1
|
Dang N, San Martin J, Shaikh M, Yan Y. Ni-Doped Perovskite for Photocatalytic Benzylic C-H Amination. J Am Chem Soc 2025; 147:17273-17280. [PMID: 40338199 DOI: 10.1021/jacs.5c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Directly introducing aliphatic or aromatic amines into C(sp3)-H bonds remains a significant challenge in organic synthesis. One major difficulty is that C(sp3)-H activation is an oxidative process, whereas amines are generally more prone to oxidation than C-H bonds, making them difficult to use directly. Typically, protected amines are employed and then deprotected to realize amination, but this strategy limits the synthesis of tertiary amines, as protected secondary amines are often inactive in such reactions. Here, we present a mild photocatalytic method that overcomes these limitations by utilizing Ni-doped perovskite CsPbBr3 nanocrystals (NCs) for benzylic C-H amination directly using unprotected aliphatic or aromatic amines. Perovskite enables highly selective C-H activation, while doped Ni(II) readily captures benzylic radicals via oxidative addition. XPS studies successfully validate such an oxidative addition step with a Ni(II)/Ni(III) configuration. Our methodology forges aromatic and aliphatic, cyclic and acyclic, and secondary and tertiary amines and provides a powerful tool for the late-stage functionalization of bioactive compounds and drug derivatives.
Collapse
Affiliation(s)
- Nhu Dang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Melad Shaikh
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
2
|
Wu F, Wang H, Wu Z, Liu Y, Feng X. Solvent-Controlled Enantioselective Allylic C-H Alkylation of 2,5-Dihydrofuran via Synergistic Palladium/Nickel Catalysis. J Am Chem Soc 2025; 147:16237-16247. [PMID: 40310651 DOI: 10.1021/jacs.5c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Enantioenriched, substituted tetrahydrofuran skeletons extensively occur in natural products, bioactive targets, and organic frameworks. The rapid and diverse synthesis of these tetrahydrofuran molecules is highly desired yet challenging. Herein, we present a practical synthetic strategy for asymmetric allylic C-H bond functionalization of oxyheterocyclic alkenes by making use of the synergistic catalysis of achiral Pd complex and chiral N,N'-dioxide-Ni(II) catalyst. Notably, the chemodivergent synthesis of allylic C-H alkylated products and hydroalkylated products was readily achieved in good outcomes via the regulation of solvents. Furthermore, the post-transformation of these functionalized 2,5-dihydrofurans provides an innovative synthetic route to access tetrahydrofuran skeleton compounds containing multiple stereocenters.
Collapse
Affiliation(s)
- Fule Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Hongkai Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Zhenwei Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Liu Z, Li P, Wang H, Zhang J, Huo X, Sun ZL, Zhang W. Ternary Aldehyde-Copper-Iridium Catalysis Enables Stereodivergent Allylation via α-C-H Functionalization of Primary Amines. Angew Chem Int Ed Engl 2025:e202508335. [PMID: 40324954 DOI: 10.1002/anie.202508335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
α-Chiral primary amines are recognized as one of the most valuable and versatile synthetic intermediates, widely utilized in the construction of diverse amine-containing natural products, pharmaceuticals, and agrochemicals. The direct asymmetric α-C-H functionalization of unprotected primary amines is the most straightforward method for creating these motifs. However, this transformation remains underdeveloped, particularly in stereodivergent synthesis of primary amines with multiple stereocenters. Herein, we report an aldehyde/copper/iridium ternary catalytic system, which was successfully employed for the direct enantio- and diastereodivergent α-allylation of primary α-amino-chromanone without requiring additional protection or activation of the NH2 group. A wide range of α-tertiary primary amines bearing vicinal stereocenters were prepared in high yields with excellent enantio- and diastereoselectivities (generally >20:1 dr and >99% ee). Notably, all four stereoisomers of the α-tertiary amines can be readily prepared by simply switching the configuration combinations of the two chiral metal catalysts. Furthermore, the asymmetric induction model for the α-C-H functionalization of primary amines was meticulously elucidated through comprehensive density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Zijiao Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen-Liang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
McLaren EJ, Feng G, Watkins NH, Wang Q. Copper-Catalyzed Allylic Amination of Alkenes Using O-Acylhydroxylamines: A Direct Entry to Diverse N-Alkyl Allylamines. ACS Catal 2025; 15:7441-7447. [PMID: 40370954 PMCID: PMC12074669 DOI: 10.1021/acscatal.5c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
We report a copper-catalyzed direct allylic amination of alkenes using readily available O-benzyolhydroxylamines as the alkylamine precursors and internal oxidant. A range of primary and secondary alkylamines can be installed onto diversely substituted alkenes for rapid construction of N-alkyl allylamines. Mechanistic studies support that the reaction engages an initial electrophilic amination to alkenes with anti-Markovnikov selectivity and subsequently a regioselective oxidative elimination to furnish the double bond transposition. In the electrophilic amination step, the use of strong Brønsted acid is critical for generating the key aminium radical cation (ARC) species.
Collapse
Affiliation(s)
- Eric J. McLaren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Guangshou Feng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Noah H. Watkins
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Li J, Yang T, Chen P, Shiri F, Guan H, Lin Z, Liu G. Mechanistic Insights into Copper-Catalyzed Asymmetric Cyanation of Allylic C-H Bonds. J Am Chem Soc 2025; 147:14756-14768. [PMID: 40254979 DOI: 10.1021/jacs.5c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Direct C-H bond functionalization has emerged as one of the most powerful and practical strategies for the modification of drug molecules. We have recently disclosed a Cu/NFAS (NFAS = N-fluoroalkyl sufonamide) catalytic system that exhibits high site-, regio-, and enantioselectivity for the direct cyanation of allylic C-H bonds. Here, we present a mechanistic investigation of this catalyst system, including the elucidation of side reactions involved in the transformation. This work focuses on an in-depth analysis of the catalytic cycle based on kinetic studies by NMR spectroscopy and characterization of the catalyst speciation by EPR and UV-vis spectroscopy. These studies indicate that a fraction of NFAS is sacrificed to the side reactions of the Cu(II)-bounded N-centered radical (Cu(II)-NCR) species for the generation of silylated sulfonamides and (CN)2. The data also show a great dependence of the reaction yield and selectivity (hydrogen atom abstraction or HAA over side reactions) on the structure of the Cu(II)-NCR species. Kinetic studies and DFT calculations further reveal that oxidation of the CuCN species by NFAS, HAA process, and cyanation of Cu(II)-NCRs with TMSCN have comparable energy barriers, which collectively determine the rate of the overall C-H cyanation reaction.
Collapse
Affiliation(s)
- Jiayuan Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Pinhong Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Farshad Shiri
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guosheng Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Wang H, Song L, Huang J, Wu F, Yang Z, Liu Y, Wu YD, Feng X. Regiodivergent and Enantioselective Allylic C-H Alkylation of Allyl Ethers: Optimization, Scope, Mechanism and Application. Angew Chem Int Ed Engl 2025; 64:e202500125. [PMID: 39972193 DOI: 10.1002/anie.202500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Vinyl ethers and allyl ethers are important motifs in natural products and pharmaceuticals. Among various methods toward their synthesis, direct allylic C-H functionalization of allyl ethers is one of the most efficient approaches. In this study, one of two regioisomers, a vinyl ether or an allyl ether, could be obtained, depending on whether a Lewis acid co-catalyst was present. Furthermore, branched allyl ethers were smoothly prepared in excellent regio- and enantioselectivity (up to 20 : 1 b/l, 99 % ee) by synergistic catalysis with an achiral Pd(0) complex and a chiral Lewis acid catalyst.
Collapse
Affiliation(s)
- Hongkai Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jing Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fule Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yun-Dong Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
7
|
Cheng A, Gu X, Yang C, Liu M, Zhang B, Liu H, Chen X, Feng A, Smith PES, Jiang J, Luo Y, Huang W, Zhang G. Rapid Fluorochromic Sensing of Tertiary Amines and Opioids via Dual-Emissive Ground and Excited Charge-Transfer States. J Am Chem Soc 2025; 147:13512-13521. [PMID: 40227250 DOI: 10.1021/jacs.5c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The recognition and differentiation of organic amines are crucial for applications in drug analysis, food spoilage, biomedical assays, and clinical diagnostics. Existing luminescence-based recognition methods for amines predominantly rely on fluorescence quenching, limiting the scope of sensitive and selective detection. Here, we present a fluorochromic approach for rapidly distinguishing different organic amines based on their unique excited-state and ground-state interactions with a naphthalimide derivative under ultraviolet light. Our findings reveal that the photoluminescence quantum yield and emission color are significantly influenced by the substituent group and the molecular flexibility of the amine. Specifically, primary amines, together with other common lone-pair donors, such as alcohol, ether, thiol, thioether, and phosphine, did not exhibit photoluminescence changes, while secondary amines exhibited only weak emission. For tertiary amines, however, bright green photoluminescence activation was rapidly produced for molecules containing at least one methyl group; red-shifted yellow emission was observed for ones with bulkier side groups other than methyl; and for conformationally locked bicycloamines, no emission was observed. In addition, this fluorochromic process of the naphthalimide derivative not only depends on tertiary amine substituent groups but also shows distinctly different ground- and excited-state photoluminescence dynamics in time-resolved spectroscopy. Based on these differences, a qualitative method is developed for visual recognition of natural and synthetic opioids, including heroin, fentanyl, and metonitazene, which is more facile and rapid compared to current methods such as the Marquis reagent kit, and could facilitate onsite testing, real-time monitoring, and streamlined workflows in both laboratory and field settings.
Collapse
Affiliation(s)
- Aoyuan Cheng
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuewen Gu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengze Yang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mei Liu
- Yunnan Key Laboratory of Intelligent Drug Control, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Baicheng Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongping Liu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Chen
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Airong Feng
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pieter E S Smith
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhuan Huang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Chen Y, Wang X, Shan JR, Wu Z, Cao R, Liu Y, Jin Y, Hao E, Houk KN, Shi L. Chemoselective Functionalization of Tertiary C-H Bonds of Allylic Ethers: Enantioconvergent Access to sec,tert-Vicinal Diols. Angew Chem Int Ed Engl 2025; 64:e202501924. [PMID: 39932430 DOI: 10.1002/anie.202501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C-H bonds in allyl ethers instead of cleaving the C-O bond. The resulting allyl-Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylic sec,tert-vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo- and enantioselectivity (up to 20 : 1 dr, 99 % ee). Mechanistic studies suggested that allyl-NiII acts as the nucleophilic species in the coupling reaction with carbonyls.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Xin Wang
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Zhixian Wu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Renxu Cao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yunhe Jin
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
9
|
Cheung KPS, Gevorgyan V. Illuminating Palladium Catalysis. Acc Chem Res 2025; 58:861-876. [PMID: 40009731 DOI: 10.1021/acs.accounts.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
ConspectusThe past decade has witnessed significant advancements of visible-light-induced photocatalysis, establishing it as a powerful and versatile tool in organic synthesis. The major focus of this field has centered on the development of methodologies that either rely solely on photocatalysts or combine photocatalysis with other catalytic methods, such as transition metal catalysis, to address a broader and more diverse array of transformations. Within this rapidly evolving area, a subfield that we refer to as transition metal photocatalysis has garnered significant attention due to its growing impact and mechanistic uniqueness. A distinguishing feature of this subfield is the dual functionality of a single transition metal complex, which not only acts as a photocatalyst to initiate photochemical processes but also functions as a traditional catalyst, facilitating key bond-breaking and bond-forming events. As such, an exogenous photocatalyst is not required in transition metal photocatalysis. However, the implications of harnessing both the excited- and ground-state reactivities of the transition metal complex can extend beyond this simplification. One of the most compelling aspects of this area is that photoexcited transition metal complexes can exhibit unique reactivities inaccessible through conventional thermal or dual photocatalytic approaches. These distinct reactivities can be leveraged to accomplish novel transformations either by engaging an entirely different substrate pool or by unlocking new reactivities of known substrates.In 2016, our group pioneered the use of phosphine-ligated palladium catalysts that can be photoexcited upon visible-light irradiation to engage diverse substrates in radical reactions. In our initial discovery, we showed that photoexcitation can redirect the well-established oxidative addition of a Pd(0) complex into aryl iodides toward an unprecedented radical process, generating hybrid aryl Pd(I) radical species. We subsequently extended this novel strategy to the formation of alkyl radicals from alkyl halides. These reactive radical intermediates have been harnessed in a wide variety of transformations, including desaturation, alkyl Heck reactions, and alkene difunctionalization cascades, among others.Seeking to further expand this new avenue, we achieved the first example of asymmetric palladium photocatalysis in the context of allylic C-H amination, where the palladium catalyst now plays triple duty by additionally controlling the stereochemical outcome of the reaction. In parallel to reaction discovery, we have also established that diazo compounds, strained molecules, and electron-deficient alkenes can serve as alkyl radical precursors beyond organic halides and redox-active esters. Notably, the engagement of electron-deficient alkenes has been made possible by the photoinduced hydricity enhancement of Pd-H species, representing a new mode of photoexcited reactivity.This Account presents our discovery and development of visible-light-induced palladium catalysis, organized by the type of transformations explored. Given the rapid progress in the field, we anticipate that this Account will provide readers with guiding principles and inspiration for designing and developing more efficient and novel transformations.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
10
|
Liu F, Dong J, Cheng R, Yin SF, Chen L, Su L, Qiu R, Zhou Y, Han LB, Li CJ. Direct carbonyl reductive functionalizations by diphenylphosphine oxide. SCIENCE ADVANCES 2025; 11:eads4626. [PMID: 39919176 PMCID: PMC11804924 DOI: 10.1126/sciadv.ads4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Reductive functionalization of aldehydes and ketones is one of the most challenging but ultimately rewarding areas in synthetic chemistry and related sciences. We report a simple and extremely versatile carbonyl reductive functionalization strategy achieving direct, highly selective, and efficient reductive amination, etherification, esterification, and phosphinylation reactions of (hetero)aryl aldehydes and ketones, which are extremely challenging or unattainable to achieve by traditional strategies, using only diphenylphosphine oxide and an inorganic base. It enables modular synthesis of functionally and structurally diverse tertiary amines, ethers, esters, phosphine oxides, etc., as well as related pesticides, drug intermediates, and pharmaceuticals. Compared to phosphorus-mediated name reactions, this strategy firstly transformed C═O bonds into C-element single bonds. Mechanistically, phosphinates are formed as intermediates, which undergo unconventional nucleophilic substitution at the C atom within their C─O─P unit. Thus, this work provides important strides in the field of reductive functionalization of aldehydes/ketones, phosphorus-mediated transformation, and various fundamental reactions.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Ruofei Cheng
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, Quebec H3A0B8, Canada
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lebin Su
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Renhua Qiu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li-Biao Han
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, Quebec H3A0B8, Canada
| |
Collapse
|
11
|
Liu F, Yan X, Cai F, Hou W, Dong J, Yin SF, Huang G, Chen T, Szostak M, Zhou Y. Divergent alkynylative difunctionalization of amide bonds through C-O deoxygenation versus C-N deamination. Nat Commun 2025; 16:1294. [PMID: 39900580 PMCID: PMC11791076 DOI: 10.1038/s41467-024-55618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
The transformation and utilization of amides are significant in organic synthesis and drug discovery. Here we demonstrate a divergent alkynylative difunctionalization of amides in a single transformation. In this reaction, amides react with an organometallic nucleophile to form a tetrahedral intermediate. By altering the N-substitution or the acyl group, the tetrahedral intermediate species selectively undergoes C-O or C-N cleavage with a concomitant capture by an alkynyl nucleophile generated in situ. This process enables the selective introduction of two different functional groups into the amide molecular architecture, producing valuable propargyl amine and propargyl alcohol products. The selectivity between deoxygenation and deamination process has been further elucidated by DFT calculations. Overall, this reaction successfully transforms the traditional mode of nucleophilic acyl addition to amides to a divergent C-O/C-N cleavage. The particularly wide substrate scope, including late-stage modification of bioactive molecules, demonstrates its potential broad applications in organic synthesis.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fangfang Cai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jianyu Dong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, USA.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
12
|
Wang L, She Y, Xiao J, Li ZH, Zhang SY, Lian PF, Ding TM, Zhang SY. Allylic C-H oxygenation of unactivated internal olefins by the Cu/azodiformate catalyst system. Nat Commun 2025; 16:870. [PMID: 39833256 PMCID: PMC11756401 DOI: 10.1038/s41467-025-56230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation. Key advances include the use of a Cu/Azodiformate catalyst system to facilitate remote allylic C-H activation and the achievement of excellent chemoselectivity through a dynamic ligand exchange strategy using a bis(sulfonamide) ligand. This method features a broad substrate scope and functional group tolerance, successfully applied to the synthesis of various challenging medium-sized cyclic ethers (7-10 members) and large-ring lactones (14-20 members), with high regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuan She
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jie Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shen-Yuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
13
|
Su L, Dong J, Shen Y, Xie S, Wu S, Pan N, Liu F, Shang Q, Cai F, Ren TB, Yuan L, Yin SF, Han LB, Zhou Y. General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines. Nat Commun 2025; 16:169. [PMID: 39746930 PMCID: PMC11696898 DOI: 10.1038/s41467-024-54190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods. Copper(III)-acetylide species are involved in driving the exclusive 7-endo-dig cyclization, suppressing many side-reactions that are susceptible to occur. Due to the easy introduction of various functional units into heteropolyarylamines, multiple functionalized fluorescent dyes can be arbitrarily synthesized, which can serve as effective fluorescent probes for monitoring the pathological processes (e.g. chemotherapy-induced cell apoptosis) and studying the related disease mechanisms.
Collapse
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shimin Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Fangfang Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
14
|
Shaikh M, Rubalcaba K, Yan Y. Halide Perovskite Induces Halogen/Hydrogen Atom Transfer (XAT/HAT) for Allylic C-H Amination. Angew Chem Int Ed Engl 2025; 64:e202413012. [PMID: 39231037 DOI: 10.1002/anie.202413012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Allylic C-H amination has emerged as a powerful tool to construct allylamines, common motifs in molecular therapeutics. Such reaction implies an oxidative path for C-H activation but furnishes reductive amines, inferring mild oxidants' inactivity for C-H oxidation but strong oxidants' detriment to products. Herein we report a heterogeneous catalytic approach that manipulates halogen-vacancies of perovskite photocatalyst and exploits halogenated-solvents (i.e. CH2Cl2, CH2Br2) as mild oxidants for selective C-H allyl amination with 19,376 turnovers. CsPbBr3 nanocrystals induce cooperative hydrogen-atom-transfer (HAT, C-H oxidation, and halogen-vacancy CsPbBr3-x formation) and halogen-atom-transfer (XAT, CsPbBr3-x-induced solvent reduction) under a radical chain mechanism. Terminal/internal olefins are amenable to forge aromatic/aliphatic, cyclic/acyclic, secondary/tertiary allylamines (70 examples), including drugs or their derivatives.
Collapse
Affiliation(s)
- Melad Shaikh
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Kevin Rubalcaba
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| |
Collapse
|
15
|
Cai S, Zhao Z, Yang G, Huang H. Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines. Nat Chem 2024:10.1038/s41557-024-01673-z. [PMID: 39558140 DOI: 10.1038/s41557-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners. A series of amines sharing similar three-dimensional structures and properties, as well as possessing notoriously strong binding ability to metals, can be efficiently differentiated, enabling the highly chemo-, regio- and enantioselective multicomponent aminomethylamination of dienes to construct a variety of unsymmetrical chiral diamines. This dynamic amine-sorting strategy tackles the long-standing challenge of precise differentiation and orderly incorporation of aliphatic amines with subtle differences. From a broader perspective, the success demonstrates that meticulously designed metal complexes can provide flexible and general solutions for controlling delicate selectivities in sophisticated synthesis.
Collapse
Affiliation(s)
- Shoule Cai
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Guoqing Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, P. R. China.
| |
Collapse
|
16
|
Wang L, Khan S, Perveen S, Zhang J, Khan A. Molybdenum Complex-Catalyzed N-Alkylation of Bulky Primary and Secondary Amines. J Org Chem 2024; 89:16510-16521. [PMID: 39491543 DOI: 10.1021/acs.joc.4c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Aliphatic allylic amines are present in a large number of complex and pharmaceutically relevant molecules. The direct amination of allylic electrophiles serves as the most common method toward the preparation of these motifs. However, the use of feedstock reaction components (allyl alcohol and aliphatic amine) in these transformations remains a great challenge. Such a challenge primarily stems from the high Lewis basicity and large steric hindrance of aliphatic amines, in addition to the low reactivity of allylic alcohols. Herein, we report a general solution to these challenges. The developed protocol allows an efficient allylic amination of allyl alcohols with sterically bulky aliphatic amines in the presence of an inexpensive earth-abundant molybdenum complex. This simple and economic protocol also enables regioselective branched amination; the practicality of the reaction was shown in an efficient, scaled-up synthesis of several drugs.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
17
|
Lu J, Yuan K, Zheng J, Zhang H, Chen S, Ma J, Liu X, Tu B, Zhang G, Guo R. Photoinduced Electron Donor Acceptor Complex-Enabled α-C(sp 3)-H Alkenylation of Amines. Angew Chem Int Ed Engl 2024; 63:e202409310. [PMID: 39001611 DOI: 10.1002/anie.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/25/2024]
Abstract
Allylic amines are prevalent and vital structural components present in many bioactive compounds and natural products. Additionally, they serve as valuable intermediates and building blocks, with wide-ranging applications in organic synthesis. However, direct α-C(sp3)-H alkenylation of feedstock amines, particularly for the preparation of α-alkenylated cyclic amines, has posed a longstanding challenge. Herein, we present a general, mild, operationally simple, and transition-metal-free α-alkenylation of various readily available amines with alkenylborate esters in excellent E/Z - and diastereoselectivities. This method features good compatibility with water and oxygen, broad substrate scope, and excellent functional group tolerance, thereby enabling the late-stage modification of various complex molecules. Mechanistic studies suggest that the formation of a photoactive electron donor-acceptor complex between 2-iodobenzamide and the tetraalkoxyborate anion, which subsequently undergoes photoinduced single electron transfer and intramolecular 1,5-hydrogen atom transfer to generate the crucial α-amino radicals, is the key to success of this chemistry.
Collapse
Affiliation(s)
- Jianzhong Lu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Kaiyao Yuan
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Jialian Zheng
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - He Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Shuting Chen
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Ji Ma
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Xinyu Liu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Binbin Tu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Rui Guo
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
18
|
Nong ZS, Wang PS, Zhou QL, Gong LZ. Palladium-Catalyzed Branch-Selective Allylic C-H Amination Enabled by Nucleophile Coordination. Org Lett 2024; 26:8481-8485. [PMID: 39331493 DOI: 10.1021/acs.orglett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Regiochemical control is a central subject in the field of synthetic chemistry. Here we unveil an innovative approach for the branch-selective allylic C-H amination of α-alkenes with amine nucleophiles facilitated by phosphoramidite-palladium catalysis. A diverse array of α-alkenes has been effectively utilized to produce a variety of structurally distinct allylamines with moderate to excellent regioselectivity. Furthermore, the asymmetric version of this reaction is feasible through the use of chiral phosphoramidite ligands, albeit with currently modest enantioselectivity.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Lin Zhou
- Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Kaster SHM, Zhu L, Lyon WL, Ma R, Ammann SE, White MC. Palladium-catalyzed cross-coupling of alcohols with olefins by positional tuning of a counteranion. Science 2024; 385:1067-1076. [PMID: 39236162 PMCID: PMC11916021 DOI: 10.1126/science.ado8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp3)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand's geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate's hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.
Collapse
Affiliation(s)
- Sven H M Kaster
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Lei Zhu
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - William L Lyon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Rulin Ma
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Stephen E Ammann
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| |
Collapse
|
20
|
Li P, Zheng E, Li G, Luo Y, Huo X, Ma S, Zhang W. Stereodivergent access to non-natural α-amino acids via enantio- and Z/ E-selective catalysis. Science 2024; 385:972-979. [PMID: 39208090 DOI: 10.1126/science.ado4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The precise control of Z and E configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(Z,R), (Z,S), (E,R), (E,S)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and Z/E selectivities. This success is achieved through a palladium/copper-cocatalyzed three-component assembly of readily available aryl iodides, allenes, and aldimine esters by simply tuning the chiral ligands of the palladium and copper catalysts.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Ding Y, Wu J, Zhang T, Liu H, Huang H. Site-Selective Carbonylative Cyclization with Two Allylic C-H Bonds Enabled by Radical Differentiation. J Am Chem Soc 2024; 146:19635-19642. [PMID: 38980114 DOI: 10.1021/jacs.4c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Controlling the site-selectivity of C-H functionalization is of significant importance and a formidable undertaking in synthetic organic chemistry, motivating the continuing development of efficient and sustainable technologies for activating C-H bonds. However, methods that control the site-selectivity for double C-H functionalization are rare. We herein report a conceptually new method to achieve highly site-selective C-H functionalization by implementing a radical single-out strategy. Leveraging the steric hindrance-sensitive CO-insertion as the radical differentiation process, a site-selective and stereoselective carbonylative formal [2 + 2] cycloaddition of imines and alkenes by sequential double allylic C-H bond activation was established without special and complicated HAT-reagents. This reaction was compatible with a wide range of alkenes and imines with diverse skeletons to deliver allylic β-lactams that are of synthetic and medicinal interest.
Collapse
Affiliation(s)
- Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianing Wu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianze Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
22
|
Gao X, He H, Miao K, Zhang L, Ni SF, Li M, Guo W. Electrochemical Allylic C(sp 3)-H Isothiocyanation via [3,3]-Sigmatropic Rearrangement. Org Lett 2024; 26:4554-4559. [PMID: 38767297 DOI: 10.1021/acs.orglett.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The direct allylic C(sp3)-H functionalization provides a straightforward protocol for the synthesis of valuable molecules. We report herein the first chemo- and site-selective method for allylic C(sp3)-H isothiocyanation of various internal alkenes under mild electrochemical conditions. This method exhibits broad functional group tolerance and excellent selectivity and can be applied for late-stage isothiocyanation of bioactive molecules. Combined experimental and computational studies indicate that the reaction proceeds via an unexpected [3,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Xuezhuang Gao
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Hui He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063 Guangdong, P. R. China
| | - Kaili Miao
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Linbao Zhang
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063 Guangdong, P. R. China
| | - Ming Li
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Weisi Guo
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| |
Collapse
|
23
|
Kim MJ, Targos K, Holst DE, Wang DJ, Wickens ZK. Alkene Thianthrenation Unlocks Diverse Cation Synthons: Recent Progress and New Opportunities. Angew Chem Int Ed Engl 2024; 63:e202314904. [PMID: 38329158 PMCID: PMC11503931 DOI: 10.1002/anie.202314904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 02/09/2024]
Abstract
Oxidative alkene functionalization reactions are a fundamental class of complexity-building organic transformations. However, the majority of established approaches rely on electrophilic reagents that limit the diversity of groups that can be installed. Recent advances have established a new approach that instead relies on the transformation of alkenes into thianthrene-derived cationic electrophiles. These linchpin intermediates can be generated selectively and undergo a diverse array of mechanistically distinct reactions with abundant nucleophiles. Taken together, this unlocks a suite of net oxidative alkene transformations that have been elusive using conventional strategies. This Minireview describes these advances and is organized around the three distinct synthons formally accessible from alkenes via thianthrenation: 1) alkenyl cations; 2) vicinal dications; 3) allyl cations. Throughout the Minireview, we illustrate how thianthrenium salts address key limitations endemic to classic alkene-derived electrophiles and highlight the mechanistic origins of these distinctions wherever possible.
Collapse
Affiliation(s)
| | | | - Dylan E. Holst
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| |
Collapse
|
24
|
Luo X, Shen J, Jiang H, Huang L. Ruthenium-Catalyzed C-H Arylation of Aromatic Acids with ortho-Haloaniline To Access Phenanthridinones. Org Lett 2024; 26:2883-2887. [PMID: 38385698 DOI: 10.1021/acs.orglett.3c04377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Phenanthridinone is a significant moiety in pharmaceutical and material science; thus, it is highly desirable to develop an efficient and robust method to construct phenanthridinone from readily available starting materials. Herein, we report a Ru-catalyzed C-H arylation of aromatic carboxylic acids with ortho-haloanilines, followed by intramolecular dehydration to afford phenanthridinones in high yields.
Collapse
Affiliation(s)
- Xianglin Luo
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiayi Shen
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
25
|
Ren YF, Chen BH, Chen XY, Du HW, Li YL, Shu W. Direct synthesis of branched amines enabled by dual-catalyzed allylic C─H amination of alkenes with amines. SCIENCE ADVANCES 2024; 10:eadn1272. [PMID: 38578992 PMCID: PMC10997203 DOI: 10.1126/sciadv.adn1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.
Collapse
Affiliation(s)
- Yu-Feng Ren
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Bi-Hong Chen
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Xiao-Yi Chen
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Hai-Wu Du
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000 Zigong, P. R. China
| | - Wei Shu
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000 Zigong, P. R. China
| |
Collapse
|
26
|
Cai Y, Gaurav G, Ritter T. 1,4-Aminoarylation of Butadienes via Photoinduced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311250. [PMID: 38334292 DOI: 10.1002/anie.202311250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
A visible-light-induced, three-component palladium-catalyzed 1,4-aminoarylation of butadienes with readily available aryl halides and aliphatic amines has been developed, affording allylamines with excellent E-selectivity. The reaction exhibits exceptional control over chemo-, regio-, and stereoselectivity, a broad substrate scope, and high functional group compatibility, as demonstrated by the late-stage functionalization of bioactive molecules. Mechanistic investigations are consistent with a photoinduced radical Pd(0)-Pd(I)-Pd(II)-Pd(0) Heck-Tsuji-Trost allylation cascade.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Gaurav Gaurav
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov OV, Jin S. Cobalt-Catalyzed Carbon-Heteroatom Transfer Enables Regioselective Tricomponent 1,4-Carboamination. J Am Chem Soc 2024; 146:8508-8519. [PMID: 38382542 DOI: 10.1021/jacs.3c14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kaitong Zhuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yangyang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Shuyu Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Huiying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Siwen Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kunzhi Shen
- Shenyang Photosensitive Chemical Research Institute Company Limited, 8-12 No. 6 Road, Shenyang 110141, P. R. China
| | - Yao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
28
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
29
|
Wang L, Wang CL, Li ZH, Lian PF, Kang JC, Zhou J, Hao Y, Liu RX, Bai HY, Zhang SY. Cooperative Cu/azodiformate system-catalyzed allylic C-H amination of unactivated internal alkenes directed by aminoquinoline. Nat Commun 2024; 15:1483. [PMID: 38374064 PMCID: PMC10876528 DOI: 10.1038/s41467-024-45875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Aliphatic allylic amines are common in natural products and pharmaceuticals. The oxidative intermolecular amination of C(sp3)-H bonds represents one of the most straightforward strategies to construct these motifs. However, the utilization of widely internal alkenes with amines in this transformation remains a synthetic challenge due to the inefficient coordination of metals to internal alkenes and excessive coordination with aliphatic and aromatic amines, resulting in decreasing the reactivity of the catalyst. Here, we present a regioselective Cu-catalyzed oxidative allylic C(sp3)-H amination of internal olefins with azodiformates to these problems. A removable bidentate directing group is used to control the regiochemistry and stabilize the π-allyl-metal intermediate. Noteworthy is the dual role of azodiformates as both a nitrogen source and an electrophilic oxidant for the allylic C-H activation. This protocol features simple conditions, remarkable scope and functional group tolerance as evidenced by >40 examples and exhibits high regioselectivity and excellent E/Z selectivity.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Cheng-Long Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
30
|
Marchese AD, Dorsheimer JR, Rovis T. Photoredox-Catalyzed Generation of Tertiary Anions from Primary Amines via a Radical Polar Crossover. Angew Chem Int Ed Engl 2024; 63:e202317563. [PMID: 38189622 PMCID: PMC10873470 DOI: 10.1002/anie.202317563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/09/2024]
Abstract
A method for the generation of tertiary carbanions via a deaminative radical-polar crossover is reported using redox active imines from α-tertiary primary amines. A variety of benzylic amines and amino esters can be used in this approach, with the latter engaging in a novel "aza-Reformatsky" reaction. Electronic trends correlate the stability of the resulting carbanion with reaction efficiency. The anions can be trapped with different electrophiles including aldehydes, ketones, imines, Michael acceptors, and H2 O/D2 O. Selective anion formation can be achieved in the presence of another equivalent or more acidic C-H bond in both an inter- and intramolecular fashion. Mechanistic studies suggest the intermediacy of a discrete carbanion intermediate.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Julia R. Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Liu L, Luo R, Tong J, Liao J. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes. Org Biomol Chem 2024; 22:585-589. [PMID: 38131265 DOI: 10.1039/d3ob01753b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Allylic amination is a powerful tool for constructing N-allylic amines widely found in bioactive molecules. Generally, allylic alcohols and unsaturated hydrocarbons have been considered for allylic amination reactions to minimize waste production. Herein, we present an iridium-catalysed method for reductive allylic amination of α,β-unsaturated aldehydes with amines to afford N-allylic amines under air conditions. This protocol is demonstrated to provide products from many substrates (41 examples) in moderate-to-excellent yields. This synthetic methodology is also highlighted by the synthesis of drug molecules, optically pure products, as well as scale-up experiments.
Collapse
Affiliation(s)
- Liang Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, 512005, Guangdong Province, P. R. China
| | - Jinghui Tong
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
32
|
Liao P, Kang J, Xiang R, Wang S, Li G. Electrocatalytic Systems for NO x Valorization in Organonitrogen Synthesis. Angew Chem Int Ed Engl 2024; 63:e202311752. [PMID: 37830922 DOI: 10.1002/anie.202311752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Inorganic nitrogen oxide (NOx ) species, such as NO, NO2 , NO3 - , NO2 - generated from the decomposition of organic matters, volcanic eruptions and lightning activated nitrogen, play important roles in the nitrogen cycle system and exploring the origin of life. Meanwhile, excessive emission of NOx gases and residues from industry and transportation causes troubling problems to the environment and human health. How to efficiently handle these wastes is a global problem. In response to the growing demand for sustainability, scientists are actively pursuing sustainable electrochemical technologies powered by renewable energy sources and efficient utilization of hydrogen energy to convert NOx species into high-value organonitrogen chemicals. In this minireview, recent advances of electrocatalytic systems for NOx species valorization in organonitrogen synthesis are classified and described, such as amino acids, amide, urea, oximes, nitrile etc., that have been widely applied in medicine, life science and agriculture. Additionally, the current challenges including multiple side reactions and complicated paths, viable solutions along with future directions ahead in this field are also proposed. The coupling electrocatalytic systems provide a green mode for fixing nitrogen cycle bacteria and bring enlightenment to human sustainable development.
Collapse
Affiliation(s)
- Peisen Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Runan Xiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Landge VG, Mishra A, Thotamune W, Bonds AL, Alahakoon I, Karunarathne A, Young MC. Selective C-H Activation of Unprotected Allylamines by Control of Catalyst Speciation. CHEM CATALYSIS 2023; 3:100809. [PMID: 37982045 PMCID: PMC10653252 DOI: 10.1016/j.checat.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An outstanding challenge in the Pd-catalyzed functionalization of allylamines is the control of stereochemistry. Terminal alkenes preferentially undergo Heck-type reactions, while internal alkenes may undergo a mixture of Heck and C-H activation reactions that give mixtures of stereochemical products. In the case of unprotected allylamines, the challenge in achieving C-H activation is that facile in situ formation of Pd nanoparticles leads to preferential formation of trans rather than cis-substituted products. In this study we have demonstrated the feasibility of using mono-protected amino acid (MPAA) ligands as metal protecting groups to prevent aggregation and reduction, allowing the selective synthesis of free cis-arylated allylamines. This method complements Heck-selective methods, allowing complete stereochemical control over the synthesis of cinnamylamines, an important class of amine that can serve as therapeutics directly or as advanced intermediates. To highlight the utility of the methodology, we have demonstrated rapid access to mu opioid receptor ligands.
Collapse
Affiliation(s)
- Vinod G. Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ankita Mishra
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Audrey L. Bonds
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Indunil Alahakoon
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Michael C. Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
34
|
Arachchi MK, Schaugaard RN, Schlegel HB, Nguyen HM. Scope and Mechanistic Probe into Asymmetric Synthesis of α-Trisubstituted-α-Tertiary Amines by Rhodium Catalysis. J Am Chem Soc 2023; 145:19642-19654. [PMID: 37651695 PMCID: PMC10581542 DOI: 10.1021/jacs.3c04211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Asymmetric reactions that convert racemic mixtures into enantioenriched amines are of significant importance due to the prevalence of amines in pharmaceuticals, with about 60% of drug candidates containing tertiary amines. Although transition-metal catalyzed allylic substitution processes have been developed to provide access to enantioenriched α-disubstituted allylic amines, enantioselective synthesis of sterically demanding α-tertiary amines with a tetrasubstituted carbon stereocenter remains a major challenge. Herein, we report a chiral diene-ligated rhodium-catalyzed asymmetric substitution of racemic tertiary allylic trichloroacetimidates with aliphatic secondary amines to afford α-trisubstituted-α-tertiary amines. Mechanistic investigation is conducted using synergistic experimental and computational studies. Density functional theory calculations show that the chiral diene-ligated rhodium promotes the ionization of tertiary allylic substrates to form both anti and syn π-allyl intermediates. The anti π-allyl pathway proceeds through a higher energy than the syn π-allyl pathway. The rate of conversion of the less reactive π-allyl intermediate to the more reactive isomer via π-σ-π interconversion was faster than the rate of nucleophilic attack onto the more reactive intermediate. These data imply that the Curtin-Hammett conditions are met in the amination reaction, leading to dynamic kinetic asymmetric transformation. Computational studies also show that hydrogen bonding interactions between β-oxygen of allylic substrate and amine-NH greatly assist the delivery of amine nucleophile onto more hindered internal carbon of the π-allyl intermediate. The synthetic utility of the current methodology is showcased by efficient preparation of α-trisubstituted-α-tertiary amines featuring pharmaceutically relevant secondary amine cores with good yields and excellent selectivities (branched-linear >99:1, up to 99% enantiomeric excess).
Collapse
Affiliation(s)
- Madhawee K Arachchi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
35
|
Kvasovs N, Fang J, Kliuev F, Gevorgyan V. Merging of Light/Dark Palladium Catalytic Cycles Enables Multicomponent Tandem Alkyl Heck/Tsuji-Trost Homologative Amination Reaction toward Allylic Amines. J Am Chem Soc 2023; 145:18497-18505. [PMID: 37556443 PMCID: PMC10750327 DOI: 10.1021/jacs.3c04968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A visible light-induced palladium-catalyzed homologative three-component synthesis of allylic amines has been developed. This protocol proceeds via a unique mechanism involving two distinct cycles enabled by the same Pd(0) catalyst: a visible light-induced hybrid radical alkyl Heck reaction between 1,1-dielectrophile and styrene, followed by the "in dark" classical Tsuji-Trost-type allylic substitution reaction. This method works well with a broad range of primary and secondary amines, aryl alkenes, dielectrophiles, and in complex settings. The regiochemistry of the obtained products is primarily governed by the structure of 1,1-dielectrophile. Involvement of π-allyl palladium intermediates allowed for the control of stereoselectivity, which has been demonstrated with up to 95:5 er.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Fedor Kliuev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
36
|
Xiao WG, Xuan B, Xiao LJ, Zhou QL. Practical synthesis of allylic amines via nickel-catalysed multicomponent coupling of alkenes, aldehydes, and amides. Chem Sci 2023; 14:8644-8650. [PMID: 37592986 PMCID: PMC10430692 DOI: 10.1039/d3sc03233g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Molecules with an allylic amine motif provide access to important building blocks and versatile applications of biologically relevant chemical space. The need for diverse allylic amines requires the development of increasingly general and modular multicomponent reactions for allylic amine synthesis. Herein, we report an efficient catalytic multicomponent coupling reaction of simple alkenes, aldehydes, and amides by combining nickel catalysis and Lewis acid catalysis, thus providing a practical, environmentally friendly, and modular protocol to build architecturally complex and functionally diverse allylic amines in a single step. The method is remarkably simple, shows broad functional-group tolerance, and facilitates the synthesis of drug-like allylic amines that are not readily accessible by other methods. The utilization of accessible starting materials and inexpensive Ni(ii) salt as the alternative precatalyst offers a significant practical advantage. In addition, the practicality of the process was also demonstrated in an efficient, gram-scale preparation of the prostaglandin agonist.
Collapse
Affiliation(s)
- Wei-Guo Xiao
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Bin Xuan
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Li-Jun Xiao
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Qi-Lin Zhou
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| |
Collapse
|
37
|
Lutovsky GA, Plachinski E, Reed NL, Yoon TP. Allylic Amination of Highly Substituted Alkenes Enabled by Photoredox Catalysis and Cu(II)-Mediated Radical-Polar Crossover. Org Lett 2023; 25:4750-4754. [PMID: 37345950 PMCID: PMC10351055 DOI: 10.1021/acs.orglett.3c01774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Allylic amination reactions enable the conversion of alkene feedstocks into value-added products with significant synthetic versatility. Here we describe a method for allylic amination involving photoredox activation and Cu(II)-mediated radical-polar crossover. A range of structurally varied allylic amines can be accessed using this strategy. The regioselectivity of this process is complementary to those of conventional methods for allylic amination.
Collapse
Affiliation(s)
- Grace A. Lutovsky
- Department of Chemistry, University of Wisconsin–Madison 1101 University Avenue, Madison, Wisconsin, 53706
| | - Ellie Plachinski
- Department of Chemistry, University of Wisconsin–Madison 1101 University Avenue, Madison, Wisconsin, 53706
| | - Nicholas L. Reed
- Department of Chemistry, University of Wisconsin–Madison 1101 University Avenue, Madison, Wisconsin, 53706
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison 1101 University Avenue, Madison, Wisconsin, 53706
| |
Collapse
|
38
|
Li Y, Bai X, Yuan D, Yu C, San X, Guo Y, Zhang L, Ye J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat Commun 2023; 14:3171. [PMID: 37264007 DOI: 10.1038/s41467-023-38889-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g-1 h-1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g-1 h-1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.
Collapse
Affiliation(s)
- Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China.
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Dachao Yuan
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China
| | - Chenyang Yu
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xingyuan San
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Jinhua Ye
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.
| |
Collapse
|
39
|
Li M, Jin Y, Chen Y, Wu W, Jiang H. Palladium-Catalyzed Oxidative Amination of Unactivated Olefins with Primary Aliphatic Amines. J Am Chem Soc 2023; 145:9448-9453. [PMID: 37053042 DOI: 10.1021/jacs.3c02114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Direct coupling of unactivated olefins with primary alkylamines is considered to be an efficient but unknown method for the construction of complex amines. Herein we report a catalytic intermolecular oxidative amination of unactivated olefins with primary aliphatic amines based on the combination of a palladium catalyst, a bidentate phosphine ligand, and duroquinone. A range of secondary allylic amines were obtained in good yields with excellent regio- and stereoselectivity. Mechanistic control experiments revealed that the reaction proceeds by allylic C(sp3)-H activation and nucleophilic amination. The utility of the protocol is further demonstrated with the late-stage modification and streamlined synthesis of drug molecules.
Collapse
Affiliation(s)
- Mingda Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yupeng Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
40
|
Verma S, Kumar M, Verma AK. A unified approach to benzo[ c]phenanthridines via the cascade dual-annulation/formylation of 2-alkynyl/alkenylbenzonitriles. Chem Commun (Camb) 2023; 59:3723-3726. [PMID: 36891930 DOI: 10.1039/d3cc00197k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
A base-mediated versatile cascade dual-annulation and formylation of 2-alkenyl/alkynylbenzonitriles with 2-methylbenzonitriles has been established for the construction of four different classes of amino and amido substituted benzo[c]phenanthridines and benzo[c]phenanthrolines. The synthesized molecules could be of utmost relevance in pharmaceuticals. The transformation uses the solvent DMF as the formyl source for synthesis of the amido-substituted scaffolds. This transition-metal-free unique strategy enables the formation of multiple C-C and C-N bonds in one pot at room temperature.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
41
|
You CM, Huang C, Tang S, Xiao P, Wang S, Wei Z, Lei A, Cai H. N-Allylation of Azoles with Hydrogen Evolution Enabled by Visible-Light Photocatalysis. Org Lett 2023; 25:1722-1726. [PMID: 36869877 DOI: 10.1021/acs.orglett.3c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Direct N-allylation of azoles with hydrogen evolution has been achieved through the synergistic combination of organic photocatalysis and cobalt catalysis. The protocol bypasses stoichiometric oxidants and prefunctionalization of alkenes and produces hydrogen (H2) as the byproduct. This transformation highlights high step- and atom-economy, high efficiency, and broad functional group tolerance for further derivatization, which opens a door for C-N bond formation that is valuable in heterocyclic chemistry.
Collapse
Affiliation(s)
- Chang-Ming You
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Sheng Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Peng Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
42
|
Photoinduced palladium-catalyzed asymmetric allylic C–H amination. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
43
|
Liu R, Shen ML, Fan LF, Zhou XL, Wang PS, Gong LZ. Palladium-Catalyzed Branch- and Z-Selective Allylic C-H Amination with Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202211631. [PMID: 36399016 DOI: 10.1002/anie.202211631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C-H bonds and commonly available amines is a major synthetic challenge. An allylic C-H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Meng-Lan Shen
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Lian-Feng Fan
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Xiao-Le Zhou
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Liu-Zhu Gong
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| |
Collapse
|
44
|
Angyal P, Kotschy AM, Dudás Á, Varga S, Soós T. Intertwining Olefin Thianthrenation with Kornblum/Ganem Oxidations: Ene-type Oxidation to Furnish α,β-Unsaturated Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202214096. [PMID: 36408745 PMCID: PMC10108043 DOI: 10.1002/anie.202214096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/22/2022]
Abstract
A widely applicable, practical, and scalable synthetic method for efficient ene-type double oxidation of alkenes is reported via a two-step alkenyl thianthrenium umpolung/Kornblum-Ganem oxidation strategy. This chemo- and stereoselective procedure allows easy access to various α,β-unsaturated carbonyls that may be otherwise difficult or cumbersome to synthesize by conventional methods. For α-olefins, this metal-free transformation can be tuned according to synthetic needs to produce either the elusive (Z)-unsaturated aldehydes or their (E) counterparts. Moreover, this strategy has enabled streamlined synthesis of distinct butadienyl pheromones and kairomones.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András M Kotschy
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
45
|
Wang X, Patureau FW. Pd-catalyzed access to mono- and di-fluoroallylic amines from primary anilines. Chem Commun (Camb) 2023; 59:486-489. [PMID: 36530134 PMCID: PMC9814328 DOI: 10.1039/d2cc05844h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Pd-catalyzed highly selective synthesis of mono- and di-2-fluoroallylic amines from gem-difluorocyclopropanes and ubiquitous unprotected primary anilines is herein described. Initial kinetic investigations suggest a first order in the gem-difluorocyclopropane substrate, as well as a circa zeroth order in the aniline coupling partner. The newly produced fluoroallylic motifs should find important applications in synthetic as well as medicinal chemistry and stimulate the further development of coupling methods based on strained cyclic building blocks.
Collapse
Affiliation(s)
- Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| |
Collapse
|
46
|
Liu B, Rao J, Liu W, Gao Y, Huo Y, Chen Q, Li X. Ligand-assisted olefin-switched divergent oxidative Heck cascade with molecular oxygen enabled by self-assembled imines. Org Chem Front 2023. [DOI: 10.1039/d3qo00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Divergent oxidative Heck reaction has proven to be reliable for the rapid construction of molecular complexity, while olefins switched the outcome that remained underexplored.
Collapse
Affiliation(s)
- Bairong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibing Liu
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, 2 Guandu Road, Maoming 525000, P. R. China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
47
|
Shing Cheung KP, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines. Science 2022; 378:1207-1213. [PMID: 36520916 PMCID: PMC10111612 DOI: 10.1126/science.abq1274] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C-H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light-induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C-H amination.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Andranik Mihranyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
- Department of Biochemistry, The University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Braddock AA, Lee GE, Theodorakis EA, Romero EA. Interrogating Redox and Lewis Base Activations of Aminoboranes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander A. Braddock
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States
| | - Grace E. Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States
| | - Erik A. Romero
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States
| |
Collapse
|
49
|
Yang B, Liu X, Yu A, Yang Q, Wang Y. Rhodium(II)-Catalyzed Allylic 1,3-Diamination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beiqi Yang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Xinyu Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Aiwen Yu
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Qi Yang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Yuanhua Wang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
|