1
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
2
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|