1
|
Chen Y, Liu Q, Xu XW. Spatio-temporal variability of nitrogen-cycling potentials in particle-attached and free-living microbial communities in the Yangtze River estuary and adjacent regions. MARINE POLLUTION BULLETIN 2025; 217:118121. [PMID: 40344797 DOI: 10.1016/j.marpolbul.2025.118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Particle-attached (PA) and free-living (FL) microorganisms regulate coastal biogeochemical cycles, yet their roles in nitrogen transformation remain unclear. To address this knowledge gap, we seasonally sampled PA and FL from seawater along salinity gradients in the Yangtze River estuary (YRE) and adjacent regions to investigate the spatio-temporal variability of microbial communities, abundances of nitrogen-cycling genes, and key microbial groups affiliated with the nitrogen cycle in PA and FL. Compared to FL, the composition, structure and diversity of PA exhibited more pronounced variations in response to salinity and [NO3-]. Metagenomic analyses indicated a predominant role of denitrification in both PA and FL, with greater abundances of genes involved in most nitrogen transformation processes observed in the estuarine region. The potential for the nitrogen cycle in PA was relatively lower in May, while greater in FL, potentially due to competition for nitrogen substrates between PA and phytoplankton during spring. PERMANOVA and Mantel tests showed that gene abundances exhibited spatio-temporal dynamics and were associated with species and environmental factors. Gene-affiliated taxa identification and the Weighted Correlation Network Analysis revealed that the differences in environmental factors and taxa responsible for the nitrogen transformation drove spatio-temporal variations of the nitrogen cycle between PA and FL, and implied the significance of their interaction in nitrogen fates in coastal ecosystem. Gammaproteobacteria and Betaproteobacteria were highly affiliated with nitrogen-cycling genes, while Nitrososphaeria played an important role in nitrification and denitrification. This study offered practical insights for mitigating eutrophication through targeted regulation of microbial-mediated nitrogen fluxes.
Collapse
Affiliation(s)
- Yuhao Chen
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200000, PR China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310000, PR China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310000, PR China; Ocean College, Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200000, PR China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310000, PR China; Ocean College, Zhejiang University, Hangzhou, Zhejiang 310000, PR China; National Deep Sea Center, Ministry of Natural Resources, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Zhang Y, Chen Q, Yang X, Hao L, Lu L, Kleindienst S, Lin J, Li S. Unravelling the Activity and Presence of N 2O Reducers on Urban Greening Tree Leaves. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40079375 DOI: 10.1111/pce.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and can be biotically emitted from soils, water, and the less recognised plant leaves. Leaves can produce N2O and may host N2O-reducing microbes that use it as a respiratory substrate, potentially mitigating climate warming. This study examines the ecophysiology of N2O reducers in the plant phyllosphere. Anoxic microcosm experiments, quantification of N2O reduction kinetics, and analysis of nosZ gene governing N2O reduction were conducted to assess the activity and presence of N2O reducers in leaf epiphytes from various canopy positions of Photinia fraseri, an urban greenery plant. Results revealed canopy position-dependent N2O reduction activity in the leaf microbiota. We identified previously unrecognised atypical Clade II nosZ gene in the phyllosphere microbiome, with its absolute abundance positively correlated with N2O reduction activity, highlighting its significance in this process. Sequencing of bacterial and archaeal 16S rRNA genes revealed keystone taxa as primary drivers of N2O reduction activity. These findings underscore the functional potential for N2O reduction and the presence of the Clade II nosZ group within epiphytic microbes. This work provides insights into the ecophysiology of epiphytic N2O reducers and underpins the development of leaf-based microbial solutions for N2O mitigation under future warming.
Collapse
Affiliation(s)
- Yifang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinglin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Xiaoru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Sara Kleindienst
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| |
Collapse
|
3
|
Yan A, Pan Z, Liang Y, Mo X, Guo T, Li J. Archaea communities in aerobic granular sludge: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174974. [PMID: 39053544 DOI: 10.1016/j.scitotenv.2024.174974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Recent research on the archaea community in aerobic granular sludge (AGS) has attracted considerable attention. This review summarizes the existing literature on composition, distribution, and related functions of archaea community in AGS. Furthermore, the effects of granulation, substrate, temperature, process types, and aeration models on the archaea community were discussed. Significantly, the layered structure of AGS facilitates the enrichment of archaea, including methanogenic archaea and ammonia-oxidizing archaea. Archaea engage in metabolic interactions with other microorganisms, enhancing the ecological functionalities of AGS and its tolerance to adverse conditions. Future investigations should focus on minimizing greenhouse gas emissions and exploring the roles and interactive mechanisms of archaea and other microorganisms within AGS.
Collapse
Affiliation(s)
- Anqi Yan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zengrui Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyan Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Wang X, Chi Y, Song S. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review. Front Microbiol 2024; 15:1347745. [PMID: 38591030 PMCID: PMC10999704 DOI: 10.3389/fmicb.2024.1347745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.
Collapse
Affiliation(s)
| | - Yongkuan Chi
- School of Karst Science, State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | | |
Collapse
|
5
|
Fu L, Liu Y, Wang M, Lian C, Cao L, Wang W, Sun Y, Wang N, Li C. The diversification and potential function of microbiome in sediment-water interface of methane seeps in South China Sea. Front Microbiol 2024; 15:1287147. [PMID: 38380093 PMCID: PMC10878133 DOI: 10.3389/fmicb.2024.1287147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
The sediment-water interfaces of cold seeps play important roles in nutrient transportation between seafloor and deep-water column. Microorganisms are the key actors of biogeochemical processes in this interface. However, the knowledge of the microbiome in this interface are limited. Here we studied the microbial diversity and potential metabolic functions by 16S rRNA gene amplicon sequencing at sediment-water interface of two active cold seeps in the northern slope of South China Sea, Lingshui and Site F cold seeps. The microbial diversity and potential functions in the two cold seeps are obviously different. The microbial diversity of Lingshui interface areas, is found to be relatively low. Microbes associated with methane consumption are enriched, possibly due to the large and continuous eruptions of methane fluids. Methane consumption is mainly mediated by aerobic oxidation and denitrifying anaerobic methane oxidation (DAMO). The microbial diversity in Site F is higher than Lingshui. Fluids from seepage of Site F are mitigated by methanotrophic bacteria at the cyclical oxic-hypoxic fluctuating interface where intense redox cycling of carbon, sulfur, and nitrogen compounds occurs. The primary modes of microbial methane consumption are aerobic methane oxidation, along with DAMO, sulfate-dependent anaerobic methane oxidation (SAMO). To sum up, anaerobic oxidation of methane (AOM) may be underestimated in cold seep interface microenvironments. Our findings highlight the significance of AOM and interdependence between microorganisms and their environments in the interface microenvironments, providing insights into the biogeochemical processes that govern these unique ecological systems.
Collapse
Affiliation(s)
- Lulu Fu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Yanjun Liu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chao Lian
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Weicheng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Sun
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Nan Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Wright CL, Lehtovirta-Morley LE. Nitrification and beyond: metabolic versatility of ammonia oxidising archaea. THE ISME JOURNAL 2023; 17:1358-1368. [PMID: 37452095 PMCID: PMC10432482 DOI: 10.1038/s41396-023-01467-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism, growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment. Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in the context of nitrifier ecology.
Collapse
Affiliation(s)
- Chloe L Wright
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | |
Collapse
|
7
|
Ciccarese D, Tantawi O, Zhang IH, Plata D, Babbin AR. Microscale dynamics promote segregated denitrification in diatom aggregates sinking slowly in bulk oxygenated seawater. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:275. [PMID: 38665198 PMCID: PMC11041763 DOI: 10.1038/s43247-023-00935-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/18/2023] [Indexed: 04/28/2024]
Abstract
Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms-important primary producers for global carbon export-support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. Denitrification occurs at anoxic microsites distributed throughout a particle and within microns of a particle's boundary, and fluorescence-reporting bacteria show nitrite can be released into the water column due to segregated dissimilatory reduction of nitrate and nitrite. Examining intact and broken diatoms as organic sources, we show slowly leaking cells promote more bacterial growth, allow particles to have lower oxygen, and generally support greater denitrification.
Collapse
Affiliation(s)
- Davide Ciccarese
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Omar Tantawi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Irene H. Zhang
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Desiree Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
8
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
9
|
Gong JC, Jin H, Li BH, Tian Y, Liu CY, Li PF, Liu Q, Ingeniero RCO, Yang GP. Emissions of Nitric Oxide from Photochemical and Microbial Processes in Coastal Waters of the Yellow and East China Seas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4039-4049. [PMID: 36808991 DOI: 10.1021/acs.est.2c08978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is an atmospheric pollutant and climate forcer as well as a key intermediary in the marine nitrogen cycle, but the ocean's NO contribution and production mechanisms remain unclear. Here, high-resolution NO observations were conducted simultaneously in the surface ocean and the lower atmosphere of the Yellow Sea and the East China Sea; moreover, NO production from photolysis and microbial processes was analyzed. The NO sea-air exchange showed uneven distributions (RSD = 349.1%) with an average flux of 5.3 ± 18.5 × 10-17 mol cm-2 s-1. In coastal waters where nitrite photolysis was the predominant source (89.0%), NO concentrations were remarkably higher (84.7%) than the overall average of the study area. The NO from archaeal nitrification accounted for 52.8% of all microbial production (11.0%). We also examined the relationship between gaseous NO and ozone which helped identify sources of atmospheric NO. The sea-to-air flux of NO in coastal waters was narrowed by contaminated air with elevated NO concentrations. These findings indicate that the emissions of NO from coastal waters, mainly controlled by reactive nitrogen inputs, will increase with the reduced terrestrial NO discharge.
Collapse
Affiliation(s)
- Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hong Jin
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266003, China
| | - Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ye Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Pei-Feng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qian Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | | | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Li S, Zhen Y, Chen Y, Mi T, Yu Z. Shifts in the spatiotemporal distribution and sources of nitrous oxide in sediment cores from the Bohai Sea and South Yellow Sea. MARINE POLLUTION BULLETIN 2023; 186:114390. [PMID: 36459774 DOI: 10.1016/j.marpolbul.2022.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
N2O is among the most potent greenhouse gases. In this study, we investigated one of the important N2O production hotspots, the continental margins. We looked at N2O spatiotemporal distributions in situ as well as the potential contributions of nitrification and denitrification to N2O production in sediment cores from the Bohai and South Yellow Seas. Real-time PCR and shotgun metagenomics sequencing were used to analyze the microbial communities related to N2O production. The results showed that N2O concentrations roughly decreased with depth-a trend that was consistent throughout the year and showed no significant seasonal variations. When all the research stations along the continental margin were considered, the estuary exhibited the lowest average N2O concentration. Moreover, nitrification was identified as the main process responsible for N2O production in estuary areas. This study demonstrates that spatial, as opposed to temporal, heterogeneity is the primary factor influencing N2O concentration differences in sediments.
Collapse
Affiliation(s)
- Siqi Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ye Chen
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Gao D, Liu C, Li X, Zheng Y, Dong H, Liang X, Niu Y, Yin G, Liu M, Hou L. High importance of coupled nitrification-denitrification for nitrogen removal in a large periodically low-oxygen estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157516. [PMID: 35872198 DOI: 10.1016/j.scitotenv.2022.157516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The coupling between nitrification and denitrification/anammox (nitrate/nitrite used in denitrification/anammox derives from nitrification) is a significant process of reactive nitrogen (N) removal that has attracted much attention. However, the dynamics of coupled nitrification-denitrification/anammox in the periodically low-oxygen estuaries and coasts remain unclear. Here, continuous-flow experiments combined with isotope tracing techniques were conducted in periodically low-oxygen areas of the Yangtze Estuary to reveal the changes in benthic sediment denitrification and anammox as well as their coupling with nitrification. Our results showed that denitrification increased but anammox decreased during low-oxygen summer. The occurrence of low oxygen also promoted coupled nitrification-denitrification but decreased coupled nitrification-anammox. These results implied that decreased dissolved oxygen in summer did not largely restrict nitrification activity, and anaerobic denitrification/anammox regulated the magnitude of coupled nitrification-denitrification/anammox rates. Denitrification (74.95-100 %) was the dominant process in total N removal, while coupled nitrification-denitrification accounted for a higher proportion (45.68-97.05 %) of denitrification, indicating that coupling between nitrification and denitrification played a dominant role in N removal. In addition to dissolved oxygen levels, carbon and N substrate availabilities were also important variables to regulate N transformations. Overall, this study advanced our knowledge of the distribution patterns and controlling factors of N removal processes and highlighted that coupled nitrification-denitrification might have a significant but neglected role in N removal from periodically low-oxygen estuaries.
Collapse
Affiliation(s)
- Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|