1
|
Yang M, Tang C, Peng F, Luo C, Chen G, Kong R, Peng P. Abdominal multi-organ iron content and the risk of Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1416014. [PMID: 39206119 PMCID: PMC11349543 DOI: 10.3389/fnagi.2024.1416014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background To evaluate the causal relationship between abdominal multi-organ iron content and PD risk using publicly available genome-wide association study (GWAS) data. Methods We conducted MR analysis to assess the effects of iron content in various abdominal organs on PD risk, followed by reverse analysis. Additionally, MVMR analysis evaluated the independent effects of organ-specific iron content on PD. We utilized genetic variation data from the UK Biobank, including liver iron content (n = 32,858), spleen iron content (n = 35,324), and pancreas iron content (n = 25,617), as well as summary-level data for Parkinson's disease from the FinnGen (n = 218,473) and two other large GWAS datasets of European populations (First dataset n = 480,018; Second dataset n = 2,829). The primary MR analysis used the inverse variance-weighted (IVW) method, confirmed by MR-Egger and weighted median methods. Sensitivity analysis was performed to address potential pleiotropy and heterogeneity. Observational cohort results were validated through replication cohort analysis, followed by meta-analysis. Results IVW analysis revealed a causal relationship between increased liver iron content and elevated risk of PD (OR = 1.27; 95% CI: 1.05-1.53; p = 0.015). No significant causal relationship was observed between spleen (OR = 1.00; 95% CI: 0.76-1.32; p = 0.983) and pancreatic (OR = 0.93; 95% CI: 0.72-1.20; p = 0.573) iron content and increased risk of PD. Meta-analysis of GWAS data for PD from three different sources using the random-effects IVW method showed a statistically significant causal relationship between liver iron content and the occurrence of PD (OR = 1.17, 95% CI: 1.01-1.35; p = 0.012). Conclusion This study presents evidence from Mendelian randomization (MR) analysis indicating a significant causal link between increased liver iron content and a higher risk of Parkinson's disease (PD). These findings suggest that interventions targeting body iron metabolism, particularly liver iron levels, may be effective in preventing PD.
Collapse
Affiliation(s)
- Mingrui Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chaotian Luo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guowei Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Kong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peng Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Fan Y, Ma J, Yang D, Li X, Liang K, She Z, Qi X, Shi X, Gu Q, Zheng J, Li D. Clinical findings of hyperechoic substantia nigra in patients with Parkinson's disease. Eur J Neurosci 2024; 59:2702-2714. [PMID: 38469656 DOI: 10.1111/ejn.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
This study aims to analyse hyperechoic substantia nigra (HSN) characteristics and the correlation of HSN with clinical features and blood biomarkers in patients with Parkinson's disease (PD). Transcranial sonography (TCS) evaluations of the substantia nigra (SN) were performed in 40 healthy controls and 71 patients with PD, including patients with SN hyperechogenicity (SN+) and those with normal SN echogenicity (SN-). Evaluation of motor and non-motor symptoms was assessed by a series of rating scales. The uricase method was used to determine serum uric acid (UA) levels, and enzyme-linked immunosorbent assay (ELISA) was used to measure plasma interleukin (IL)-1β levels. TCS showed 92.50% specificity and 61.97% sensitivity in differentiating PD patients from controls. The area of SN+ contralateral to the side of initial motor symptoms (SNcontra) was larger than that ipsilateral to the side of initial motor symptoms (SNipsi). The PDSN+ group had lower Argentine Hyposmia Rating Scale (AHRS) scores and UA levels than the PDSN- group. Binary logistic regression analysis revealed that AHRS scores and UA levels could be independent predictors for HSN. The larger SN echogenic area (SNL) sizes positively correlated with plasma IL-1β levels in PD patients with SN+. The present study provides further evidence of the potential of SN echogenicity as an imaging biomarker for PD diagnosis. PD patients with HSN have more severe non-motor symptoms of hyposmia. HSN in PD patients is related to the mechanism of abnormal iron metabolism and microglial activation.
Collapse
Affiliation(s)
- Yongyan Fan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dawei Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohuan Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Keke Liang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Zonghan She
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Zhang Y, Zhou Y, Zhou Y, Yu X, Shen X, Hong Y, Zhang Y, Wang S, Mou M, Zhang J, Tao L, Gao J, Qiu Y, Chen Y, Zhu F. TheMarker: a comprehensive database of therapeutic biomarkers. Nucleic Acids Res 2024; 52:D1450-D1464. [PMID: 37850638 PMCID: PMC10767989 DOI: 10.1093/nar/gkad862] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Distinct from the traditional diagnostic/prognostic biomarker (adopted as the indicator of disease state/process), the therapeutic biomarker (ThMAR) has emerged to be very crucial in the clinical development and clinical practice of all therapies. There are five types of ThMAR that have been found to play indispensable roles in various stages of drug discovery, such as: Pharmacodynamic Biomarker essential for guaranteeing the pharmacological effects of a therapy, Safety Biomarker critical for assessing the extent or likelihood of therapy-induced toxicity, Monitoring Biomarker indispensable for guiding clinical management by serially measuring patients' status, Predictive Biomarker crucial for maximizing the clinical outcome of a therapy for specific individuals, and Surrogate Endpoint fundamental for accelerating the approval of a therapy. However, these data of ThMARs has not been comprehensively described by any of the existing databases. Herein, a database, named 'TheMarker', was therefore constructed to (a) systematically offer all five types of ThMAR used at different stages of drug development, (b) comprehensively describe ThMAR information for the largest number of drugs among available databases, (c) extensively cover the widest disease classes by not just focusing on anticancer therapies. These data in TheMarker are expected to have great implication and significant impact on drug discovery and clinical practice, and it is freely accessible without any login requirement at: https://idrblab.org/themarker.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuxin Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
6
|
Shao L, Hu F, Xu R, Nie H, Zhang H, Zhang P. METTL14 Regulates the m6A Modification of TRAF6 to Suppress Mitochondrial Dysfunction and Ferroptosis in Dopaminergic Neurons via the cGAS-STING Pathway. Curr Mol Med 2024; 24:1518-1528. [PMID: 37881068 DOI: 10.2174/0115665240263859231018110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVES The degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson's disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGASSTING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration. METHODS 1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated. RESULTS METTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway. CONCLUSION METTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.
Collapse
Affiliation(s)
- Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hong Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| |
Collapse
|
7
|
Xiang Y, Huang X, Xu Q, Liu Z, Chen Y, Sun Q, Wang J, Jiang H, Shen L, Yan X, Tang B, Guo J. Estimating the sequence of biomarker changes in Parkinson's disease. Parkinsonism Relat Disord 2024; 118:105939. [PMID: 38029648 DOI: 10.1016/j.parkreldis.2023.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To estimate the sequence of several common biomarker changes in Parkinson's disease (PD) using a novel data-driven method. METHODS We included 374 PD patients and 169 healthy controls (HC) from the Parkinson's Progression Markers Initiative (PPMI). Biomarkers, including the left putamen striatal binding ratio (SBR), right putamen SBR, left caudate SBR, right caudate SBR, cerebrospinal fluid (CSF) α-synuclein, and serum neurofilament light chain (NfL), were selected in our study. The discriminative event-based model (DEBM) was utilized to model the sequence of biomarker changes and establish the disease progression timeline. The estimated disease stages for each subject were obtained through cross-validation. The associations between the estimated disease stages and the clinical symptoms of PD were explored using Spearman's correlation. RESULTS The left putamen is the earliest biomarker to become abnormal among the selected biomarkers, followed by the right putamen, CSF α-synuclein, right caudate, left caudate, and serum NfL. The estimated disease stages are significantly different between PD and HC and yield a high accuracy for distinguishing PD from HC, with an area under the curve (AUC) of 0.98 (95% confidence interval 0.97-0.99), a sensitivity of 0.95, and a specificity of 0.92. Moreover, the estimated disease stages correlate with motor experiences of daily living, motor symptoms, autonomic dysfunction, and anxiety in PD patients. CONCLUSION We determined the sequence of several common biomarker changes in PD using DEBM, providing data-driven evidence of the disease progression of PD.
Collapse
Affiliation(s)
- Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XiuRong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|
8
|
Wan L, Fu Y, Chen Z, Long Z, Chen D, Yuan X, Zhu S, Peng L, Liu W, Qiu R, Tang B, Jiang H. No Correlation between Plasma GPNMB Levels and Multiple System Atrophy in Chinese Cohorts. Mov Disord 2023; 38:1956-1961. [PMID: 37497669 DOI: 10.1002/mds.29566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Glycoprotein nonmetastatic melanoma protein B (GPNMB) has been demonstrated to mediate pathogenicity in Parkinson's disease (PD) through interactions with α-synuclein, and plasma GPNMB tended to be a novel biomarker for PD. OBJECTIVE The goal of this study was to investigate whether plasma GPNMB could act as a potential biomarker for the clinical diagnosis and severity monitoring of multiple system atrophy (MSA), another typical synucleinopathy. METHODS Plasma GPNMB levels in patients with MSA, patients with PD, and healthy control subjects (HCs) were quantified using enzyme-linked immunosorbent assays. RESULTS A total of 204 patients with MSA, 65 patients with PD, and 207 HCs were enrolled. The plasma GPNMB levels in patients with MSA were similar to those in HCs (P = 0.251) but were significantly lower than those in patients with PD (P = 0.003). Moreover, there was no significant correlation detected between the plasma GPNMB levels and disease severity scores of patients with MSA. CONCLUSIONS No evidence was detected for the biomarker potential of plasma GPNMB in MSA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wuping Liu
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
Affiliation(s)
- Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University, Jinan, Shandong, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingming Kong
- School of Biological Engineering, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
10
|
Lei C, Zhongyan Z, Wenting S, Jing Z, Liyun Q, Hongyi H, Juntao Y, Qing Y. Identification of necroptosis-related genes in Parkinson's disease by integrated bioinformatics analysis and experimental validation. Front Neurosci 2023; 17:1097293. [PMID: 37284660 PMCID: PMC10239842 DOI: 10.3389/fnins.2023.1097293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegeneration disease worldwide. Necroptosis, which is a new form of programmed cell death with high relationship with inflammation, plays a vital role in the progression of PD. However, the key necroptosis related genes in PD are not fully elucidated. Purpose Identification of key necroptosis-related genes in PD. Method The PD associated datasets and necroptosis related genes were downloaded from the GEO Database and GeneCards platform, respectively. The DEGs associated with necroptosis in PD were obtained by gap analysis, and followed by cluster analysis, enrichment analysis and WGCNA analysis. Moreover, the key necroptosis related genes were generated by PPI network analysis and their relationship by spearman correlation analysis. Immune infiltration analysis was used for explore the immune state of PD brain accompanied with the expression levels of these genes in various types of immune cells. Finally, the gene expression levels of these key necroptosis related genes were validated by an external dataset, blood samples from PD patients and toxin-induced PD cell model using real-time PCR analysis. Result Twelve key necroptosis-related genes including ASGR2, CCNA1, FGF10, FGF19, HJURP, NTF3, OIP5, RRM2, SLC22A1, SLC28A3, WNT1 and WNT10B were identified by integrated bioinformatics analysis of PD related dataset GSE7621. According to the correlation analysis of these genes, RRM2 and WNT1 were positively and negatively correlated with SLC22A1 respectively, while WNT10B was positively correlated with both OIF5 and FGF19. As the results from immune infiltration analysis, M2 macrophage was the highest population of immune cell in analyzed PD brain samples. Moreover, we found that 3 genes (CCNA1, OIP5 and WNT10B) and 9 genes (ASGR2, FGF10, FGF19, HJURP, NTF3, RRM2, SLC22A1, SLC28A3 and WNT1) were down- and up- regulated in an external dataset GSE20141, respectively. All the mRNA expression levels of these 12 genes were obviously upregulated in 6-OHDA-induced SH-SY5Y cell PD model while CCNA1 and OIP5 were up- and down- regulated, respectively, in peripheral blood lymphocytes of PD patients. Conclusion Necroptosis and its associated inflammation play fundamental roles in the progression of PD and these identified 12 key genes might be served as new diagnostic markers and therapeutic targets for PD.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Tuina, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou Zhongyan
- Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Wenting
- Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Jing
- Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Liyun
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hu Hongyi
- Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Juntao
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Qing
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Cao Z, Zhang T, Fu X, Wang X, Xia Q, Zhong L, Zhu J. 2-Hydroxy-4-benzyloxylimine Resveratrol Derivatives as Potential Multifunctional Agents for the Treatment of Parkinson's Disease. ChemMedChem 2023; 18:e202200629. [PMID: 36622947 DOI: 10.1002/cmdc.202200629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
A series of 2-hydroxy-4-benzyloxylimine resveratrol derivatives was designed, synthesized and evaluated as multifunctional agents for the treatment of Parkinson's disease. The results revealed that most derivatives possessed good multifunctional activities. Among them, representative compound (E)-5-[(4-fluorobenzyl)oxy]-2-{[(4-hydroxyphenyl)imino]methyl}phenol (7 h) exhibited excellent MAO-B inhibition (IC50 =8.43×10-3 μM) and high antioxidant activity (ORAC=3.45 Trolox equivalent). Additionally, 7 h displayed good metal chelating ability, appropriate blood-brain barrier (BBB) permeability, significant neuroprotective effect, and great anti-neuroinflammatory activity. Furthermore, 7 h can also ameliorate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease symptoms in mice. Therefore, compound 7 h was found to be a promising candidate for further development against PD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Tianlong Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Xianwu Fu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Xingyue Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging, Nanchong, 637000, P. R. China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, Nanchong, 637000, P. R. China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, 637000, P. R. China
| |
Collapse
|
12
|
Lenka A, Jankovic J. How should future clinical trials be designed in the search for disease-modifying therapies for Parkinson's disease? Expert Rev Neurother 2023; 23:107-122. [PMID: 36803618 DOI: 10.1080/14737175.2023.2177535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Although there has been substantial progress in research and innovations in symptomatic treatments, similar success has not been achieved in disease-modifying therapy (DMT) for Parkinson's disease (PD). Considering the enormous motor, psychosocial and financial burden associated with PD, safe and effective DMT is of paramount importance. AREAS COVERED One of the reasons for the lack of progress in DMT for PD is poor or inappropriate design of clinical trials. In the first part of the article, the authors focus on the plausible reasons why the previous trials have failed and in the latter part, they provide their perspectives on future DMT trials. EXPERT OPINION There are several potential reasons why previous trials have failed, including broad clinical and etiopathogenic heterogeneity of PD, poor definition and documentation of target engagement, lack of appropriate biomarkers and outcome measures, and short duration of follow-up. To address these deficiencies, future trials may consider- (i) a more customized approach to select the most suitable participants and therapeutic approaches, (ii) explore combination therapies that would target multiple pathogenetic mechanisms, and (iii) moving beyond targeting only motor symptoms to also assessing non-motor features of PD in well-designed longitudinal studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|