1
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Mondal I, Haick H. Smart Dust for Chemical Mapping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419052. [PMID: 40130762 PMCID: PMC12075923 DOI: 10.1002/adma.202419052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This review article explores the transformative potential of smart dust systems by examining how existing chemical sensing technologies can be adapted and advanced to realize their full capabilities. Smart dust, characterized by submillimeter-scale autonomous sensing platforms, offers unparalleled opportunities for real-time, spatiotemporal chemical mapping across diverse environments. This article introduces the technological advancements underpinning these systems, critically evaluates current limitations, and outlines new avenues for development. Key challenges, including multi-compound detection, system control, environmental impact, and cost, are discussed alongside potential solutions. By leveraging innovations in miniaturization, wireless communication, AI-driven data analysis, and sustainable materials, this review highlights the promise of smart dust to address critical challenges in environmental monitoring, healthcare, agriculture, and defense sectors. Through this lens, the article provides a strategic roadmap for advancing smart dust from concept to practical application, emphasizing its role in transforming the understanding and management of complex chemical systems.
Collapse
Affiliation(s)
- Indrajit Mondal
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124
, Krems‐SteinÖSTERREICH3500Austria
| |
Collapse
|
3
|
Kim SI, Moon JY, Bae S, Xu Z, Meng Y, Park JW, Lee JH, Bae SH. Freestanding Wide-Bandgap Semiconductors Nanomembrane from 2D to 3D Materials and Their Applications. SMALL METHODS 2025; 9:e2401551. [PMID: 39763129 DOI: 10.1002/smtd.202401551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/16/2024] [Indexed: 05/26/2025]
Abstract
Wide-bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high-power, high-frequency, and harsh-environment devices beyond the capabilities of conventional semiconductors. Pushing the potential of WBGS boundaries, current research is redefining the field by broadening the material landscape and pioneering sophisticated synthesis techniques tailored for state-of-the-art device architectures. Efforts include the growth of freestanding nanomembranes, the leveraging of unique interfaces such as van der Waals (vdW) heterostructure, and the integration of 2D with 3D materials. This review covers recent advances in the synthesis and applications of freestanding WBGS nanomembranes, from 2D to 3D materials. Growth techniques for WBGS, such as liquid metal and epitaxial methods with vdW interfaces, are discussed, and the role of layer lift-off processes for producing freestanding nanomembranes is investigated. The review further delves into electronic devices, including field-effect transistors and high-electron-mobility transistors, and optoelectronic devices, such as photodetectors and light-emitting diodes, enabled by freestanding WBGS nanomembranes. Finally, this review explores new avenues for research, highlighting emerging opportunities and addressing key challenges that will shape the future of the field.
Collapse
Affiliation(s)
- Seung-Il Kim
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak‑Gu, Seoul, 08788, Republic of Korea
| | - Jae-Hyun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| |
Collapse
|
4
|
Xu Z, Zhang C, Wang F, Yu J, Yang G, Surmenev RA, Li Z, Ding B. Smart Textiles for Personalized Sports and Healthcare. NANO-MICRO LETTERS 2025; 17:232. [PMID: 40278986 PMCID: PMC12031719 DOI: 10.1007/s40820-025-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealing for individuals to track their real-time health and exercise data seamlessly. While numerous devices enable sports and health monitoring, maintaining comfort over long periods remains a considerable challenge, especially in high-intensity and sweaty sports scenarios. Textiles, with their breathability, deformability, and moisture-wicking abilities, ensure exceptional comfort during prolonged wear, making them ideal for wearable platforms. This review summarized the progress of research on textile-based sports monitoring devices. First, the design principles and fabrication methods of smart textiles were introduced systematically. Textiles undergo a distinctive fiber-yarn-fabric or fiber-fabric manufacturing process that allows for the regulation of performance and the integration of functional elements at every step. Then, the performance requirements for precise sports data collection of smart textiles, including main vital signs, joint movement, and data transmission, were discussed. Lastly, the applications of smart textiles in various sports scenarios are demonstrated. Additionally, the review provides an in-depth analysis of the emerging challenges, strategies, and opportunities for the research and development of sports-oriented smart textiles. Smart textiles not only maintain comfort and accuracy in sports, but also serve as inexpensive and efficient information-gathering terminals. Therefore, developing multifunctional, cost-effective textile-based systems for personalized sports and healthcare is a pressing need for the future of intelligent sports.
Collapse
Affiliation(s)
- Ziao Xu
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chentian Zhang
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Faqiang Wang
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China
| | - Gang Yang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, People's Republic of China
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Zhaoling Li
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China.
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China.
| |
Collapse
|
5
|
Tian Y, Yang Y, Tang H, Wang J, Li N, Cheng Y, Kang T, Tang J, Zhou M, Chen W, Yu Y, Liu X, Liu X, Xu L, Yin Z, Zang J. An implantable hydrogel-based phononic crystal for continuous and wireless monitoring of internal tissue strains. Nat Biomed Eng 2025:10.1038/s41551-025-01374-z. [PMID: 40229414 DOI: 10.1038/s41551-025-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/07/2025] [Indexed: 04/16/2025]
Abstract
Conventional implantable electronic sensors for continuous monitoring of internal tissue strains are yet to match the biomechanics of tissues while maintaining biodegradability, biocompatibility and wireless monitoring capability. Here we present a two-dimensional phononic crystal composed of periodic air columns in soft hydrogel, which was named ultrasonic metagel, and we demonstrate its use as implantable sensor for continuous and wireless monitoring of internal tissue strains. The metagel's deformation shifts its ultrasonic bandgap, which can be wirelessly detected by an external ultrasonic probe. We demonstrate ex vivo the ability of the metagel sensor for monitoring tissue strains on porcine tendon, wounded tissue and heart. In live pigs, we further demonstrate the ability of the metagel to monitor tendon stretching, respiration and heartbeat, working stably during 30 days of implantation, and we loaded the metagel with growth factors to achieve different healing rates in subcutaneous wounds. The metagel results almost completely degraded 12 weeks after implantation. Our finding highlights the clinical potential of the ultrasonic sensor for tendon rehabilitation monitoring and drug delivery efficacy evaluation.
Collapse
Affiliation(s)
- Ye Tian
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yueying Yang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Hanchuan Tang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Cheng
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Kang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Tang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Zhou
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinqi Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xurui Liu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, China.
| | - Zhouping Yin
- Flexible Electronics Research Center, The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianfeng Zang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- The State Intelligent Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Jeong HY, Jeong J, Choi JC, Kim H, Han JH, Chung S. Directly Printed 3D Soft Microwave Plasmonic Enhanced-Q Resonators by Decoupling from Lossy Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418182. [PMID: 39988837 DOI: 10.1002/adma.202418182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Soft electronic components are essential building blocks for realizing form-factor-free applications; however, most designs are confined to 2D or 2.5D structures due to challenges in maintaining 3D structural integrity. This limitation is particularly critical for electromagnetic devices, such as resonators, where dielectric losses from elastomeric substrates severely hinder high-performance functionality. Here, directly printed 3D electromagnetic soft plasmonic enhanced-quality(Q) factor resonators are proposed, using highly conductive composites. By incorporating an immiscible solvent into an elastomer matrix, emulsion phases are formed that significantly enhance the storage modulus, enabling the fabrication of 3D-printed structures while improving their electrical conductivity. 3D microwave plasmonic resonators with a high degree of design freedom, such as pillars and hooks are demonstrated. These structures exhibit improved resistance to dielectric interference by leveraging the resonance in lossless air. Moreover, integrating a coplanar ground plane further decouples the resonators from lossy substrates, resulting in a 3.4-fold enhancement in the Q-factor (octupole mode) compared to 2D resonators. This improvement enables stable operation on high-permittivity surfaces, such as human skin. Additionally, a single 3D resonator demonstrates wireless deformation-sensing capabilities, facilitating the simultaneous detection of strain amplitude and orientation. This result can pave the way for advanced sensing applications in soft electronics.
Collapse
Affiliation(s)
- Hoon Yeub Jeong
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonghyun Jeong
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jun-Chan Choi
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heesuk Kim
- Electronic Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Hoon Han
- Center for Quantum Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Li P, Li Y, Chen X, Zhang S, Yi L, Liu P, Gong Y, Liu Z, Wu G, Liu F. 3D Integrated Physicochemical-Sensing Electronic Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411435. [PMID: 40026062 DOI: 10.1002/smll.202411435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The integration of physical and chemical signal sensing is of great significance to bridge the gap between electronic skin (e-skin) and natural skin. However, the existing method of integrating physical and chemical signal sensing units in two dimensions is not conducive to the development of e-skin in multifunctionality and miniaturization. Herein, a new three-dimensional (3D) integrated physicochemical-sensing e-skin (TDPSES) is developed by integrating a piezoresistive sensing unit, a biochemical signal sensing electrode, and a microfluidic system in a 3D superposition mode. For pressure sensing, TDPSES demonstrates an ultra-high sensitivity of 208.6 kPa-1 in 0-15 kPa and excellent stability of 8000 cycles. For glucose sensing in sweat, TDPSES has a sensitivity of 3.925 µA mm-1 and a detection limit of 29.1 µm. Meanwhile, TDPSES can not only continuously detect biological fluids, but also self-monitor its fluid-driving behavior, demonstrating its intelligent fluid-driving characteristics. Furthermore, TDPSES is applied to monitor a variety of physiological signals such as sweat, pulse, and voice, demonstrating its multifunctional sensing capabilities and application potential in health care. In conclusion, the implementation of TDPSES provides a new idea for constructing miniaturized and multifunctional e-skin, which helps to narrow the gap between e-skin and natural skin.
Collapse
Affiliation(s)
- Peilong Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shizhuo Zhang
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Longju Yi
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Peizheng Liu
- Department of Information and Communication Engineering, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yuan Gong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhe Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guoqiang Wu
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
8
|
Liu C, Zhao Q, Cao Y, Li X, Peng K, Fu F. Bioinspired Structural Color Hydrogel Skin from Nonclose-Packed Colloidal Crystal Arrays for Epidermal Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16658-16667. [PMID: 40056106 DOI: 10.1021/acsami.5c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Developing multifunctional structural color hydrogel skin without sacrificing the unique periodic structure of photonic crystals is still a challenge due to the photonic bandgap limitation. Taking advantage of the synergistic effect of electrostatic repulsion and electronic conductivity, an intelligent structural color hydrogel skin with electrical and photonic sensing capabilities has been developed by doping MXene (Ti3C2Tx) nanosheets and adhesive functional groups (nucleobases) into colloidal particle solutions. The introduction of MXene nanosheets could improve both the stability and electrical conductivity of the colloidal particle solutions, resulting in a conductive hydrogel with bright structural colors. With the help of functional groups of nucleobases, the resulting structural color hydrogel was also endowed with high biocompatibility and strong adhesion to different substrates, including the wet surfaces of tissues. It was demonstrated that the structural color hydrogel can not only realize visual sensing of tiny limb movements but also provide stable electrical sensing signals. The intelligent structural color hydrogel can be integrated into a capacitor device as a hydrogel electronic skin to simulate the sensory function of human skin. The results showed that such hydrogel skin can simulate the touch of human skin and perceive tiny movements on the body surface with both electrical and photonic signals. These features of the multifunctional structural color hydrogels make them potentially excellent value in bioinspired hydrogel skin electronics.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingyu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaohui Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kexin Peng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Wang W, Baranski M, Jin Y, Salut R, Belharet D, Friedt J, Pan Y, Xiang Y, Xuan F, Khelif A, Benchabane S. Experimental Realization of On-Chip Surface Acoustic Wave Metasurfaces at Sub-GHz. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411825. [PMID: 39887638 PMCID: PMC11947993 DOI: 10.1002/advs.202411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Metasurfaces, consisting of subwavelength-thickness units with different wave responses, provide an innovative possible method to manipulate elastic and acoustic waves efficiently. The application of metasurfaces to manipulate on-chip surface acoustic wave (SAW) at sub-GHz frequencies requires further exploration since their wave functions are highly demanded in nanoelectromechanical systems (NEMS), sensing, communications, microfluid control and quantum processing. Here, the experimental realization of on-chip SAW metasurfaces is reported, consisting of gradient submicron niobium (Nb) rectangular pillars positioned on a 128°Y-cut lithium niobate (LiNbO3) substrate that operate at hundreds of megahertz. The proposed SAW metasurfaces are able to manipulate transmitted SAW wavefront functions by designing on-demand pillar's profile distributions. Broadband subwavelength focusing effects as the typical functions of SAW metasurfaces are experimentally demonstrated. This study opens a door for realizing on-chip SAW metasurfaces for diverse potential applications at micro- and nanoscale.
Collapse
Affiliation(s)
- Wan Wang
- School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghai200092China
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| | - Maciej Baranski
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| | - Yabin Jin
- Shanghai Key Laboratory of Intelligent Sensing and Detection TechnologySchool of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Institute of Aircraft Mechanics and ControlShanghai200092China
| | - Roland Salut
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| | - Djaffar Belharet
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| | - Jean‐Michel Friedt
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| | - Yongdong Pan
- School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghai200092China
| | - Yanxun Xiang
- Shanghai Key Laboratory of Intelligent Sensing and Detection TechnologySchool of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Fu‐zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection TechnologySchool of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Abdelkrim Khelif
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
- College of Science and EngineeringHamad Bin Khalifa UniversityDohaQatar
| | - Sarah Benchabane
- CNRS, FEMTO‐STUniversité de Franche‐Comté15B avenue des MontbouconsBesançonF‐25000France
| |
Collapse
|
10
|
Choi SH, Kim Y, Jeon I, Kim H. Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411108. [PMID: 39425567 PMCID: PMC11937997 DOI: 10.1002/adma.202411108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Wide-bandgap semiconductors (WBGs) are crucial building blocks of many modern electronic devices. However, there is significant room for improving the crystal quality, available choice of materials/heterostructures, scalability, and cost-effectiveness of WBGs. In this regard, utilizing layered 2D materials in conjunction with WBG is emerging as a promising solution. This review presents recent advancements in the integration of WBGs and 2D materials, including fabrication techniques, mechanisms, devices, and novel functionalities. The properties of various WBGs and 2D materials, their integration techniques including epitaxial and nonepitaxial growth methods as well as transfer techniques, along with their advantages and challenges, are discussed. Additionally, devices and applications based on the WBG/2D heterostructures are introduced. Distinctive advantages of merging 2D materials with WBGs are described in detail, along with perspectives on strategies to overcome current challenges and unlock the unexplored potential of WBG/2D heterostructures.
Collapse
Affiliation(s)
- Soo Ho Choi
- Department of Nano EngineeringDepartment of Nano Science and TechnologySKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Electrical and Computer EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Yongsung Kim
- Department of Materials Science and EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Il Jeon
- Department of Nano EngineeringDepartment of Nano Science and TechnologySKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyunseok Kim
- Department of Electrical and Computer EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
11
|
Xu J, Guo X, Zhang Z, Liu H, Lee C. Triboelectric Mat Multimodal Sensing System (TMMSS) Enhanced by Infrared Image Perception for Sleep and Emotion-Relevant Activity Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407888. [PMID: 39698892 PMCID: PMC11809373 DOI: 10.1002/advs.202407888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Indexed: 12/20/2024]
Abstract
To implement digital-twin smart home applications, the mat sensing system based on triboelectric sensors is commonly used for gait information collection from daily activities. Yet traditional mat sensing systems often miss upper body motions and fail to adequately project these into the virtual realm, limiting their specific application scenarios. Herein, triboelectric mat multimodal sensing system is designed, enhanced with a commercial infrared imaging sensor, to capture diverse sensory information for sleep and emotion-relevant activity monitoring without compromising privacy. This system generates pixel-based area ratio mappings across the entire mat array, solely based on the integral operation of triboelectric outputs. Additionally, it utilizes multimodal sensory intelligence and deep-learning analytics to detect different sleeping postures and monitor comprehensive sleep behaviors and emotional states associated with daily activities. These behaviors are projected into the metaverse, enhancing virtual interactions. This multimodal sensing system, cost-effective and non-intrusive, serves as a functional interface for diverse digital-twin smart home applications such as healthcare, sports monitoring, and security.
Collapse
Affiliation(s)
- Jinlong Xu
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of SingaporeSingapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
| | - Xinge Guo
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of SingaporeSingapore117608Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of SingaporeSingapore117608Singapore
| | - Huajun Liu
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)Singapore138634Republic of Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMS (CISM)National University of SingaporeSingapore117608Singapore
- National University of Singapore Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
- NUS Graduate School‐Integrative Sciences and Engineering Programme (ISEP)National University of SingaporeSingapore119077Singapore
| |
Collapse
|
12
|
Lin B, Li F, Hui J, Xing Z, Fu J, Li S, Shi H, Liu C, Mao H, Wu Z. Modular Reconfigurable Approach Toward Noninvasive Wearable Body Net for Monitoring Sweat and Physiological Signals. ACS Sens 2025; 10:225-235. [PMID: 39576944 DOI: 10.1021/acssensors.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
In the realm of wearable technology, strategically placing sensors at various body locations enhances the detection of diverse physiological indicators crucial for remote medical care. However, current devices often focus on a single body part for specific physical parameters, which hinders the seamless integration of sensors across multiple body parts and necessitates redesign for new detection capabilities. Here, we propose a modular, reconfigurable circuit assembly method that can be adaptable for multiple body locations to construct the body net. By simply reassembling different child modules with the base module using flexible printed circuit board connectors, we can efficiently detect various parameters including sweat ion indicators, electrocardiogram signals, electromyography signals, motion data, heart rate, blood oxygen saturation, and skin temperature. These data can be transmitted to a mobile phone app via a Bluetooth Low Energy protocol for further evaluation. Comparative evaluations against established commercial devices substantiate the viability of our sensor technology. In addition, results from wearable body network detections using reconfigurable sensors across multiple body parts of volunteers also indicate promising application prospects, demonstrating the extensive potential for regular health monitoring and clinical applications.
Collapse
Affiliation(s)
- Bo Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangqi Li
- Institute of Microelectronics of the Chinese Academy of Science, Beijing 100029, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Xing
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Haotian Shi
- China Three Gorges Renewables (Group) Company Limited, Harbin 150000, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, College of Electronics and Information, Hangzhou Danzi University, Hangzhou 310018, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wang K, Wang L, Si J, Wang R, Wang Z, Gao C, Yang J, Yang X, Zhang H, Han L. Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4155-4164. [PMID: 39750060 DOI: 10.1021/acsami.4c17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT. A systematic model is employed to analyze the linear sensing properties and ensure the feasibility of the scheme. The excitation power dependence provides an efficient and quantitative linear decoupling strategy of unidentified combinations for multiple stimuli. As a validation for a wearable device such as electronic skin (e-skin), the functionalized sensing film polyaniline/graphene oxide (PANI/GO) is served to synchronously monitor humidity, temperature, ultraviolet, and proximity through the mapping in resonant frequency (fs). Compared with the output errors of ∼18.00%, ∼17.50%, ∼15.00%, and ∼20.00%, the maximum experimental errors of temperature, humidity, ultraviolet, and proximity are 5.70%, 4.00%, 5.00%, and 8.30% after decoupling, respectively. In general, the developed single-component multimodal fusion sensing platform offers a strategic advantage for a miniaturization, passive wireless, and inexpensive (less than $1) signal identification system with a facile circuit layout.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lifeng Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chuyuan Gao
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Bae LK, Son SG, Park SC, Park WG, Kim K, Lee HJ, Bang D, Cho SH, Kang IS, Ahn JH. Electrical Contacts to Graphene by Postgrowth Patterning of Cu Foil for the Low-Cost Scalable Production of Graphene-Based Flexible Electronics. ACS OMEGA 2025; 10:1448-1456. [PMID: 39829521 PMCID: PMC11740140 DOI: 10.1021/acsomega.4c09156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene. The method involves patterning a Cu foil after graphene growth, enabling the low-cost scalable production of graphene-based flexible electronics. The fabricated graphene devices exhibited linear current-voltage characteristics, indicating good electrical contact between the postgrowth-patterned Cu electrodes and graphene. The proposed postgrowth patterning method allows for the fabrication of Cu-contacted graphene devices on large areas and various flexible substrates, including ultrathin and stretchable films (<10 μm). The feasibility of the proposed method for electronic devices was demonstrated by implementing gas and flexible force sensors. The proposed approach advances the field of graphene-based electronics and holds potential for practical applications in various electronic devices, paving the way for scalable, cost-effective, and flexible technology solutions.
Collapse
Affiliation(s)
- Lee Kyung Bae
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Seong Gyun Son
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Sang-Chan Park
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Won Gyun Park
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Kiwan Kim
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Hyo-Ju Lee
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Daeun Bang
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| | - Su-Ho Cho
- Korea
National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Il-Suk Kang
- Korea
National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jae-Hyuk Ahn
- Department
of Electronics Engineering, Chungnam National
University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
15
|
Yang C, Wang Q, Chen S, Li J. Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics. ACS MATERIALS AU 2025; 5:45-56. [PMID: 39802153 PMCID: PMC11718531 DOI: 10.1021/acsmaterialsau.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios. We summarize wireless signal/data/power transmission strategies, key considerations in materials design and selection, as well as successful demonstrations of sensors and actuators in wearable and implantable forms. The final section provides an outlook to the future direction down the road for performance improvement and optimization. These versatile, inexpensive, and low-power device concepts can serve as alternative strategies to existing digital wireless electronics, which will find broad applications as bidirectional biointerfaces in basic biomedical research and clinical practices.
Collapse
Affiliation(s)
- Chunyu Yang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Qi Wang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Shulin Chen
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Li
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
- Chronic
Brain Injury Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
17
|
Chen S, Liu TL, Jia Y, Li J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. FUNDAMENTAL RESEARCH 2025; 5:29-47. [PMID: 40166092 PMCID: PMC11955048 DOI: 10.1016/j.fmre.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 04/02/2025] Open
Abstract
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes. The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous, real-time manner. Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites, dependence on clinician expertise, and prolonged and recurrent interventions. Bio-integrated electronics for chemical sensing is an emerging, multidisciplinary field enabled by rapid advances in electrical engineering, biosensing, materials science, analytical chemistry, and biomedical engineering. This review presents an overview of recent progress in bio-integrated electrochemical sensors, with an emphasis on their relevance to neuroengineering and neuromodulation. It traverses vital neurological biomarkers and explores bio-recognition elements, sensing strategies, transducer designs, and wireless signal transmission methods. The integration of in vivo biochemical sensors is showcased through applications. The review concludes by outlining future trends and advancements in in vivo electrochemical sensing, and highlighting ongoing research and technological innovation, which aims to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Choi G, Kim J, Kim H, Bae H, Kim B, Lee HJ, Jang H, Seong M, Tawfik SM, Kim JJ, Jeong HE. Motion-Adaptive Tessellated Skin Patches With Switchable Adhesion for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412271. [PMID: 39428834 PMCID: PMC11775872 DOI: 10.1002/adma.202412271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Skin-interfaced electronics have emerged as a promising frontier in personalized healthcare. However, existing skin-interfaced patches often struggle to simultaneously achieve robust skin adhesion, adaptability to dynamic body motions, seamless integration of bulky devices, and on-demand, damage-free detachment. Here, a hybrid strategy that synergistically combines these critical features within a thin, flexible patch platform is introduced. This design leverages shape memory polymers (SMPs) arranged in a tessellated array, comprising both rigid and compliant SMPs. This configuration enables exceptional deformability, motion adaptability, and ultra-strong, repeatable skin adhesion while offering on-demand adhesion control. Furthermore, the design facilitates the seamless integration of bulky electronics without compromising skin adhesion. By incorporating sizeable electronics including signal acquisition circuits, sensors, and a battery, it is demonstrated that the proposed tessellated patch can be securely mounted on the skin, accommodate dynamic body motions, precisely detect physiological signals with an outstanding signal-to-noise ratio (SNR), wirelessly transmit data, and be effortlessly released from the skin.
Collapse
Affiliation(s)
- Geonjun Choi
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jaeil Kim
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyunjoong Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Haejin Bae
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Baek‐Jun Kim
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Hee Jin Lee
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyejin Jang
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Minho Seong
- Department of Fire Protection EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Salah M. Tawfik
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jae Joon Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
19
|
Wang S, Chai Y, Sa H, Ye W, Wang Q, Zou Y, Luo X, Xie L, Liu X. Sunflower-like self-sustainable plant-wearable sensing probe. SCIENCE ADVANCES 2024; 10:eads1136. [PMID: 39630896 PMCID: PMC11616689 DOI: 10.1126/sciadv.ads1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Powering and communicating with wearable devices on bio-interfaces is challenging due to strict weight, size, and resource constraints. This study presents a sunflower-like plant-wearable sensing device that harnesses solar energy, achieving complete energy self-sustainability for long-term monitoring of plant sap flow, a crucial indicator of plant health. It features foldable solar panels along with all essential flexible electronic components, resulting in a compact system that is lightweight enough for small plants. To tackle the low-energy density of solar power, we developed an ultralow-energy light communication mechanism inspired by fireflies. Together with unmanned aerial vehicles and deep learning algorithms, this approach enables efficient data retrieval from multiple devices across large agricultural fields. With its simple deployment, it shows great potential as a low-cost plant phenotyping tool. We believe our energy and communication solution for wearable devices can be extended to similar resource-limited and challenging scenarios, leading to exciting applications.
Collapse
Affiliation(s)
- Shuang Wang
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangfan Chai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huiwen Sa
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weikang Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yu Zou
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuan Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Agricultural Equipment Technology, China
| | - Xiangjiang Liu
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Agricultural Equipment Technology, China
| |
Collapse
|
20
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
21
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
22
|
Cai Y, Shen J, Yang N, Chen Z, Wan Y, Chiang YH, Ee LY, Wang Y, Tung V, Han Y, Pinnau I, Huang KW, Li LJ, Dong X. MXene-Fiber Composite Membranes for Permeable and Biocompatible Skin-Interfaced Iontronic Mechanosensing. NANO LETTERS 2024; 24:12333-12342. [PMID: 39302876 DOI: 10.1021/acs.nanolett.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Artificial ionic sensory systems, bridging the divide between biological systems and electronics, mimic human skin functions but face critical challenges with biocompatibility, comfort, signal stability, and simplifying packaging. Here, we present a simple and permeable skin-interfaced iontronic mechanosensing (SIIM) architecture that integrates human skin as natural ionic material and hierarchically porous MXene-fiber composite membranes as sensing electrodes. The SIIM system eliminates complex ionic material design and multilayer matrix, exhibiting ultrahigh pressure sensitivities (5.4 kPa-1, <75 Pa), a low detection limit (6 Pa), excellent output stability along with high permeability to minimize the impact of sweating on sensing. The noncytotoxic nature of SIIM electrodes ensures excellent biocompatibility (>97% cell coincubational viability), facilitating long-term wearability and high biosafety. Furthermore, the scalable SIIM configuration integrated with matrix smart gloves, effectively monitors human physical movements. This SIIM-based sensor with marked sensing capabilities, structural simplicity, and scalability, holds promising potential in diverse wearable applications.
Collapse
Affiliation(s)
- Yichen Cai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jie Shen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhuo Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yi Wan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077
| | - Yu-Hsiang Chiang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liang Ying Ee
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yingge Wang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vincent Tung
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| | - Ingo Pinnau
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
23
|
Han WB, Jang TM, Shin B, Naganaboina VR, Yeo WH, Hwang SW. Recent advances in soft, implantable electronics for dynamic organs. Biosens Bioelectron 2024; 261:116472. [PMID: 38878696 DOI: 10.1016/j.bios.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Unlike conventional rigid counterparts, soft and stretchable electronics forms crack- or defect-free conformal interfaces with biological tissues, enabling precise and reliable interventions in diagnosis and treatment of human diseases. Intrinsically soft and elastic materials, and device designs of innovative configurations and structures leads to the emergence of such features, particularly, the mechanical compliance provides seamless integration into continuous movements and deformations of dynamic organs such as the bladder and heart, without disrupting natural physiological functions. This review introduces the development of soft, implantable electronics tailored for dynamic organs, covering various materials, mechanical design strategies, and representative applications for the bladder and heart, and concludes with insights into future directions toward clinically relevant tools.
Collapse
Affiliation(s)
- Won Bae Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Beomjune Shin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Venkata Ramesh Naganaboina
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Wang J, Suo J, Liu D, Zhao Y, Tian Y, Bryanston-Cross P, Li WJ, Wang Z. A Nanoparticle-Based Artificial Ear for Personalized Classification of Emotions in the Human Voice Using Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51274-51282. [PMID: 39285705 DOI: 10.1021/acsami.4c13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Artificial intelligence and human-computer interaction advances demand bioinspired sensing modalities capable of comprehending human affective states and speech. However, endowing skin-like interfaces with such intricate perception abilities remains challenging. Here, we have developed a flexible piezoresistive artificial ear (AE) sensor based on gold nanoparticles, which can convert sound signals into electrical signals through changes in resistance. By testing the sensor's performance at both frequency and sound pressure level (SPL), the AE has a frequency response range of 20 Hz to 12 kHz and can sense sound signals from up to 5 m away at a frequency of 1 kHz and an SPL of 126 dB. Furthermore, through deep learning, the device achieves up to 96.9% and 95.0% accuracy in classification and recognition applications for seven emotional and eight urban environmental noises, respectively. Hence, on one hand, our device can monitor the patient's emotional state by their speech, such as sudden yelling and screaming, which can help healthcare workers understand patients' condition in time. On the other hand, the device could also be used for real-time monitoring of noise levels in aircraft, ships, factories, and other high-decibel equipment and environments.
Collapse
Affiliation(s)
- Jianfei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin 130022, China
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Jiao Suo
- CAS-CityU Joint Laboratory for Robotic Research, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Yuliang Zhao
- Department of Control Engineering, Northeastern University, Qinhuangdao, Hebei 066004, China
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Wen Jung Li
- CAS-CityU Joint Laboratory for Robotic Research, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| |
Collapse
|
25
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
26
|
Yang Y, Tang J, Guo H, Pan F, Jiang H, Wu Y, Chen C, Li X, Yuan B, Lu W. Robust and Environmentally Friendly MXene-Based Electronic Skin Enabling the Three Essential Functions of Natural Skin: Perception, Protection, and Thermoregulation. NANO LETTERS 2024; 24:10883-10891. [PMID: 39172995 DOI: 10.1021/acs.nanolett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 μm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Jie Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hongtao Guo
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Fei Pan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Chaolong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiang Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Bin Yuan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
| |
Collapse
|
27
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
28
|
Yin J, Wang S, Chen G, Xiao X, Chen J. A seamless living biointerface for inflammation management. Natl Sci Rev 2024; 11:nwae268. [PMID: 39175594 PMCID: PMC11339601 DOI: 10.1093/nsr/nwae268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
A novel living biointerface that integrates living biological and hydrogel systems, can significantly improve monitoring and treatment through enhanced interaction with biological tissues, revolutionizing our chronic inflammation management.
Collapse
Affiliation(s)
- Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, USA
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
29
|
Lv W, Yang J, Xu Q, Mehrez JAA, Shi J, Quan W, Luo H, Zeng M, Hu N, Wang T, Wei H, Yang Z. Wide-range and high-accuracy wireless sensor with self-humidity compensation for real-time ammonia monitoring. Nat Commun 2024; 15:6936. [PMID: 39138176 PMCID: PMC11322651 DOI: 10.1038/s41467-024-51279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Real-time and accurate biomarker detection is highly desired in point-of-care diagnosis, food freshness monitoring, and hazardous leakage warning. However, achieving such an objective with existing technologies is still challenging. Herein, we demonstrate a wireless inductor-capacitor (LC) chemical sensor based on platinum-doped partially deprotonated-polypyrrole (Pt-PPy+ and PPy0) for real-time and accurate ammonia (NH3) detection. With the chemically wide-range tunability of PPy in conductivity to modulate the impedance, the LC sensor exhibits an up-to-180% improvement in return loss (S11). The Pt-PPy+ and PPy0 shows the p-type semiconductor nature with greatly-manifested adsorption-charge transfer dynamics toward NH3, leading to an unprecedented NH3 sensing range. The S11 and frequency of the Pt-PPy+ and PPy0-based sensor exhibit discriminative response behaviors to humidity and NH3, enabling the without-external-calibration compensation and accurate NH3 detection. A portable system combining the proposed wireless chemical sensor and a handheld instrument is validated, which aids in rationalizing strategies for individuals toward various scenarios.
Collapse
Affiliation(s)
- Wen Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaafar Abdul-Aziz Mehrez
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Shi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Luo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Jeon J, Park JW. Stretchable Electrodes for Interconnects in Soft Electronics. NANO LETTERS 2024; 24:9553-9560. [PMID: 39041723 DOI: 10.1021/acs.nanolett.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.
Collapse
Affiliation(s)
- Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
31
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
32
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
33
|
Ji Z, Zhou J, Guo Y, Xia Y, Abkar A, Liang D, Fu Y. Achieving consistency of flexible surface acoustic wave sensors with artificial intelligence. MICROSYSTEMS & NANOENGINEERING 2024; 10:94. [PMID: 38974058 PMCID: PMC11226427 DOI: 10.1038/s41378-024-00727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 07/09/2024]
Abstract
Flexible surface acoustic wave technology has garnered significant attention for wearable electronics and sensing applications. However, the mechanical strains induced by random deformation of these flexible SAWs during sensing often significantly alter the specific sensing signals, causing critical issues such as inconsistency of the sensing results on a curved/flexible surface. To address this challenge, we first developed high-performance AlScN piezoelectric film-based flexible SAW sensors, investigated their response characteristics both theoretically and experimentally under various bending strains and UV illumination conditions, and achieved a high UV sensitivity of 1.71 KHz/(mW/cm²). To ensure reliable and consistent UV detection and eliminate the interference of bending strain on SAW sensors, we proposed using key features within the response signals of a single flexible SAW device to establish a regression model based on machine learning algorithms for precise UV detection under dynamic strain disturbances, successfully decoupling the interference of bending strain from target UV detection. The results indicate that under strain interferences from 0 to 1160 με the model based on the extreme gradient boosting algorithm exhibits optimal UV prediction performance. As a demonstration for practical applications, flexible SAW sensors were adhered to four different locations on spacecraft model surfaces, including flat and three curved surfaces with radii of curvature of 14.5, 11.5, and 5.8 cm. These flexible SAW sensors demonstrated high reliability and consistency in terms of UV sensing performance under random bending conditions, with results consistent with those on a flat surface.
Collapse
Affiliation(s)
- Zhangbin Ji
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Yihao Guo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Yanhong Xia
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Ahmed Abkar
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ UK
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| |
Collapse
|
34
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
35
|
Yang JC, Chu YH. Boosting electromechanical response via clamping. NATURE MATERIALS 2024; 23:876-877. [PMID: 38956345 DOI: 10.1038/s41563-024-01920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Affiliation(s)
- Jan-Chi Yang
- Department of Physics, National Cheng Kung University, Tainan, Taiwan.
| | - Ying-Hao Chu
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
36
|
Tian H, Liu C, Hao H, Wang X, Chen H, Ruan Y, Huang J. Recent advances in wearable flexible electronic skin: types, power supply methods, and development prospects. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1455-1492. [PMID: 38569070 DOI: 10.1080/09205063.2024.2334974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 04/05/2024]
Abstract
In recent years, wearable e-skin has emerged as a prominent technology with a wide range of applications in healthcare, health surveillance, human-machine interface, and virtual reality. Inspired by the properties of human skin, arrayed wearable e-skin is a novel technology that offers multifunctional sensing capabilities. It can detect and quantify various stimuli, mimicking the human somatosensory system, and record a wide range of physical and physiological parameters in real time. By combining flexible electronic device units with a data acquisition system, specific functional sensors can be distributed in targeted areas to achieve high sensitivity, resolution, adjustable sensing range, and large-area expandability. This review provides a comprehensive overview of recent advances in wearable e-skin technology, including its development status, types of applications, power supply methods, and prospects for future development. The emphasis of current research is on enhancing the sensitivity and stability of sensors, improving the comfort and reliability of wearable devices, and developing intelligent data processing and application algorithms. This review aims to serve as a scientific reference for the intelligent development of wearable e-skin technology.
Collapse
Affiliation(s)
- Hongying Tian
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| | - Chang Liu
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| | - Huimin Hao
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| | - Xiangrong Wang
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| | - Hui Chen
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| | - Yilei Ruan
- Chemical Engineering and Technology, North University of China, Shanxi, China
| | - Jiahai Huang
- School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Shanxi, China
| |
Collapse
|
37
|
Lu Y, Zhang H, Zhao Y, Liu H, Nie Z, Xu F, Zhu J, Huang W. Robust Fiber-Shaped Flexible Temperature Sensors for Safety Monitoring with Ultrahigh Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310613. [PMID: 38291859 DOI: 10.1002/adma.202310613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Flexible temperature sensors capable of detecting and transmitting temperature data from the human body, environment, and electronic devices hold significant potential for applications in electronic skins, human-machine interactions, and disaster prevention systems. Nonetheless, fabricating flexible temperature sensors with exceptional sensing performance remains a formidable task, primarily due to the intricate process of constructing an intrinsically flexible sensing element with high sensitivity. In this study, a facile in situ two-step synthetic method is introduced for fabricating flexible fiber-shaped NiO/carbon nanotube fiber (CNTF) composites. The resulting NiO/CNTF flexible temperature sensors demonstrate outstanding deformability and temperature sensing characteristics, encompassing a broad working range (-15 to 60 °C) and high sensitivity (maximum TCR of -20.2% °C-1 and B value of 3332 K). Importantly, the mechanical and thermal behaviors of the sensor in various application conditions are thoroughly examined using finite element analysis simulations. Moreover, the temperature sensors can effectively capture diverse thermal signals in wearable applications. Notably, a temperature monitoring and warning system is developed to prevent fire accidents resulting from abnormal thermal runaway in electronic devices.
Collapse
Affiliation(s)
- Yufei Lu
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjian Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yang Zhao
- School of Materials Science and Engineering, Hubei University, 368 Youyi Avenue, Wuhan, 430062, China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Feng Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China
| | - Wei Huang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
38
|
Zhao X, Zhou Y, Song Y, Xu J, Li J, Tat T, Chen G, Li S, Chen J. Permanent fluidic magnets for liquid bioelectronics. NATURE MATERIALS 2024; 23:703-710. [PMID: 38671161 DOI: 10.1038/s41563-024-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024]
Abstract
Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Kim SH, Basir A, Avila R, Lim J, Hong SW, Choe G, Shin JH, Hwang JH, Park SY, Joo J, Lee C, Choi J, Lee B, Choi KS, Jung S, Kim TI, Yoo H, Jung YH. Strain-invariant stretchable radio-frequency electronics. Nature 2024; 629:1047-1054. [PMID: 38778108 DOI: 10.1038/s41586-024-07383-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.
Collapse
Affiliation(s)
- Sun Hong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Abdul Basir
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Jaeman Lim
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seong Woo Hong
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Geonoh Choe
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Jin Hee Hwang
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jiho Joo
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Chanmi Lee
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Jaehoon Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Byunghun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kwang-Seong Choi
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Sungmook Jung
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Hyoungsuk Yoo
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Yang W, Lin S, Gong W, Lin R, Jiang C, Yang X, Hu Y, Wang J, Xiao X, Li K, Li Y, Zhang Q, Ho JS, Liu Y, Hou C, Wang H. Single body-coupled fiber enables chipless textile electronics. Science 2024; 384:74-81. [PMID: 38574120 DOI: 10.1126/science.adk3755] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024]
Abstract
Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.
Collapse
Affiliation(s)
- Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Shaomei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Biomass Molecular Engineering Center, College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Rongzhou Lin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Chengmei Jiang
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xin Yang
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jingjie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiao Xiao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yuxin Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
41
|
Zhang B, Li J, Zhou J, Chow L, Zhao G, Huang Y, Ma Z, Zhang Q, Yang Y, Yiu CK, Li J, Chun F, Huang X, Gao Y, Wu P, Jia S, Li H, Li D, Liu Y, Yao K, Shi R, Chen Z, Khoo BL, Yang W, Wang F, Zheng Z, Wang Z, Yu X. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024; 628:84-92. [PMID: 38538792 DOI: 10.1038/s41586-024-07161-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
42
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Wan J, Nie Z, Xu J, Zhang Z, Yao S, Xiang Z, Lin X, Lu Y, Xu C, Zhao P, Wang Y, Zhang J, Wang Y, Zhang S, Wang J, Man W, Zhang M, Han M. Millimeter-scale magnetic implants paired with a fully integrated wearable device for wireless biophysical and biochemical sensing. SCIENCE ADVANCES 2024; 10:eadm9314. [PMID: 38507494 PMCID: PMC10954204 DOI: 10.1126/sciadv.adm9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.
Collapse
Affiliation(s)
- Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Zhongyi Nie
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jie Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zixuan Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zehua Xiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Xiang Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yuxing Lu
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Chen Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pengcheng Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yiran Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jingyan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | | | - Jinzhuo Wang
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Mengdi Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
44
|
Yu H, Hu Z, He J, Ran Y, Zhao Y, Yu Z, Tai K. Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi 2Te 3 films. Nat Commun 2024; 15:2521. [PMID: 38514626 PMCID: PMC10958038 DOI: 10.1038/s41467-024-46836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Dual-parameter pressure-temperature sensors are widely employed in personal health monitoring and robots to detect external signals. Herein, we develop a flexible composite dual-parameter pressure-temperature sensor based on three-dimensional (3D) spiral thermoelectric Bi2Te3 films. The film has a (000l) texture and good flexibility, exhibiting a maximum Seebeck coefficient of -181 μV K-1 and piezoresistance gauge factor of approximately -9.2. The device demonstrates a record-high temperature-sensing performance with a high sensing sensitivity (-426.4 μV K-1) and rapid response time (~0.95 s), which are better than those observed in most previous studies. In addition, owing to the piezoresistive effect in the Bi2Te3 film, the 3D-spiral deviceexhibits significant pressure-response properties with a pressure-sensing sensitivity of 120 Pa-1. This innovative approach achieves high-performance dual-parameter sensing using one kind of material with high flexibility, providing insight into the design and fabrication of many applications, such as e-skin.
Collapse
Affiliation(s)
- Hailong Yu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhenqing Hu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Juan He
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yijun Ran
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yang Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhi Yu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Kaiping Tai
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
- Liaoning professional technology innovation center for integrated circuit thermal management, Shenyang, 110016, China.
| |
Collapse
|
45
|
Park BI, Kim J, Lu K, Zhang X, Lee S, Suh JM, Kim DH, Kim H, Kim J. Remote Epitaxy: Fundamentals, Challenges, and Opportunities. NANO LETTERS 2024; 24:2939-2952. [PMID: 38477054 DOI: 10.1021/acs.nanolett.3c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.
Collapse
Affiliation(s)
- Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kuangye Lu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyunseok Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Wang J, Qi Y, Gui Y, Wang C, Wu Y, Yao J, Wang J. Ultrastretchable E-Skin Based on Conductive Hydrogel Microfibers for Wearable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305951. [PMID: 37817356 DOI: 10.1002/smll.202305951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Conductive microfibers play a significant role in the flexibility, stretchability, and conductivity of electronic skin (e-skin). Currently, the fabrication of conductive microfibers suffers from either time-consuming and complex operations or is limited in complex fabrication environments. Thus, it presents a one-step method to prepare conductive hydrogel microfibers based on microfluidics for the construction of ultrastretchable e-skin. The microfibers are achieved with conductive MXene cores and hydrogel shells, which are solidified with the covalent cross-linking between sodium alginate and calcium chloride, and mechanically enhanced by the complexation reaction of poly(vinyl alcohol) and sodium hydroxide. The microfiber conductivities are tailorable by adjusting the flow rate and concentration of core and shell fluids, which is essential to more practical applications in complex scenarios. More importantly, patterned e-skin based on conductive hydrogel microfibers can be constructed by combining microfluidics with 3D printing technology. Because of the great advantages in mechanical and electrical performance of the microfibers, the achieved e-skin shows impressive stretching and sensitivity, which also demonstrate attractive application values in motion monitoring and gesture recognition. These characteristics indicate that the ultrastretchable e-skin based on conductive hydrogel microfibers has great potential for applications in health monitoring, wearable devices, and smart medicine.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yongkang Qi
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yuhan Gui
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Can Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yikai Wu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jiandong Yao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jie Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| |
Collapse
|
47
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
48
|
Pyun KR, Kwon K, Yoo MJ, Kim KK, Gong D, Yeo WH, Han S, Ko SH. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11:nwad298. [PMID: 38213520 PMCID: PMC10776364 DOI: 10.1093/nsr/nwad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.
Collapse
Affiliation(s)
- Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kangkyu Kwon
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Myung Jin Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305, USA
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul08826, South Korea
| |
Collapse
|
49
|
Peng Y, Peng H, Chen Z, Zhang J. Ultrasensitive Soft Sensor from Anisotropic Conductive Biphasic Liquid Metal-Polymer Gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305707. [PMID: 38053434 DOI: 10.1002/adma.202305707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Subtle vibrations, such as sound and ambient noises, are common mechanical waves that can transmit energy and signals for modern technologies such as robotics and health management devices. However, soft electronics cannot accurately distinguish ultrasmall vibrations owing to their extremely small pressure, complex vibration waveforms, and high noise susceptibility. This study successfully recognizes signals from subtle vibrations using a highly flexible anisotropic conductive gel (ACG) based on biphasic liquid metals. The relationships between the anisotropic structure, subtle vibrations, and electrical performance are investigated using rheological-electrical experiments. The refined anisotropic design successfully realized low-cost flexible electronics with ultrahigh sensitivity (Gauge Factor: 12787), extremely low detection limit (strain: 0.01%), and excellent frequency recognition accuracy (>99%), significantly surpassing those of current flexible sensors. The ultrasensitive flexible electronics in this study are beneficial for diverse advanced technologies such as acoustic engineering, wearable electronics, and intelligent robotics.
Collapse
Affiliation(s)
- Yan Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| | - Hao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| |
Collapse
|
50
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|