate by various analytical methods showed that the filtration through the UF membrane made of P(AN-co-MA) provided the removal of major contaminants of used engine oil including polymerization products and metals (rejection-96.3%).
Collapse
Affiliation(s)
- Alexandra Nebesskaya
- Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia; (A.K.); (R.B.); (V.V.); (A.V.)
| | | | | | - Alexey Yushkin
- Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia; (A.K.); (R.B.); (V.V.); (A.V.)
| | | | | |
Collapse
|
8
|
Lee TH, Balcik M, Wu WN, Pinnau I, Smith ZP. Dual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separation. SCIENCE ADVANCES 2024; 10:eadp6666. [PMID: 39141741 PMCID: PMC11323956 DOI: 10.1126/sciadv.adp6666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (~20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (~640 g mol-1) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Ma L, Hou M, Wang Y, Tong W, Zheng J. Organosiloxane membranes for heavy aromatic oil fractionation. Chem Commun (Camb) 2024; 60:8083-8086. [PMID: 38990518 DOI: 10.1039/d4cc02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The industrial separation of hydrocarbons relies on distillation. Organic solvent nanofiltration can provide an energy-efficient alternative. We prepared high performance organosiloxane membranes for fractionation of heavy aromatics. They achieved a high permeance up to 0.13 L m-2 h-1 bar-1, with a rejection rate of 88.7% for hydrocarbons with five aromatic rings.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Min Hou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Yuemei Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Weiyi Tong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Junlin Zheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| |
Collapse
|
10
|
Burke DW, Jiang Z, Livingston AG, Dichtel WR. 2D Covalent Organic Framework Membranes for Liquid-Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300525. [PMID: 37014260 DOI: 10.1002/adma.202300525] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.
Collapse
Affiliation(s)
- David W Burke
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Jiang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Department of Membrane Research, Exactmer Limited, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, RM10 7FN, UK
| | - Andrew G Livingston
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
11
|
Ghaffar A, Hassan M, Penkov OV, Yavuz CT, Celebi K. Tunable Molecular Sieving by Hierarchically Assembled Porous Organic Cage Membranes with Solvent-Responsive Switchable Pores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20380-20391. [PMID: 37965815 DOI: 10.1021/acs.est.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Molecular separations involving solvents and organic impurities represent great challenges for environmental and water-intensive industries. Novel materials with intrinsic nanoscale pores offer a great choice for improvement in terms of energy efficiency and capital costs. Particularly, in applications where gradient and ordered separation of organic contaminants remain elusive, smart materials with switchable pores can offer efficient solutions. Here, we report a hierarchically networked porous organic cage membrane with dynamic control over pores, elucidating stable solvent permeance and tunable dye rejection over different molecular weights. The engineered cage membrane can spontaneously modulate its geometry and pore size from water to methanol and DMF in a reversible manner. The cage membrane exhibits ≥585.59 g mol-1 molecular weight cutoff preferentially in water and is impeded by methanol (799.8 g mol-1) and DMF (≈1017 g mol-1), reflecting 36 and 73% change in rejection due to self-regulation and the flexible network, respectively. Grazing incidence X-ray diffraction illustrates a clear peak downshift, suggesting an intrinsic structural change when the cage membranes were immersed in methanol or DMF. We have observed reversible structural changes that can also be tuned by preparing a methanol/DMF mixture and adjusting their ratio, thereby enabling gradient molecular filtration. We anticipate that such cage membranes with dynamic selectivity could be promising particularly for industrial separations and wastewater treatment.
Collapse
Affiliation(s)
- Abdul Ghaffar
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Muhammad Hassan
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Oleksiy V Penkov
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Cafer T Yavuz
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kemal Celebi
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Bruno NC, Mathias R, Lee YJ, Zhu G, Ahn YH, Rangnekar ND, Johnson JR, Hoy S, Bechis I, Tarzia A, Jelfs KE, McCool BA, Lively R, Finn MG. Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations. NATURE MATERIALS 2023:10.1038/s41563-023-01682-2. [PMID: 37845319 DOI: 10.1038/s41563-023-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The thermal distillation of crude oil mixtures is an energy-intensive process, accounting for nearly 1% of global energy consumption. Membrane-based separations are an appealing alternative or tandem process to distillation due to intrinsic energy efficiency advantages. We developed a family of spirocyclic polytriazoles from structurally diverse monomers for membrane applications. The resulting polymers were prepared by a convenient step-growth method using copper-catalysed azide-alkyne cycloaddition, providing very fast reaction rates, high molecular weights and solubilities in common organic solvents and non-interconnected microporosity. Fractionation of whole Arabian light crude oil and atmospheric tower bottom feeds using these materials enriched the low-boiling-point components and removed trace heteroatom and metal impurities (comparable performance with the lighter feed as the commercial polyimide, Matrimid), demonstrating opportunities to reduce the energy cost of crude oil distillation with tandem membrane processes. Membrane-based molecular separation under these demanding conditions is made possible by high thermal stability and a moderate level of dynamic chain mobility, leading to transient interconnections between micropores, as revealed by the calculations of static and swollen pore structures.
Collapse
Affiliation(s)
- Nicholas C Bruno
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ronita Mathias
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Young Joo Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Guanghui Zhu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yun-Ho Ahn
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Neel D Rangnekar
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ, USA
| | - J R Johnson
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ, USA
| | - Scott Hoy
- Analytical Sciences Laboratory, ExxonMobil Research and Engineering, Annandale, NJ, USA
| | - Irene Bechis
- Department of Chemistry, Imperial College London, London, UK
| | - Andrew Tarzia
- Department of Chemistry, Imperial College London, London, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, London, UK
| | - Benjamin A McCool
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ, USA
| | - Ryan Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Wang H, Wang F, Li Z, Zheng Y, Gu T, Zhang R, Jiang Z. In situ reaction enabled surface segregation toward dual-heterogeneous antifouling membranes for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132425. [PMID: 37647665 DOI: 10.1016/j.jhazmat.2023.132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Fabricating membranes with superior antifouling property and long-term high performance is in great demand for efficient oil-water separation. Herein, we reported a reaction enabled surface segregation method for antifouling membrane fabrication, in which the pre-synthesized fluorinated ternary copolymer Pluronic F127 was coordinated with Ti4+ as segregation additive in the membrane casting bath. Additionally, tannic acid was utilized to enhance the self-assembly of the copolymer in the coagulation bath, and freshly-biomineralized TiO2 was anchored into the membrane surface through hydrogen bond. A hydrogel layer was constructed onto the membrane surface with synergistically tailored heterogeneous chemical composition and heterogeneous geometrical roughness. The dual-heterogeneous membrane exhibited hydrophilic and underwater superoleophobic features, resulting in high water flux (621.7 L m-2 h-1) at low operation pressure of 0.05 MPa and an excellent antifouling property (only 4.8% flux decline during 24-hour filtration). In situ reaction enabled surface segregation method will accelerate the development of antifouling membranes for oil-in-water emulsion separation.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Fei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhichao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianrun Gu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Runnan Zhang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Zhongyi Jiang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China; Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
14
|
Yushkin AA, Balynin AV, Nebesskaya AP, Chernikova EV, Muratov DG, Efimov MN, Karpacheva GP. Acrylonitrile-Acrylic Acid Copolymer Ultrafiltration Membranes for Selective Asphaltene Removal from Crude Oil. MEMBRANES 2023; 13:775. [PMID: 37755197 PMCID: PMC10538228 DOI: 10.3390/membranes13090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32-55 nm demonstrated a pure toluene permeance of 84.8-130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33-95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile-acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil.
Collapse
Affiliation(s)
- Alexey A. Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexey V. Balynin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexandra P. Nebesskaya
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
- Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Dmitriy G. Muratov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Mikhail N. Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Galina P. Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| |
Collapse
|
15
|
Lin Z, Zhong J, Sun R, Wei Y, Sun Z, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302654. [PMID: 37381631 PMCID: PMC10477839 DOI: 10.1002/advs.202302654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jundong Zhong
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Runyin Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yingzhen Wei
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Liyuan Chen
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
16
|
Lee YJ, Chen L, Nistane J, Jang HY, Weber DJ, Scott JK, Rangnekar ND, Marshall BD, Li W, Johnson JR, Bruno NC, Finn MG, Ramprasad R, Lively RP. Data-driven predictions of complex organic mixture permeation in polymer membranes. Nat Commun 2023; 14:4931. [PMID: 37582784 PMCID: PMC10427679 DOI: 10.1038/s41467-023-40257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures.
Collapse
Affiliation(s)
- Young Joo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lihua Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Janhavi Nistane
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hye Youn Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dylan J Weber
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joseph K Scott
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Neel D Rangnekar
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Bennett D Marshall
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Wenjun Li
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - J R Johnson
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Nicholas C Bruno
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Ryan P Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
17
|
Huang X, Huang J, Su P, Li W. Fast Blood Oxygenation through Hemocompatible Asymmetric Polymer of Intrinsic Microporosity Membranes. RESEARCH (WASHINGTON, D.C.) 2023; 6:0151. [PMID: 37214199 PMCID: PMC10195972 DOI: 10.34133/research.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Membrane technology has attracted considerable attention for chemical and medical applications, among others. Artificial organs play important roles in medical science. A membrane oxygenator, also known as artificial lung, can replenish O2 and remove CO2 of blood to maintain the metabolism of patients with cardiopulmonary failure. However, the membrane, a key component, is subjected to inferior gas transport property, leakage propensity, and insufficient hemocompatibility. In this study, we report efficient blood oxygenation by using an asymmetric nanoporous membrane that is fabricated using the classic nonsolvent-induced phase separation method for polymer of intrinsic microporosity-1. The intrinsic superhydrophobic nanopores and asymmetric configuration endow the membrane with water impermeability and gas ultrapermeability, up to 3,500 and 1,100 gas permeation units for CO2 and O2, respectively. Moreover, the rational hydrophobic-hydrophilic nature, electronegativity, and smoothness of the surface enable the substantially restricted protein adsorption, platelet adhesion and activation, hemolysis, and thrombosis for the membrane. Importantly, during blood oxygenation, the asymmetric nanoporous membrane shows no thrombus formation and plasma leakage and exhibits fast O2 and CO2 transport processes with exchange rates of 20 to 60 and 100 to 350 ml m-2 min-1, respectively, which are 2 to 6 times higher than those of conventional membranes. The concepts reported here offer an alternative route to fabricate high-performance membranes and expand the possibilities of nanoporous materials for membrane-based artificial organs.
Collapse
Affiliation(s)
| | | | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
18
|
Zhao LL, Cao XL, Luo C, Wang Q, Lu TD, Tang MJ, Sun SP, Xing W. Locking Patterned Carbon Nanotube Cages by Nanofibrous Mats to Construct Cucurbituril[n]-Based Ultrapermselective Dye/Salt Separation Membranes. NANO LETTERS 2023; 23:4167-4175. [PMID: 37155570 DOI: 10.1021/acs.nanolett.2c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.
Collapse
Affiliation(s)
- Liu-Lin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cong Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Dan Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
19
|
Ma B, Ulbricht M, Hu C, Fan H, Wang X, Pan YR, Hosseini SS, Panglisch S, Van der Bruggen B, Wang Z. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3013-3020. [PMID: 36786864 DOI: 10.1021/acs.est.2c09257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi-Rong Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering/Water Technology, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
20
|
Li S, Zhang K, Liu C, Feng X, Wang P, Wang S. Nanohybrid Pebax/PEGDA-GPTMS membrane with semi-interpenetrating network structure for enhanced CO2 separations. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
21
|
Han L, Shen L, Lin H, Huang Z, Xu Y, Li R, Li B, Chen C, Yu W, Teng J. 3D printing titanium dioxide-acrylonitrile-butadiene-styrene (TiO 2-ABS) composite membrane for efficient oil/water separation. CHEMOSPHERE 2023; 315:137791. [PMID: 36623602 DOI: 10.1016/j.chemosphere.2023.137791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The oily water treatment is becoming one of the hottest topics due to that increase of offshore oil transportation and the various accident oil leakages. In this study, a functional TiO2-ABS composite membrane was generated through the three-dimensional (3D) printing strategy for the first time and was conducted to simulated oily water treatment. The TiO2-ABS composite membrane demonstrated a significant promotion in hydrophilicity and oleophobicity which were evidenced by the water contact angle of 14.8° and the underwater oil contact angle of 144.7°, respectively. The optimal modified membrane had both exceedingly high flux (1.8 × 105 L m-2·h-1) and oil rejection rate (99.5%). Moreover, the results of filtration cycles of 10 days and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated that the modified membranes took possession of excellent stability and antifouling property. What was more, the TiO2-ABS composite membrane revealed over 99% rejection to all five types of oil/water systems. The interestingly experimental results indicated that the prepared membrane possessed a broad development trend and application prospect in the field of oily water treatment.
Collapse
Affiliation(s)
- Lei Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
22
|
Chen Q, Hong L, Jiang SK, Zhang CX, Wang S, Li WX, Sun SP, Liu ML. Bird's nest -inspired fabrication of ZIF-8 interlayer for organic solvent nanofiltration membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
23
|
Sun J, Li X, Yu K, Xu Q, Yin J. Integrated Hierarchical Inorganic Support Ionic Liquid Membrane for Scalable Utilization of CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianfei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xintong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kunpeng Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qinqin Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhong Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
24
|
Zeng H, Guo J, Zhang Y, Xing D, Yang F, Huang J, Huang S, Shao L. Green glycerol tailored composite membranes with boosted nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lin Z, Cao N, Li C, Sun R, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. Micro-nanostructure tuning of PEEK porous membrane surface based on PANI in-situ growth for antifouling ultrafiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Cyclomatrix polyphosphazene organic solvent nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Li S, Dong R, Musteata VE, Kim J, Rangnekar ND, Johnson JR, Marshall BD, Chisca S, Xu J, Hoy S, McCool BA, Nunes SP, Jiang Z, Livingston AG. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 2022; 377:1555-1561. [PMID: 36173852 DOI: 10.1126/science.abq0598] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hydrocarbon separation relies on energy-intensive distillation. Membrane technology can offer an energy-efficient alternative but requires selective differentiation of crude oil molecules with rapid liquid transport. We synthesized multiblock oligomer amines, which comprised a central amine segment with two hydrophobic oligomer blocks, and used them to fabricate hydrophobic polyamide nanofilms by interfacial polymerization from self-assembled vesicles. These polyamide nanofilms provide transport of hydrophobic liquids more than 100 times faster than that of conventional hydrophilic counterparts. In the fractionation of light crude oil, manipulation of the film thickness down to ~10 nanometers achieves permeance one order of magnitude higher than that of current state-of-the-art hydrophobic membranes while retaining comparable size- and class-based separation. This high permeance can markedly reduce plant footprint, which expands the potential for using membranes made of ultrathin nanofilms in crude oil fractionation.
Collapse
Affiliation(s)
- Siyao Li
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ruijiao Dong
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Valentina-Elena Musteata
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Jihoon Kim
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Process Design and Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Neel D Rangnekar
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - J R Johnson
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Bennett D Marshall
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Stefan Chisca
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Jia Xu
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Scott Hoy
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Benjamin A McCool
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Suzana P Nunes
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Zhiwei Jiang
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Andrew G Livingston
- Barrer Center, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
28
|
Abstract
Polymeric membranes may lower the energy requirement for oil refineries.
Collapse
Affiliation(s)
- Hyeokjun Seo
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|