1
|
Ma T, Kang X, Ngono-Ravache Y, Balme S. Modulating nanopore size and ion transport using (Anti)-Polyelectrolyte effects inspired by the nuclear pore complex. J Colloid Interface Sci 2025; 692:137520. [PMID: 40203570 DOI: 10.1016/j.jcis.2025.137520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
This study explores the modulation of nanopore size and ion transport through (anti)-polyelectrolyte effects, which is inspired by the nuclear pore complex. We aimed to control ionic selectivity and rectification by applying these effects to synthetic nanopores. Single bicylindrical nanopores were fabricated on the PET membranes and functionalized with PEI/HA or PLL/PAA polyelectrolyte layers. Varying the structural and charge characteristics under different pH levels and ionic strengths revealed that at low salt concentrations, charge density and surface charge polarity significantly impacted ion selectivity and transport. At higher concentrations, conformational changes in the polyelectrolytes influenced the conductance via volume expansion or compaction. Our findings highlight the distinct roles of charge inversion and molecular expansion in nanopore transport, which can be modulated by pH and ionic environment. This work provides insights for developing highly selective ion channels with potential applications in filtration, biosensing, and nanofluidics, where precise ion transport and selective rectification are essential.
Collapse
Affiliation(s)
- Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | | | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| |
Collapse
|
2
|
Shi K, Zhang Y, Du Z, Liu SC, Leon I, Fan X, Lee HC, Zhang D. Nucleoporins shape germ granule architecture and balance small RNA silencing pathways. Nat Commun 2025; 16:4295. [PMID: 40341687 PMCID: PMC12062238 DOI: 10.1038/s41467-025-59526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Animals use small RNA pathways, such as PIWI-interacting RNA (piRNA) and small interfering RNA (siRNA), to silence harmful genetic elements. In Caenorhabditis elegans, piRNA pathway components are organized into sub-compartments within germ granules near nuclear pore complexes, but the basis and function of this association have remained unclear. Here, our data suggest that germ granule formation and nuclear pore clustering are interdependent processes. We identify the conserved nucleoporins NPP-14/NUP214 and NPP-24/NUP88, along with the germ granule protein EPS-1, as key factors anchoring germ granules to nuclear pores. Loss of these factors leads to disorganized, fused granules and enhanced piRNA silencing. Artificial tethering of granule sub-compartments mimics this effect. However, this increase in piRNA silencing comes at the expense of RNA interference efficiency and heritability. Our findings reveal the molecular factors mediating germ granule-nuclear pore interaction and highlight how spatial organization of RNA silencing machinery fine-tunes gene regulation.
Collapse
Affiliation(s)
- Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Symonne C Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ivan Leon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Xinyu Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Yuan R, Zhang J, Zhou J, Cong Q. Recent progress and future challenges in structure-based protein-protein interaction prediction. Mol Ther 2025; 33:2252-2268. [PMID: 40195117 DOI: 10.1016/j.ymthe.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Protein-protein interactions (PPIs) play a fundamental role in cellular processes, and understanding these interactions is crucial for advances in both basic biological science and biomedical applications. This review presents an overview of recent progress in computational methods for modeling protein complexes and predicting PPIs based on 3D structures, focusing on the transformative role of artificial intelligence-based approaches. We further discuss the expanding biomedical applications of PPI research, including the elucidation of disease mechanisms, drug discovery, and therapeutic design. Despite these advances, significant challenges remain in predicting host-pathogen interactions, interactions between intrinsically disordered regions, and interactions related to immune responses. These challenges are worthwhile for future explorations and represent the frontier of research in this field.
Collapse
Affiliation(s)
- Rongqing Yuan
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Qian J, Li X, Ruan H, Du Z, Wei S, Sun Y. Design and development of drug delivery nanocarriers based on liquid-liquid phase separation, improved stability, cell-penetration and anti-cancer effect. Int J Biol Macromol 2025; 307:142023. [PMID: 40086555 DOI: 10.1016/j.ijbiomac.2025.142023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Liquid-liquid phase separation (LLPS) of nuclear pore complex (NPC) with nuclear transport proteins (NTPs) via intrinsically disordered regions (IDRs) plays a crucial role in the nucleocytoplasmic transport. The development of efficient targeted delivery systems based on LLPS has attracted widespread attention. Here, we developed nanocarriers of casein peptides, a natural intrinsically disordered proteins (IDPs), modified with fatty acids of different alkyl chains (C10-C18) and decorated by shellac for highly effective drug delivery and cancer therapy. The curcumin (Cur)-loading nanocarriers (CSLNCs) showed excellent stability and dispersity in the natural environment over 30 days, with Cur encapsulation efficiency and loading capacity of ~90 % and ~57 %. Electron microscope (EM) indicated an aggregated homogeneous elliptical shape of CSLNCs(C10) and the morphology of CSLNCs(C18) transited to a distributed cubic shape. CSLNCs(C10, C12, C14 and C18) exhibited cytotoxicity against human lung adenocarcinoma NCI-H1975 cells with an IC50 value of 17.5 μM, 17.3 μM, 10.2 μM and 19.3 μM after 24 h of incubation, respectively. CSLNCs were also found to inhibit the cell wound healing with a migration rate of 12.72 %, 10.93 %, 4.28 % and 13.62 %, respectively. CSLNCs especially increased the percentage of late apoptotic cells. As indications of confocal microscopy, the fluorescence intensities of NCI-H1975 cells were enhanced with a cytosolic distribution and noticeably florescence in the nucleus after 0.5 h of incubation CSLNCs. CSLNCs treated cells adopted a rounded morphology with a dramatic reduction in fluorescence intensity after 1 h of incubation. Among CSLNCs, CSLNCs(C14) improved considerably the cytotoxicity activity and intercellular localization in the nucleus. The cell-penetration ability was also confirmed by the binding of CSLNCs in a model bicelles membrane system composed of DMPC and DHPC investigated by 1H NMR. It was proposed that CSLNCs with cell-penetrating and nuclear targeting performance may regulate the LLPS of nuclear pore complex and thus improved its nuclear penetration and cytotoxic activity.
Collapse
Affiliation(s)
- Jingya Qian
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Hefei Ruan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhongyao Du
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China.
| | - Yang Sun
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Asakawa H, Nagao K, Fukagawa T, Obuse C, Hiraoka Y, Haraguchi T. Interaction mapping between nucleoporins in the fission yeast Schizosaccharomyces pombe using mass-spectrometry. J Biochem 2025; 177:273-286. [PMID: 39727334 DOI: 10.1093/jb/mvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Nuclear pore complexes (NPCs) act as gateways across the nuclear envelope for molecular transport between the nucleus and the cytoplasm in eukaryotes. NPCs consist of several subcomplexes formed by multiple copies of approximately 30 different proteins known as nucleoporins (Nups). In the fission yeast Schizosaccharomyces pombe, the NPC structure is unique, particularly in its outer ring subcomplexes, where the cytoplasmic and nucleoplasmic outer rings are composed of distinct sets of proteins. However, it remains unclear how this unique outer ring structure in S. pombe is supported by interactions between subcomplexes or individual Nups. In this study, we investigated protein-protein interactions between S. pombe Nups using mass spectrometry and identified Nups that interact with each subcomplex or a specific Nup. The cytoplasmic outer ring Nups bind to both the cytoplasmic filament Nups and the inner ring Nups, while the nucleoplasmic outer ring Nups bind to the nuclear basket Nups in addition to the inner ring Nups. Among the inner ring Nups, Nup155 interacts with most of the cytoplasmic and nucleoplasmic outer ring Nups, suggesting that Nup155 may serve as a hub supporting the uniquely asymmetric outer ring structure of the S. pombe NPC.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Koji Nagao
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Chikashi Obuse
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
6
|
Matsuda A, Mofrad MRK. Role of pore dilation in molecular transport through the nuclear pore complex: Insights from polymer scaling theory. PLoS Comput Biol 2025; 21:e1012909. [PMID: 40193850 PMCID: PMC11975386 DOI: 10.1371/journal.pcbi.1012909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The nuclear pore complex (NPC), a channel within the nuclear envelope filled with intrinsically disordered proteins, regulates the transport of macromolecules between the nucleus and the cytoplasm. Recent studies have highlighted the NPC's ability to adjust its diameter in response to the membrane tension, underscoring the importance of exploring how variations in pore size influence molecular transport through the NPC. In this study, we investigated the relationship between pore size and transport rate and proposed a mathematical model describing this connection. We began by theoretically analyzing how the pore size scales with the characteristic dimensions of the mesh-like structure within the pore. By introducing key assumptions about how the meshwork structure influences molecular diffusion, we derived a mathematical expression for the transport rate based on the size of the pore and the transported molecules. To validate our model, we conducted Brownian dynamics simulations using a coarse-grained representation of the NPC. These simulations, performed across a range of pore sizes, demonstrated strong agreement with our model's predictions, confirming its accuracy and applicability. Our model is specifically tailored for small-to-medium-sized molecules, approximately 5 nanometers in size, making it relevant to a wide range of transcription factors and signaling molecules. It also extends to molecules with weak and transient interactions with FG-Nups, such as importin-β. By presenting this model formula, our study offers a quantitative framework for analyzing the effects of pore dilation on nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, United States of America
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
7
|
Rennie ML, Oliver MR. Emerging frontiers in protein structure prediction following the AlphaFold revolution. J R Soc Interface 2025; 22:20240886. [PMID: 40233800 PMCID: PMC11999738 DOI: 10.1098/rsif.2024.0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Models of protein structures enable molecular understanding of biological processes. Current protein structure prediction tools lie at the interface of biology, chemistry and computer science. Millions of protein structure models have been generated in a very short space of time through a revolution in protein structure prediction driven by deep learning, led by AlphaFold. This has provided a wealth of new structural information. Interpreting these predictions is critical to determining where and when this information is useful. But proteins are not static nor do they act alone, and structures of proteins interacting with other proteins and other biomolecules are critical to a complete understanding of their biological function at the molecular level. This review focuses on the application of state-of-the-art protein structure prediction to these advanced applications. We also suggest a set of guidelines for reporting AlphaFold predictions.
Collapse
|
8
|
Zhozhikov L, Vasilev F, Maksimova N. Protein-Variant-Phenotype Study of NBAS Using AlphaFold in the Aspect of SOPH Syndrome. Proteins 2025; 93:871-884. [PMID: 39641476 DOI: 10.1002/prot.26764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
NBAS gene variants cause phenotypically distinct and nonoverlapping conditions, SOPH syndrome and ILFS2. NBAS is a so-called "moonlighting" protein responsible for retrograde membrane trafficking and nonsense-mediated decay. However, its three-dimensional model and the nature of its possible interactions with other proteins have remained elusive. Here, we used AlphaFold to predict protein-protein interaction (PPI) sites and mapped them to NBAS pathogenic variants. We repeated in silico milestone studies of the NBAS protein to explain the multisystem phenotype of its variants, with particular emphasis on the SOPH variant (p.R1914H). We revealed the putative binding sites for the main interaction partners of NBAS and assessed the implications of these binding sites for the subdomain architecture of the NBAS protein. Using AlphaFold, we disclosed the far-reaching impact of NBAS variants on the development of each phenotypic trait in patients with NBAS-related pathologies.
Collapse
Affiliation(s)
- Leonid Zhozhikov
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, Ammosov North-Eastern Federal University, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Filipp Vasilev
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, Ammosov North-Eastern Federal University, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Nadezhda Maksimova
- Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, Ammosov North-Eastern Federal University, Yakutsk, Republic of Sakha (Yakutia), Russia
| |
Collapse
|
9
|
Latham AP, Zhang W, Tempkin JOB, Otsuka S, Ellenberg J, Sali A. Integrative spatiotemporal modeling of biomolecular processes: Application to the assembly of the nuclear pore complex. Proc Natl Acad Sci U S A 2025; 122:e2415674122. [PMID: 40085653 PMCID: PMC11929490 DOI: 10.1073/pnas.2415674122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Dynamic processes involving biomolecules are essential for the function of the cell. Here, we introduce an integrative method for computing models of these processes based on multiple heterogeneous sources of information, including time-resolved experimental data and physical models of dynamic processes. First, for each time point, a set of coarse models of compositional and structural heterogeneity is computed (heterogeneity models). Second, for each heterogeneity model, a set of static integrative structure models is computed (a snapshot model). Finally, these snapshot models are selected and connected into a series of trajectories that optimize the likelihood of both the snapshot models and transitions between them (a trajectory model). The method is demonstrated by application to the assembly process of the human nuclear pore complex in the context of the reforming nuclear envelope during mitotic cell division, based on live-cell correlated electron tomography, bulk fluorescence correlation spectroscopy-calibrated quantitative live imaging, and a structural model of the fully assembled nuclear pore complex. Modeling of the assembly process improves the model precision over static integrative structure modeling alone. The method is applicable to a wide range of time-dependent systems in cell biology and is available to the broader scientific community through an implementation in the open source Integrative Modeling Platform (IMP) software.
Collapse
Affiliation(s)
- Andrew P. Latham
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Jeremy O. B. Tempkin
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| | - Shotaro Otsuka
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| |
Collapse
|
10
|
Ali A, Gaba L, Jetley S, Khan IA, Prakash P. Neutrophil elastase binds at the central domain of extracellular Toll-like receptor 4: AI prediction, docking, and validation in disease model. Sci Rep 2025; 15:9282. [PMID: 40102529 PMCID: PMC11920248 DOI: 10.1038/s41598-025-93511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The interaction between Neutrophil Elastase (NE) and Toll-like receptor 4 (TLR4) has attracted substantial scientific attention, particularly regarding its potential role in cardiovascular diseases. Employing AlphaFold2, biomolecular docking, and MMGBSA calculation we aimed to predict their binding and validated the results through a co-immunoprecipitation study in a rat model with isoproterenol (ISO) -induced cardiac hypertrophy. Our findings strongly suggest a specific and plausible interaction between rat NE and rat TLR4, distinct from other neutrophil-derived serine proteases. Notably, AlphaFold2's precision was confirmed through cross-validation with known protein crystal structures, while Consurf analysis emphasized the evolutionary variable to conserve the rat NE - rat TLR4 binding site. HADDOCK, RosettaDock, ZDOCK, MD simulation, MMGBSA calculations, and superimposition with the stabilized structure complex all predicted strong binding between rat NE and rat TLR4. Our animal experiments revealed elevated NE and TLR4 expression in the hypertrophied myocardium following ISO infusion, with data confirming the physical interaction between NE and TLR4. Overall, this study sheds light on the intricate molecular association between NE and TLR4, underlining their potential significance in cardiovascular pathophysiology. Furthermore, it underscores AlphaFold2's reliability as a robust tool for predicting protein-protein interactions and complex structures.
Collapse
Affiliation(s)
- Azeem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi, 110062, India
| | - Leena Gaba
- Hamdard Institute of Medical Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sujata Jetley
- Hamdard Institute of Medical Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Imran A Khan
- Department of Chemistry, Jamia Hamdard, New Delhi, 110062, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi, 110062, India.
| |
Collapse
|
11
|
Pang YT, Kuo KM, Yang L, Gumbart JC. DeepPath: Overcoming data scarcity for protein transition pathway prediction using physics-based deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640693. [PMID: 40060558 PMCID: PMC11888466 DOI: 10.1101/2025.02.27.640693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The structural dynamics of proteins play a crucial role in their function, yet most experimental and deep learning methods produce only static models. While molecular dynamics (MD) simulations provide atomistic insight into conformational transitions, they remain computationally prohibitive, particularly for large-scale motions. Here, we introduce DeepPath, a deep-learning-based framework that rapidly generates physically realistic transition pathways between known protein states. Unlike conventional supervised learning approaches, DeepPath employs active learning to iteratively refine its predictions, leveraging molecular mechanical force fields as an oracle to guide pathway generation. We validated DeepPath on three biologically relevant test cases: SHP2 activation, CdiB H1 secretion, and the BAM complex lateral gate opening. DeepPath accurately predicted the transition pathways for all test cases, reproducing key intermediate structures and transient interactions observed in previous studies. Notably, DeepPath also predicted an intermediate between the BAM inward- and outward-open states that closely aligns with an experimentally observed hybrid-barrel structure (TMscore = 0.91). Across all cases, DeepPath achieved accurate pathway predictions within hours, showcasing an efficient alternative to MD simulations for exploring protein conformational transitions.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katie M Kuo
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Simpkin AJ, Elliot LG, Joseph AP, Burnley T, Stevenson K, Sánchez Rodríguez F, Fando M, Krissinel E, McNicholas S, Rigden DJ, Keegan RM. Slice'N'Dice: maximizing the value of predicted models for structural biologists. Acta Crystallogr D Struct Biol 2025; 81:105-121. [PMID: 39976565 PMCID: PMC11883665 DOI: 10.1107/s2059798325001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/08/2025] Open
Abstract
With the advent of next-generation modelling methods, such as AlphaFold2, structural biologists are increasingly using predicted structures to obtain structure solutions via molecular replacement (MR) or model fitting in single-particle cryogenic sample electron microscopy (cryoEM). Differences between the domain-domain orientations represented in a predicted model and a crystal structure are often a key limitation when using predicted models. Slice'N'Dice is a software package designed to address this issue by first slicing models into distinct structural units and then automatically placing the slices using either Phaser, MOLREP or PowerFit. The slicing step can use the AlphaFold predicted aligned error (PAE) or can operate via a variety of Cα-atom-based clustering algorithms, extending the applicability to structures of any origin. The number of splits can either be selected by the user or determined automatically. Slice'N'Dice is available for both MR and automated map fitting in the CCP4 and CCP-EM software suites.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Structural, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Luc G. Elliot
- Institute of Structural, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Agnel Praveen Joseph
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Tom Burnley
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Kyle Stevenson
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | | | - Maria Fando
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Eugene Krissinel
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Stuart McNicholas
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkUnited Kingdom
| | - Daniel J. Rigden
- Institute of Structural, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Ronan M. Keegan
- Institute of Structural, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| |
Collapse
|
13
|
Huang YJ, Ramelot TA, Spaman LE, Kobayashi N, Montelione GT. Hidden Structural States of Proteins Revealed by Conformer Selection with AlphaFold-NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.26.600902. [PMID: 38979209 PMCID: PMC11230435 DOI: 10.1101/2024.06.26.600902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We introduce AlphaFold-NMR, a novel approach to NMR structure determination that reveals previously undetected protein conformational states. Unlike conventional NMR methods that rely on NOE-derived spatial restraints, AlphaFold-NMR combines AI-driven conformational sampling with Bayesian scoring of realistic protein models against NOESY and chemical shift data. This method uncovers alternative conformational states of the enzyme Gaussia luciferase, involving large-scale changes in the lid, binding pockets, and other surface cavities. It also identifies similar yet distinct conformational states of the human tumor suppressor Cyclin-Dependent Kinase 2-Associated Protein 1. These studies demonstrate the potential of AI-based modeling with enhanced sampling to generate diverse structural models followed by conformer selection and validation with experimental data as an alternative to traditional restraint-satisfaction protocols for protein NMR structure determination. The AlphaFold-NMR framework enables discovery of conformational heterogeneity and cryptic pockets that conventional NMR analysis methods do not distinguish, providing new insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Yuanpeng J. Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Theresa A. Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Laura E. Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Naohiro Kobayashi
- NMR Science and Development Division. RSC, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, JAPAN
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| |
Collapse
|
14
|
Chen Y, Zhou G, Yu M. Conformational dynamics of the nuclear pore complex central channel. Biochem Soc Trans 2025; 53:BST20240507. [PMID: 39927798 DOI: 10.1042/bst20240507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Abstract
The nuclear pore complex (NPC) is a vital regulator of molecular transport between the nucleus and cytoplasm in eukaryotic cells. At the heart of the NPC's function are intrinsically disordered phenylalanineglycine-rich nucleoporins (FG-Nups), which form a dynamic permeability barrier within the central channel. This disordered nature facilitates efficient nucleocytoplasmic transport but also poses significant challenges to its characterization, especially within the nano-confined environment of the NPC. Recent advances in experimental techniques, such as cryo-electron microscopy, atomic force microscopy, fluorescence microscopy, and nuclear magnetic resonance, along with computational modeling, have illuminated the conformational flexibility of FG-Nups, which underpins their functional versatility. This review synthesizes these advancements, emphasizing how disruptions in FG-Nup behavior-caused by mutations or pathological interactions-contribute to diseases such as neurodegenerative disorders, aging-related decline, and viral infections. Despite progress, challenges persist in deciphering FG-Nup dynamics within the crowded and complex cellular environment, especially under pathological conditions. Addressing these gaps is critical for advancing therapeutic strategies targeting NPC dysfunction in disease progression.
Collapse
Affiliation(s)
- Yu Chen
- College of Life Sciences, Wuhan University, China
| | - Guoli Zhou
- College of Life Sciences, Wuhan University, China
| | - Miao Yu
- College of Life Sciences, Wuhan University, China
- Taikang Center for Life and Medical Sciences, Wuhan University, China
| |
Collapse
|
15
|
Hoffmann PC, Kim H, Obarska-Kosinska A, Kreysing JP, Andino-Frydman E, Cruz-León S, Margiotta E, Cernikova L, Kosinski J, Turoňová B, Hummer G, Beck M. Nuclear pore permeability and fluid flow are modulated by its dilation state. Mol Cell 2025; 85:537-554.e11. [PMID: 39729993 DOI: 10.1016/j.molcel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D. discoideum to quantify fluid flow across NPCs. D. discoideum has an elaborate NPC structure in situ. Its dilation state affects NPC permeability for nucleocytosolic flow. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across NPCs, which is distinct from canonically characterized modes of nucleocytoplasmic transport because of its dependence on pressure. Viral NPC blockage decreased nucleocytosolic flow. Our results may be relevant for any biological conditions that entail rapid nuclear size adaptation, including metastasizing cancer cells, migrating cells, or differentiating tissues.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Hyuntae Kim
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Eli Andino-Frydman
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Erica Margiotta
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lenka Cernikova
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Zhang J, Yang X, Chang Z, Zhu W, Ma Y, He H. Polymeric nanocarriers for therapeutic gene delivery. Asian J Pharm Sci 2025; 20:101015. [PMID: 39931356 PMCID: PMC11808530 DOI: 10.1016/j.ajps.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/13/2025] Open
Abstract
The recent commercialization of gene products has sparked significant interest in gene therapy, necessitating efficient and precise gene delivery via various vectors. Currently, viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed. Beyond these vectors, polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities, such as improving the stability, cellar uptake and endosomal escape of nucleic acid drugs, along with precise delivery to targeted tissues. This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery, focusing on key cationic polymers, nanocarrier types, and preparation methods. It also highlights targeted diseases, strategies to improve delivery efficiency, and potential future directions in this research area. The review is hoped to inspire the development, optimization, and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Xinyu Yang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhichao Chang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenwei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhua Ma
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
18
|
Rosignoli S, Pacelli M, Manganiello F, Paiardini A. An outlook on structural biology after AlphaFold: tools, limits and perspectives. FEBS Open Bio 2025; 15:202-222. [PMID: 39313455 PMCID: PMC11788754 DOI: 10.1002/2211-5463.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
AlphaFold and similar groundbreaking, AI-based tools, have revolutionized the field of structural bioinformatics, with their remarkable accuracy in ab-initio protein structure prediction. This success has catalyzed the development of new software and pipelines aimed at incorporating AlphaFold's predictions, often focusing on addressing the algorithm's remaining challenges. Here, we present the current landscape of structural bioinformatics shaped by AlphaFold, and discuss how the field is dynamically responding to this revolution, with new software, methods, and pipelines. While the excitement around AI-based tools led to their widespread application, it is essential to acknowledge that their practical success hinges on their integration into established protocols within structural bioinformatics, often neglected in the context of AI-driven advancements. Indeed, user-driven intervention is still as pivotal in the structure prediction process as in complementing state-of-the-art algorithms with functional and biological knowledge.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Maddalena Pacelli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Francesca Manganiello
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Alessandro Paiardini
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| |
Collapse
|
19
|
Berndsen ZT, Cassidy CK. The structure of apolipoprotein B100 from human low-density lipoprotein. Nature 2025; 638:836-843. [PMID: 39662503 PMCID: PMC11839476 DOI: 10.1038/s41586-024-08467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Low-density lipoprotein (LDL) has a central role in lipid and cholesterol metabolism and is a key agent in the development and progression of atherosclerosis, the leading cause of mortality worldwide1,2. Apolipoprotein B100 (apoB100), one of the largest proteins in the genome, is the primary structural and functional component of LDL, yet its size and complex lipid associations have posed major challenges for structural studies3. Here we present the structure of apoB100 resolved to subnanometre resolution in most regions using an integrative approach of cryo-electron microscopy, AlphaFold24 and molecular-dynamics-based refinement5. The structure consists of a large globular N-terminal domain and an approximately 61-nm-long continuous amphipathic β-sheet that wraps around the LDL particle like a belt. Distributed quasi-symmetrically across the two sides of the β-belt are nine strategically located interstrand inserts that extend across the lipid surface to provide additional structural support through a network of long-range interactions. We further compare our structure to a comprehensive list of more than 200 intramolecular cross-links and find close agreement between the two. These results suggest a mechanism for how the various domains of apoB100 act in concert to maintain LDL shape and cohesion across a range of particle sizes. More generally, they advance our fundamental understanding of LDL synthesis, form and function, and will help to accelerate the design of potential therapeutics.
Collapse
Affiliation(s)
| | - C Keith Cassidy
- Department of Physics, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
20
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
21
|
Dultz E, Doye V. Opening the gate: Complexity and modularity of the nuclear pore scaffold and basket. Curr Opin Cell Biol 2025; 92:102461. [PMID: 39826239 DOI: 10.1016/j.ceb.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Nuclear pore complexes (NPCs) are giant molecular assemblies that form the gateway between the nucleus and the cytoplasm and accommodate the bidirectional transport of a large variety of cargoes. Recent years have seen tremendous advances in our understanding of their building principles and have in particular called attention to the flexibility and variability of NPC composition and structure. Here, we review these recent advances and discuss how the newest technologies push the boundaries of nuclear pore research forward, with a specific highlight on the NPC scaffold and a prominent pore appendage, the nuclear basket, whose architecture has long been elusive.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| | - Valérie Doye
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
22
|
Kostiuk V, Kabir R, Levangie K, Empke S, Morgan K, Owens NDL, Lusk CP, Khokha MK. Nup107 contributes to the maternal-to-zygotic transition by preventing the premature nuclear export of pri-miR427. Development 2025; 152:dev202865. [PMID: 39791357 PMCID: PMC11829755 DOI: 10.1242/dev.202865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula, suggesting a crucial role before gastrulation in Xenopus. We find that depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm. By analyzing an RNA-sequencing time course, we observed that depletion of Nup107 affects the maternal-zygotic transition by delaying the degradation of maternal transcripts that occurs as zygotic transcription begins. The transcripts are enriched in recognition sites for miR427, a conserved microRNA that destabilizes maternal transcripts including REST, which encodes a Kruppel-type zinc-finger transcription factor that we demonstrate is crucial for ectodermal cell fates. Mechanistically, we show that Nup107 is required to prevent the premature export of pri-miR427 transcript before processing. Nup107 depletion leads to the reduced production of mature miR427 and maternal transcript stabilization. We conclude that high levels of Nup107 in the early embryo are crucial for the nuclear retention and subsequent processing of pri-miR427 transcripts that is required for timely maternal RNA clearance to enable gastrulation.
Collapse
Affiliation(s)
- Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Rakib Kabir
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kaitlin Levangie
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stefany Empke
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kimberly Morgan
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06520, USA
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, University of Exeter, Barrack Road, Exeter EX2 5DW, UK
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06520, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Gisdon FJ, Ackermann J, Welsch C, Koch I. Graph-Theoretical Prediction and Analysis of Biologically Relevant Substructures in an Open and Closed Conformation of Respiratory Complex I. Methods Mol Biol 2025; 2870:289-314. [PMID: 39543041 DOI: 10.1007/978-1-0716-4213-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein complexes are functional modules within the hierarchy of the cellular organization. Large protein complexes often consist of smaller functional modules, which are biologically relevant substructures with specific functions. The first protein complex of the respiratory chain, complex I, consists of functional modules for the electron transfer from NADH to quinone and the translocation of protons across the inner mitochondrial membrane. Complex I is well-characterized and biological modules have been experimentally assigned. Nevertheless, there is an ongoing discussion about the coupling of the electron transfer and the proton translocation, and about the proton translocation pathways.We modelled a mammalian complex I in open and closed conformations as complex graphs, with vertices representing protein chains and edges representing chain-chain contacts. Using a graph-theoretical method, we computed the structural modules of complex I, which indicated functional, biological substructures. We described characteristic structural features of complex I and observed a rearrangement of the structural modules. The changes in the structural modules indicated the formation of a functional module in the membrane arm of complex I during the conformational change.
Collapse
Affiliation(s)
- Florian J Gisdon
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany.
| | - Jörg Ackermann
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| | - Christoph Welsch
- Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Ina Koch
- Goethe University Frankfurt, Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Yi X, Hussain I, Zhang P, Xiao C. Nuclear-Targeting Peptides for Cancer Therapy. Chembiochem 2024; 25:e202400596. [PMID: 39215136 DOI: 10.1002/cbic.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nucleus is the central regulator of cells that controls cell proliferation, metabolism, and cell cycle, and is considered the most important organelle in cells. The precision medicine that can achieve nuclear targeting has achieved good therapeutic effects in anti-tumor therapy. However, the presence of biological barriers such as cell membranes and nuclear membranes in cells limit the delivery of therapeutic agents to the nucleus. Therefore, developing effective nuclear-targeting drug delivery strategies is particularly important. Nuclear-targeting peptides are a class of functional peptides that can penetrate cell membranes and target the nucleus. They mainly recognize and bind to the nuclear transport molecules (such as Importin-α/β) and transport the therapeutic agents to the nucleus through nuclear pore complexes (NPC). This review summarizes the most recent developments of strategies for anti-tumor therapy utilizing nuclear-targeting peptides, which will ultimately contribute to the development of more effective nuclear-targeting strategies to achieve better anti-tumor outcomes.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore, 54792, Pakistan
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
25
|
Wang X, Zhu H, Terashi G, Taluja M, Kihara D. DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model. Nat Methods 2024; 21:2307-2317. [PMID: 39433880 DOI: 10.1038/s41592-024-02479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Han Zhu
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Manav Taluja
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
26
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Matsuda A, Mansour A, Mofrad MRK. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics. Nucleus 2024; 15:2399247. [PMID: 39282864 PMCID: PMC11407397 DOI: 10.1080/19491034.2024.2399247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The nuclear pore complex (NPC) is a critical gateway regulating molecular transport between the nucleus and cytoplasm. It allows small molecules to pass freely, while larger molecules require nuclear transport receptors to traverse the barrier. This selective permeability is maintained by phenylalanine-glycine-rich nucleoporins (FG-Nups), intrinsically disordered proteins that fill the NPC's central channel. The disordered and flexible nature of FG-Nups complicates their spatial characterization with conventional structural biology techniques. To address this challenge, polymer physics offers a valuable framework for describing FG-Nup behavior, reducing their complex structures to a few key parameters. In this review, we explore how polymer physics models FG-Nups using these parameters and discuss experimental efforts to quantify them in various contexts, providing insights into the conformational properties of FG-Nups.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Abdullah Mansour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
28
|
Lin J, Sumara I. Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease. Nucleus 2024; 15:2387534. [PMID: 39135336 PMCID: PMC11323873 DOI: 10.1080/19491034.2024.2387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Han F, Fan X, Hu M, Wen J, Wang J, Zhang D, Wang S, Ding Y, Ye Y, Jiao H. Nup210 Promotes Colorectal Cancer Progression by Regulating Nuclear Plasma Transport. J Transl Med 2024; 104:102149. [PMID: 39393532 DOI: 10.1016/j.labinv.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
The nuclear pore complex (NPC) regulates nucleoplasmic transport, transcription, and genomic integrity in eukaryotic cells. However, little is known about how NPC works in cancer. In this study, we investigated the role of the nuclear pore protein 210 (Nucleoporin 210, Nup210) in colorectal cancer (CRC). Bioinformatics analysis revealed that the expression of Nup210 was increased in CRC and was associated with poor patient prognosis, but it was not a statistically significant independent prognostic factor. Moreover, knockdown of Nup210 in CRC cells inhibited the proliferation, invasion, and metastasis of CRC cells in vivo and in vitro. Additionally, nuclear size and nuclear plasma material transport capacity decreased along with the number and density of NPCs on the surface of CRC cells when Nup210 expression was inhibited. Furthermore, Nup210 required nuclear localization sequences (NLS) to localize to the nuclear membrane surface and interact with importin-α/β, which in turn affected the transit of nuclear plasma material. Importazole, a small molecule inhibitor of importin, along with therapy that targets the Nup210 protein is anticipated to be a novel strategy for CRC treatment. Their combination may be able to more effectively lower CRC tumor load. In conclusion, Nup210 modulates cellular nucleoplasmic transport capability and cell surface NPC density via NLS, thus promoting CRC progression. This discovery validates the molecular function of NPC in the development of CRC and provides a theoretical foundation for NPC-regulated nuclear import targeting as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, China
| | - Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minxuan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrao Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yaping Ye
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongli Jiao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Guo J, Zia A, Qiu Q, Norton M, Qiu K, Usuba J, Liu Z, Yi M, Rich-New ST, Hagan M, Fraden S, Han GD, Diao J, Wang F, Xu B. Cell-Free Nonequilibrium Assembly for Hierarchical Protein/Peptide Nanopillars. J Am Chem Soc 2024; 146:26102-26112. [PMID: 39255453 PMCID: PMC11669155 DOI: 10.1021/jacs.4c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Ayisha Zia
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Michael Norton
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, Center for Chemical Imaging in Biomedicine, Advanced Cell Analysis Service Center, University of Cincinnati College of Medicine, Cincinnati OH, 45267, USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Shane T. Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Hagan
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Grace D. Han
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Jiajie Diao
- Department of Cancer Biology, Center for Chemical Imaging in Biomedicine, Advanced Cell Analysis Service Center, University of Cincinnati College of Medicine, Cincinnati OH, 45267, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- O’Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| |
Collapse
|
31
|
Kan C, Ullah A, Dang S, Xue H. Modular Structure and Polymerization Status of GABA A Receptors Illustrated with EM Analysis and AlphaFold2 Prediction. Int J Mol Sci 2024; 25:10142. [PMID: 39337627 PMCID: PMC11432007 DOI: 10.3390/ijms251810142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Type-A γ-aminobutyric acid (GABAA) receptors are channel proteins crucial to mediating neuronal balance in the central nervous system (CNS). The structure of GABAA receptors allows for multiple binding sites and is key to drug development. Yet the formation mechanism of the receptor's distinctive pentameric structure is still unknown. This study aims to investigate the role of three predominant subunits of the human GABAA receptor in the formation of protein pentamers. Through purifying and refolding the protein fragments of the GABAA receptor α1, β2, and γ2 subunits, the particle structures were visualised with negative staining electron microscopy (EM). To aid the analysis, AlphaFold2 was used to compare the structures. Results show that α1 and β2 subunit fragments successfully formed homo-oligomers, particularly homopentameric structures, while the predominant heteropentameric GABAA receptor was also replicated through the combination of the three subunits. However, homopentameric structures were not observed with the γ2 subunit proteins. A comparison of the AlphaFold2 predictions and the previously obtained cryo-EM structures presents new insights into the subunits' modular structure and polymerization status. By performing experimental and computational studies, a deeper understanding of the complex structure of GABAA receptors is provided. Hopefully, this study can pave the way to developing novel therapeutics for neuropsychiatric diseases.
Collapse
Affiliation(s)
| | | | | | - Hong Xue
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; (C.K.); (A.U.); (S.D.)
| |
Collapse
|
32
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
33
|
Stankunas E, Köhler A. Docking a flexible basket onto the core of the nuclear pore complex. Nat Cell Biol 2024; 26:1504-1519. [PMID: 39138317 PMCID: PMC11392808 DOI: 10.1038/s41556-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity.
Collapse
Affiliation(s)
- Edvinas Stankunas
- Max Perutz Labs, Vienna Biocenter Campus, University of Vienna and Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alwin Köhler
- Max Perutz Labs, Vienna Biocenter Campus, University of Vienna and Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Zhang L, Leng XX, Qi J, Wang N, Han JX, Tao ZH, Zhuang ZY, Ren Y, Xie YL, Jiang SS, Li JL, Chen H, Zhou CB, Cui Y, Chen X, Wang Z, Zhang ZZ, Hong J, Chen HY, Jiang W, Chen YX, Zhao X, Yu J, Fang JY. The adhesin RadD enhances Fusobacterium nucleatum tumour colonization and colorectal carcinogenesis. Nat Microbiol 2024; 9:2292-2307. [PMID: 39169124 DOI: 10.1038/s41564-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Lu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Larizza L, Colombo EA. Interdependence between Nuclear Pore Gatekeepers and Genome Caretakers: Cues from Genome Instability Syndromes. Int J Mol Sci 2024; 25:9387. [PMID: 39273335 PMCID: PMC11394955 DOI: 10.3390/ijms25179387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
36
|
Ille AM, Markosian C, Burley SK, Mathews MB, Pasqualini R, Arap W. Generative artificial intelligence performs rudimentary structural biology modeling. Sci Rep 2024; 14:19372. [PMID: 39169047 PMCID: PMC11339285 DOI: 10.1038/s41598-024-69021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural interaction analysis between the anti-viral nirmatrelvir and its target, the SARS-CoV-2 main protease. Geometric parameters of the generated structures typically approximated close to experimental references. However, modeling was sporadically error-prone and molecular complexity was not well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino acid residues involved in ligand binding along with corresponding bond distances. Despite current limitations, we show the current capacity of natural language generative AI to perform basic structural biology modeling and interaction analysis with atomic-scale accuracy.
Collapse
Affiliation(s)
- Alexander M Ille
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Christopher Markosian
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute, New Brunswick, NJ, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California-San Diego, La Jolla, San Diego, CA, USA
| | - Michael B Mathews
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute, Newark, NJ, USA.
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Wadih Arap
- Rutgers Cancer Institute, Newark, NJ, USA.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
37
|
Kovalevskiy O, Mateos-Garcia J, Tunyasuvunakool K. AlphaFold two years on: Validation and impact. Proc Natl Acad Sci U S A 2024; 121:e2315002121. [PMID: 39133843 PMCID: PMC11348012 DOI: 10.1073/pnas.2315002121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows. We also look at the ongoing validation of AlphaFold, as its predictions continue to be compared against large numbers of experimental structures to further delineate the model's capabilities and limitations.
Collapse
|
38
|
Williams RV, Guay KP, Hurlbut Lesk OA, Clerico EM, Hebert DN, Gierasch LM. Insights into the interaction between UGGT, the gatekeeper of folding in the ER, and its partner, the selenoprotein SEP15. Proc Natl Acad Sci U S A 2024; 121:e2315009121. [PMID: 39133860 PMCID: PMC11348098 DOI: 10.1073/pnas.2315009121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 08/29/2024] Open
Abstract
The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.
Collapse
Affiliation(s)
- Robert V. Williams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Owen A. Hurlbut Lesk
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
- Department of Chemistry, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
39
|
Latham AP, Tempkin JOB, Otsuka S, Zhang W, Ellenberg J, Sali A. Integrative spatiotemporal modeling of biomolecular processes: application to the assembly of the Nuclear Pore Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606842. [PMID: 39149317 PMCID: PMC11326192 DOI: 10.1101/2024.08.06.606842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dynamic processes involving biomolecules are essential for the function of the cell. Here, we introduce an integrative method for computing models of these processes based on multiple heterogeneous sources of information, including time-resolved experimental data and physical models of dynamic processes. We first compute integrative structure models at fixed time points and then optimally select and connect these snapshots into a series of trajectories that optimize the likelihood of both the snapshots and transitions between them. The method is demonstrated by application to the assembly process of the human Nuclear Pore Complex in the context of the reforming nuclear envelope during mitotic cell division, based on live-cell correlated electron tomography, bulk fluorescence correlation spectroscopy-calibrated quantitative live imaging, and a structural model of the fully-assembled Nuclear Pore Complex. Modeling of the assembly process improves the model precision over static integrative structure modeling alone. The method is applicable to a wide range of time-dependent systems in cell biology, and is available to the broader scientific community through an implementation in the open source Integrative Modeling Platform software.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeremy O B Tempkin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shotaro Otsuka
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
40
|
Agarwal V, McShan AC. The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins. Nat Chem Biol 2024; 20:950-959. [PMID: 38907110 PMCID: PMC11956457 DOI: 10.1038/s41589-024-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/29/2024] [Indexed: 06/23/2024]
Abstract
Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind's AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.
Collapse
Affiliation(s)
- Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
41
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
42
|
Zaballa VD, Hui EE. Reducing Uncertainty Through Mutual Information in Structural and Systems Biology. ARXIV 2024:arXiv:2407.08612v1. [PMID: 39040647 PMCID: PMC11261965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Systems biology models are useful models of complex biological systems that may require a large amount of experimental data to fit each model's parameters or to approximate a likelihood function. These models range from a few to thousands of parameters depending on the complexity of the biological system modeled, potentially making the task of fitting parameters to the model difficult - especially when new experimental data cannot be gathered. We demonstrate a method that uses structural biology predictions to augment systems biology models to improve systems biology models' predictions without having to gather more experimental data. Additionally, we show how systems biology models' predictions can help evaluate novel structural biology hypotheses, which may also be expensive or infeasible to validate.
Collapse
Affiliation(s)
- Vincent D Zaballa
- Department of Biomedical Engineering, University of California,Irvine, United States
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California,Irvine, United States
| |
Collapse
|
43
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
44
|
Bonin JP, Aramini JM, Dong Y, Wu H, Kay LE. AlphaFold2 as a replacement for solution NMR structure determination of small proteins: Not so fast! JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107725. [PMID: 38917639 DOI: 10.1016/j.jmr.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The determination of a protein's structure is often a first step towards the development of a mechanistic understanding of its function. Considerable advances in computational protein structure prediction have been made in recent years, with AlphaFold2 (AF2) emerging as the primary tool used by researchers for this purpose. While AF2 generally predicts accurate structures of folded proteins, we present here a case where AF2 incorrectly predicts the structure of a small, folded and compact protein with high confidence. This protein, pro-interleukin-18 (pro-IL-18), is the precursor of the cytokine IL-18. Interestingly, the structure of pro-IL-18 predicted by AF2 matches that of the mature cytokine, and not the corresponding experimentally determined structure of the pro-form of the protein. Thus, while computational structure prediction holds immense promise for addressing problems in protein biophysics, there is still a need for experimental structure determination, even in the context of small well-folded, globular proteins.
Collapse
Affiliation(s)
- Jeffrey P Bonin
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - James M Aramini
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lewis E Kay
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
45
|
Guo Y, Tao T, Wu T, Hou J, Lin W. Nucleoporin Nup98 is an essential factor for ipo4 dependent protein import. J Cell Biochem 2024; 125:e30573. [PMID: 38780165 DOI: 10.1002/jcb.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin β family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.
Collapse
Affiliation(s)
- Yingying Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Ting Wu
- Department of Basic Medicine, School of Medicine, Cancer Research Center, Xiamen University, Xiamen, Fujian, China
| | - Jingjing Hou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Lin
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| |
Collapse
|
46
|
Boland DJ, Ayres NM. Cracking AlphaFold2: Leveraging the power of artificial intelligence in undergraduate biochemistry curriculums. PLoS Comput Biol 2024; 20:e1012123. [PMID: 38935611 PMCID: PMC11210786 DOI: 10.1371/journal.pcbi.1012123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
AlphaFold2 is an Artificial Intelligence-based program developed to predict the 3D structure of proteins given only their amino acid sequence at atomic resolution. Due to the accuracy and efficiency at which AlphaFold2 can generate 3D structure predictions and its widespread adoption into various aspects of biochemical research, the technique of protein structure prediction should be considered for incorporation into the undergraduate biochemistry curriculum. A module for introducing AlphaFold2 into a senior-level biochemistry laboratory classroom was developed. The module's focus was to have students predict the structures of proteins from the MPOX 22 global outbreak virus isolate genome, which had no structures elucidated at that time. The goal of this study was to both determine the impact the module had on students and to develop a framework for introducing AlphaFold2 into the undergraduate curriculum so that instructors for biochemistry courses, regardless of their background in bioinformatics, could adapt the module into their classrooms.
Collapse
Affiliation(s)
- Devon J. Boland
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Nicola M. Ayres
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
47
|
Wang L, Wen Z, Liu SW, Zhang L, Finley C, Lee HJ, Fan HJS. Overview of AlphaFold2 and breakthroughs in overcoming its limitations. Comput Biol Med 2024; 176:108620. [PMID: 38761500 DOI: 10.1016/j.compbiomed.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Predicting three-dimensional (3D) protein structures has been challenging for decades. The emergence of AlphaFold2 (AF2), a deep learning-based machine learning method developed by DeepMind, became a game changer in the protein folding community. AF2 can predict a protein's three-dimensional structure with high confidence based on its amino acid sequence. Accurate prediction of protein structures can dramatically accelerate our understanding of biological mechanisms and provide a solid foundation for reliable drug design. Although AF2 breaks through the barriers in predicting protein structures, many rooms remain to be further studied. This review provides a brief historical overview of the development of protein structure prediction, covering template-based, template-free, and machine learning-based methods. In addition to reviewing the potential benefits (Pros) and considerations (Cons) of using AF2, this review summarizes the diverse applications, including protein structure predictions, dynamic changes, point mutation, integration of language model and experimental data, protein complex, and protein-peptide interaction. It underscores recent advancements in efficiency, reliability, and broad application of AF2. This comprehensive review offers valuable insights into the applications of AF2 and AF2-inspired AI methods in structural biology and its potential for clinically significant drug target discovery.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Shi-Wei Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Lihong Zhang
- Digestive Department, Binhai New Area Hospital of TCM Tianjin, Tianjin, 300451, China
| | - Cierra Finley
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN, 38015, USA
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN, 38015, USA; Division of Natural & Mathematical Sciences, LeMoyne-Own College, Memphis, TN, 38126, USA.
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China.
| |
Collapse
|
48
|
Solà Colom M, Fu Z, Gunkel P, Güttler T, Trakhanov S, Srinivasan V, Gregor K, Pleiner T, Görlich D. A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies. EMBO J 2024; 43:2198-2232. [PMID: 38649536 PMCID: PMC11148069 DOI: 10.1038/s44318-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies. During interphase, NPCs are inserted into a pre-existing nuclear envelope. Monitoring this process is challenging because newly assembled NPCs are indistinguishable from pre-existing ones. We overcame this problem by inserting Xenopus-derived NPCs into human nuclear envelopes and using frog-specific anti-Nup nanobodies for detection. We further asked whether anti-Nup nanobodies could serve as NPC assembly inhibitors. Using a selection strategy against conserved epitopes, we obtained anti-Nup93, Nup98, and Nup155 nanobodies that block Nup-Nup interfaces and arrest NPC assembly. We solved structures of nanobody-target complexes and identified roles for the Nup93 α-solenoid domain in recruiting Nup358 and the Nup214·88·62 complex, as well as for Nup155 and the Nup98 autoproteolytic domain in NPC scaffold assembly. The latter suggests a checkpoint linking pore formation to the assembly of the Nup98-dominated permeability barrier.
Collapse
Affiliation(s)
- Mireia Solà Colom
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- AI Proteins, 20 Overland St., Boston, MA, USA
| | - Zhenglin Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Octapharma Biopharmaceuticals, Im Neuenheimer Feld 590, 69120, Heidelberg, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasundara Srinivasan
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
49
|
Panagaki F, Tapia-Rojo R, Zhu T, Milmoe N, Paracuellos P, Board S, Mora M, Walker J, Rostkova E, Stannard A, Infante E, Garcia-Manyes S. Structural anisotropy results in mechano-directional transport of proteins across nuclear pores. NATURE PHYSICS 2024; 20:1180-1193. [PMID: 39036650 PMCID: PMC11254768 DOI: 10.1038/s41567-024-02438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/08/2024] [Indexed: 07/23/2024]
Abstract
The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.
Collapse
Affiliation(s)
- Fani Panagaki
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Tong Zhu
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Natalie Milmoe
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Patricia Paracuellos
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Stephanie Board
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Jane Walker
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elena Rostkova
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Andrew Stannard
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elvira Infante
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| |
Collapse
|
50
|
Ille AM, Markosian C, Burley SK, Mathews MB, Pasqualini R, Arap W. Generative artificial intelligence performs rudimentary structural biology modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575113. [PMID: 38293060 PMCID: PMC10827103 DOI: 10.1101/2024.01.10.575113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural interaction analysis between nirmatrelvir and its target, the SARS-CoV-2 main protease. Geometric parameters of the generated structures typically approximated close to experimental references. However, modeling was sporadically error-prone and molecular complexity was not well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino acid residues involved in ligand binding along with corresponding bond distances. Despite current limitations, we show the capacity of natural language generative AI to perform basic structural biology modeling and interaction analysis with atomic-scale accuracy.
Collapse
Affiliation(s)
- Alexander M. Ille
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Christopher Markosian
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA
| | - Michael B. Mathews
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|