1
|
Chen JH, Li WT, Cai KY, Tu HJ, Long ZT, Akhtar S, Liu LD. Proton-coupled electron transfer controls peroxide activation initiated by a solid-water interface. Nat Commun 2025; 16:3789. [PMID: 40263299 PMCID: PMC12015225 DOI: 10.1038/s41467-025-58917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Decentralized water treatment technologies, designed to align with the specific characteristics of the water source and the requirements of the user, are gaining prominence due to their cost and energy-saving advantages over traditional centralized systems. The application of chemical water treatment via heterogeneous advanced oxidation processes using peroxide (O-O) represents a potentially attractive treatment option. These processes serve to initiate redox processes at the solid-water interface. Nevertheless, the oxidation mechanism exemplified by the typical Fenton-like persulfate-based heterogeneous oxidation, in which electron transfer dominates, is almost universally accepted. Here, we present experimental results that challenge this view. At the solid-liquid interface, it is demonstrated that protons are thermodynamically coupled to electrons. In situ quantitative titration provides direct experimental evidence that the coupling ratio of protons to transferred electrons is almost 1:1. Comprehensive thermodynamic analyses further demonstrate that a net proton-coupled electron transfer occurs, with both protons and electrons entering the redox cycle. These findings will inform future developments in O-O activation technologies, enabling more efficient redox activity via the tight coupling of protons and electrons.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Wan-Ting Li
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Yibin Academy of Southwest University, Sichuan, 644005, China
| | - Kun-Yu Cai
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Hui-Jie Tu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Yibin Academy of Southwest University, Sichuan, 644005, China
| | - Zi-Tong Long
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shoaib Akhtar
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Lin-Dong Liu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
- Yibin Academy of Southwest University, Sichuan, 644005, China.
| |
Collapse
|
2
|
Bian X, Khan C, Duston T, Rawlinson J, Littlejohn RG, Subotnik JE. A Phase-Space View of Vibrational Energies without the Born-Oppenheimer Framework. J Chem Theory Comput 2025; 21:2880-2893. [PMID: 40072941 DOI: 10.1021/acs.jctc.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
We show that following the standard mantra of quantum chemistry and diagonalizing the Born-Oppenheimer (BO) Hamiltonian ĤBO(R) is not the optimal means to construct potential energy surfaces. A better approach is to diagonalize a phase-space electronic Hamiltonian, ĤPS(R, P), which is parameterized by both nuclear position R and nuclear momentum P. Such a nonperturbative phase-space electronic Hamiltonian can be constructed using a partial Wigner transform and the method has exactly the same cost as BO for a semiclassical calculation (and only a slight increase in cost for a quantum nuclear calculation). For a three-particle system, with two heavy particles and one light particle, numerical results show that a phase-space electronic Hamiltonian produces not only meaningful electronic momenta (which are completely ignored by BO theory) but also far better vibrational energies. As such, for high level results and/or systems with degeneracies and spin degrees of freedom, we anticipate that future electronic structure and quantum chemistry packages will need to take as input not just the positions of the nuclei but also their momenta.
Collapse
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Cameron Khan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Titouan Duston
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan Rawlinson
- School of Science & Technology, Nottingham Trent University, Nottingham NG1 4FQ, U.K
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Langford D, Rohr R, Bauroth S, Zahl A, Franke A, Ivanović-Burmazović I, Guldi DM. High-pressure pump-probe experiments reveal the mechanism of excited-state proton-coupled electron transfer and a shift from stepwise to concerted pathways. Nat Chem 2025:10.1038/s41557-025-01772-5. [PMID: 40114015 DOI: 10.1038/s41557-025-01772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Chemical energy conversion and storage in natural and artificial systems rely on proton-coupled electron transfer (PCET) processes. Concerted proton-electron transfer (CPET) can provide kinetic advantages over stepwise processes (electron transfer (ET)/proton transfer (PT) or PT/ET), so understanding how to distinguish and modulate these processes is important for their associated applications. Here, we examined PCET from the excited state of a ruthenium complex under high pressures. At lower buffer or quencher concentrations, a stepwise PT/ET mechanism was observed. With increasing pressure, PT slowed and ET sped up, indicating a merging of the two steps. In contrast, CPET at higher concentrations of buffer or quencher showed no pressure dependence of the reaction rate. This is because the simultaneous transfer of electrons and protons circumvents changes in charges and, consequently, in solvent electrostriction during the transition state. Our findings demonstrate that pressure can serve as a tool to monitor charge changes along PCET pathways, aiding in the identification of its mechanisms.
Collapse
Affiliation(s)
- Daniel Langford
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robin Rohr
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Bauroth
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Department of Chemistry, Ludwig-Maximilian-Universität München, Munich, Germany.
| | - Dirk M Guldi
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Yao X, Zhang Y, Qiu Y, Jiang W, Chen H, Zeng T, Wei L, Jiang S, Zhao Y, Ma Y, Zhang YB. A Phototautomeric 3D Covalent Organic Framework for Ratiometric Fluorescence Humidity Sensing. J Am Chem Soc 2025; 147:9665-9675. [PMID: 40048296 DOI: 10.1021/jacs.4c17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photoinduced proton transfer is an essential photochemical process for designing photocatalysts, white light emitters, bioimaging, and fluorescence sensing materials. However, deliberate control of the excited/ground states and meticulous manipulation of the excited state intramolecular proton transfer (ESIPT) pathway constitute a significant challenge in liquids and dense solids. Here, we present the integration of a hydronaphthoquinone fluorophore into a crystalline, porous, phototautomeric dynamic 3D covalent organic framework (COF) to show guest-induced fluorescence turn-on, emission redshift enhancement, and shortened lifetimes for ratiometric fluorescence humidity sensing. Theoretical and spectroscopic studies provide mechanistic insights into the conformational dynamics, charge transfer coupled with local excitation, and ground-state uphill regulation for the multiple tautomers. We illustrate the sensitive, rapid, steady, and self-calibrated ratiometric fluorescence sensing for a wide range of humidity benefiting from the architectural and chemical robustness and crystallinity of such a phototautomeric 3D COF. These findings provide molecular insights into the design of functional porous materials that integrate host-guest mutual recognition and photoelectronic response for multiplex molecular sensing for environmental monitoring and biomedical diagnostics applications.
Collapse
Affiliation(s)
- Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Youchang Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Qiu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lei Wei
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Zeppilli D, Orian L. Concerted proton electron transfer or hydrogen atom transfer? an unequivocal strategy to discriminate these mechanisms in model systems. Phys Chem Chem Phys 2025; 27:6312-6324. [PMID: 40066782 DOI: 10.1039/d5cp00690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Concerted proton electron transfer (CPET) and hydrogen atom transfer (HAT) are two important mechanisms in many fields of chemistry, which are characterized by the transfer of one proton and one electron. The distinction between these mechanisms may be challenging in several reactions; thus, different computational methods have been developed for this purpose. In this work, we present a computational strategy to distinguish the two mechanisms, rationalizing the factors controlling the reactivity in four different model reactions. Fist, the transition state SOMO (singly occupied molecular orbital) is visualized, presenting all the limits and ambiguities of this analysis. Then, the electron flow along the reaction path is evaluated through the intrinsic bond orbitals (IBOs); this analysis allows to describe correctly the mechanism of each reaction in agreement with previous studies. Furthermore, some structural modifications are applied to the transition state of each system and the energetic differences are rationalized in the framework of the activation strain analysis to understand the geometrical and electronic factors governing the reactivity and the selection of CPET or HAT mechanism. Lastly, the effect of the donor-acceptor distance is evaluated. It emerges that a combined computational analysis is crucial to understand not only the distinction between the two mechanisms, but also the molecular reasons why one mechanism is operative in a specific reaction.
Collapse
Affiliation(s)
- Davide Zeppilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL), 35020 Legnaro (PD), Italy
| |
Collapse
|
6
|
Jiang D, Xie T, Chen Y, Zhang X, Chen J, Qi X, Zhang P, Wang Y. An ESIPT-Based Fluorochromogenic Tweezer for Reversible and Portable Detection of Al 3+ Ions. Chemistry 2025:e202404404. [PMID: 40095418 DOI: 10.1002/chem.202404404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
ESIPT-based fluorochromes are promising materials for the detection of various chemical and biological species, particularly metal cations. Herein, we have meticulously designed a prototypical ESIPT-based α-naphtholphthalein-derived "turn-on" fluorogenic tweezer, NPDM, for the selective detection and visualization of Al3⁺ in biological and environmental samples. NPDM was found to specifically interact with Al3⁺, exhibiting dual emissions, high sensitivity (50 s), large Stokes shifts (140 and 176 nm), and a low detection limit of 16.3 nM. Notably, the sensing mechanism of NPDM for Al3⁺ involves metal ion-coordination-induced fluorescence enhancement (CHEF), ESIPT "turn-on" effect as well as restricted intramolecular rotation (RIR). This mechanism is supported by Job's plot, high-resolution mass spectrometry (HRMS), proton nuclear magnetic resonance (¹H NMR) titrations, and density functional (DFT) calculations. Interestingly, the NPDM-Al3+ ensemble can function as a secondary chromo-fluorogenic tweezer for monitoring fluoride ions (F-) with a low detection limit of 34.8 nM. Thus, an advanced molecular memory device was constructed based on the fluorescence "off-on-off" strategy and its excellent sensing properties. Moreover, a portable, smartphone-assisted intelligent platform has been developed to facilitate in-field, cost-effective, and accurate detection of Al3⁺ in real environmental water samples. Significantly, NPDM was successfully employed to image intracellular Al3⁺ and F⁻ ions in HeLa cells without interference from oxidative stress. This represents the first reported smart molecular tweezer capable of detecting Al3⁺ ions generated during electroporation within living cells. Furthermore, the strategy developed here is valuable for the creation of novel, practically beneficial luminescent molecules and offers an advanced luminescent detection platform for point-of-care sensing of health-related ionic species.
Collapse
Affiliation(s)
- Daoyong Jiang
- Department of Chemistry and Pharmacy, Guilin Normal University, Guilin, 541199, China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jihong Chen
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Cotter L, Parada GA, Bhide R, Rimgard BP, Mayer JM, Hammarström L. Evidence for Competing Proton-Coupled Reaction Pathways of Molecular Triads in a Low-Polarity Solvent. J Phys Chem A 2025; 129:1792-1800. [PMID: 39913890 PMCID: PMC11848912 DOI: 10.1021/acs.jpca.4c05734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The temperature dependence of concerted proton-electron transfer (CPET) reactions of two anthracene-phenol-pyridine (An-PhOH-py) triads is investigated in toluene. Light excitation forms an anthracene local excited state (1*An), which undergoes CPET to form a charge separated state (CSS, An•--PhO•-pyH+), which in turn undergoes CPET charge recombination (CR). In toluene, compared with polar solvents, the CSS is energetically destabilized. First, this makes another reaction competitive with CPET, which we propose is proton-coupled energy transfer (PCEnT) from 1*An to form the short-lived excited state keto tautomer of the phenol-pyridine subunit (*[PhO═pyH]). Second, it puts CR deep into the Marcus inverted region, and CSS lifetimes therefore reach several nanoseconds at room temperature. The slow kinetics makes CR to the anthracene triplet state (3*An) competitive, as well as another reaction that is strongly activated and dominates CSS deactivation at T ≥ 240 K for one of the triads. The latter is proposed to be CR via initial formation of the same [*PhO═PyH] state as above by an unusual electron transfer (ET) from An•- to pyH+, instead of CR with the juxtaposed PhO•. The two different pathways to form *[PhO═pyH] lead to CSS yields and lifetimes that vary significantly with temperature, and in markedly different ways between the triads. This is rationalized by the differences in the energies of the states involved. The results broaden the scope and understanding of the still rare phenomena of inverted CPET and PCEnT and may aid toward their use in solar fuels and photoredox catalysis.
Collapse
Affiliation(s)
- Laura
F. Cotter
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A. Parada
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Rohit Bhide
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - James M. Mayer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Leif Hammarström
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE75120 Uppsala, Sweden
| |
Collapse
|
8
|
Shee M, Schleisiek J, Maity N, Das G, Montesdeoca N, Ha-Thi MH, Gore KR, Karges J, Singh NDP. Exploring Excited-State Intramolecular Proton-Coupled Electron Transfer in Dinuclear Ir(III)-Complex via Covalently Tagged Hydroquinone: Phototherapy Through Futile Redox Cycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408437. [PMID: 39711252 DOI: 10.1002/smll.202408437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir2-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir2(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)4]2+ (12+) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process. The vital role of covalently placed hydroquinone in bridged ligand is investigated as electron-proton transfer (ET-PT) mediator in intramolecular PCET and validated from triplet spin density plot. Moreover, bimolecular photoinduced ET reaction is studied in acetonitrile/water medium, forging the lowest energy triplet charge separated (3CSPhen-Im) state of 12+ with methyl viologen via favorably concerted-PCET pathway. The result indicates strong donor-acceptors coupling, which limits charge recombination and enhances catalytic efficiency. To showcase the potential application, this bioinspired PCET-based photocatalytic platform is studied for phototherapeutics, indicating significant mitochondrial localization and leading to programmed cell death (apoptosis) through futile redox cycling. Indeed, the consequences of effective internalization (via energy-dependent endocytosis), better safety profile, and higher photoinduced antiproliferative activity of 12+ compared to Cisplatin, as explored in 3D tumor spheroids, this study anticipates it to be a potential lead compound.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Nishith Maity
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
9
|
Cui K, Hammes-Schiffer S. Theory for proton-coupled energy transfer. J Chem Phys 2024; 161:034113. [PMID: 39012810 DOI: 10.1063/5.0217546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of electronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quantum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between reactant and product electron-proton vibronic states. The rate constant is expressed as a summation over these vibronic states, and the contribution of each pair of vibronic states depends on the square of the vibronic coupling as well as the spectral convolution integral, which can be viewed as a generalization of the Förster-type spectral overlap integral for vibronic rather than electronic states. The convolution integral also accounts for the common vibrational modes shared by the donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model systems to investigate the key features of PCEnT processes. The excited vibronic states can contribute significantly to the total PCEnT rate constant, and the common modes can either slow down or speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there is no apparent overlap between the donor emission and acceptor absorption spectra. This theory will assist in the interpretation of experimental data and will guide the design of additional PCEnT systems.
Collapse
Affiliation(s)
- Kai Cui
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
10
|
Hao X, Tang Y, Zhang R, Wang Z, Gao M, Wei R, Zhao Y, Mu X, Lu Y, Zhou X. Cationized orthogonal triad as a photosensitizer with enhanced synergistic antimicrobial activity. Acta Biomater 2024; 178:287-295. [PMID: 38395101 DOI: 10.1016/j.actbio.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso‑position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso‑position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.
Collapse
Affiliation(s)
- Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ran Wei
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yongxian Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
11
|
Huang KY, Yang ZQ, Yang MR, Chen TS, Tang S, Sun WM, Yao Q, Deng HH, Chen W, Xie J. Unraveling a Concerted Proton-Coupled Electron Transfer Pathway in Atomically Precise Gold Nanoclusters. J Am Chem Soc 2024; 146:8706-8715. [PMID: 38487838 DOI: 10.1021/jacs.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Qiang Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Ming-Rui Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Tian-Shui Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Shurong Tang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei-Ming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
12
|
Zuo S, Wang Y, Wan J, Ma Y, Yan Z. Facilitating Proton Coupled Electron Transfer Reaction through the Interfacial Micro Electric Field with Fe─N 4 ─C in FeMOFs Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307102. [PMID: 37806750 DOI: 10.1002/smll.202307102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The proton-coupled electron transfer(PCET) reaction plays a crucial role in the chemical transformation process andhas become one of the most concerned elementary reactions. However, the complex kinetics of PCET reaction, which requires the simultaneous transfer of protons and electrons, leads to the dilemma that thermodynamics and kinetics cannot bebalanced and restricts its further development. In this, an interface micro-electric field (IMEF) basedon Fe─N4 in FeMOFs (Fe-Based Metal-Organic Frameworks) glass is designed tosynchronize proton/electron interface behavior for the first time to realizeefficient PCET reaction and optimize reaction thermodynamics and kinetics. The IMEF facilitates the separation of photogenerated electrons and holes, and accelerates Fe(III)/Fe(II) cycle. Driven by near-surface electric field force, the protons near surfacemigrate to Fe sites and participate in Fe(IV)═O formation and reaction, lowering the reaction energy barrier. Based on the interface regulation ofIMEF, a high-efficiency PCET reaction is realized, and kinetic reactionrate constant of photocatalytic oxidation of emerging contaminants is increasedby 3.7 times. This study highlights a strategy for IMEFs to modulate PEC Treactions for a wide range of potential applications, including environmental and ecological applications.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
13
|
Ramundo A, Janoš J, Muchová L, Šranková M, Dostál J, Kloz M, Vítek L, Slavíček P, Klán P. Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids. J Am Chem Soc 2024; 146:920-929. [PMID: 38157303 PMCID: PMC10785818 DOI: 10.1021/jacs.3c11426] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.
Collapse
Affiliation(s)
- Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| | - Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Lucie Muchová
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Mária Šranková
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Jakub Dostál
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Miroslav Kloz
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Libor Vítek
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| |
Collapse
|
14
|
Bürgin T, Ogawa T, Wenger OS. Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage. Inorg Chem 2023; 62:13597-13607. [PMID: 37562775 PMCID: PMC10445269 DOI: 10.1021/acs.inorgchem.3c02008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have explored the kinetics of light-induced charge separation and thermal charge recombination in donor-acceptor compounds, but quantum efficiencies have rarely been investigated. Here, we report on two essentially isomeric molecular triads, both comprising a π-extended tetrathiafulvalene (ExTTF) donor, a ruthenium(II)-based photosensitizer, and a naphthalene diimide (NDI) acceptor. The key difference between the two triads is how the NDI acceptor is connected. Linkage at the NDI core provides stronger electronic coupling to the other molecular components than connection via the nitrogen atoms of NDI. This change in molecular connectivity is expected to accelerate both energy-storing charge separation and energy-wasting charge recombination processes, but it is not a priori clear how this will affect the triad's ability to store photochemical energy; any gain resulting from faster charge separation could potentially be (over)compensated by losses through accelerated charge recombination. The new key insight emerging from our study is that the quantum yield for the formation of a long-lived charge-separated state increases by a factor of 5 when going from nitrogen- to core-connected NDI, providing the important proof of concept that better molecular connectivity indeed enables more efficient photochemical energy storage. The physical origin of this behavior seems to root in different orbital connectivity pathways for charge separation and charge recombination, as well as in differences in the relevant orbital interactions depending on NDI connection. Our work provides guidelines for how to discriminate between energy-storing and energy-wasting electron transfer reactions in order to improve the quantum yields for photochemical energy storage and solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Tomohiro Ogawa
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
15
|
Xu Y, Sun T, Zeng T, Zhang X, Yao X, Liu S, Shi Z, Wen W, Zhao Y, Jiang S, Ma Y, Zhang YB. Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework. Nat Commun 2023; 14:4215. [PMID: 37452038 PMCID: PMC10349083 DOI: 10.1038/s41467-023-39998-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyu Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academic of Sciences, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
16
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
17
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
18
|
Kessinger M, Soudackov AV, Schneider J, Bangle RE, Hammes-Schiffer S, Meyer GJ. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. J Am Chem Soc 2022; 144:20514-20524. [DOI: 10.1021/jacs.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| |
Collapse
|