1
|
Zhang J, Cao T, Jiang Y, Feng Y, Guo K, Yang J, Zhang H, Li X. Decreasing protein biotinylation background in a diatom facilitates proximity labeling of the periplastidial compartment proteome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70259. [PMID: 40489604 DOI: 10.1111/tpj.70259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
Diatoms are ecologically and industrially significant microalgae, crucial for global carbon fixation and biotechnological applications. Their complex plastid membrane structures, resulting from secondary endosymbiosis, remain poorly characterized, particularly the periplastidial compartment (PPC). Proximity labeling techniques, such as TurboID and ascorbate peroxidase 2 (APEX2)-based labeling, are powerful tools for identifying protein-protein interactions and spatial proteomes, but their application in diatoms is hindered by unknown factors. In this study, we identified and characterized the high biotinylation background in diatoms, including Phaeodactylum tricornutum and other microalgae, which significantly impairs the effectiveness of proximity labeling. We also characterized the biotin synthase (BIOB) in P. tricornutum, a key enzyme in biotin biosynthesis. By using a biob mutant to deplete biotin, we successfully decreased the biotinylation background, enhancing the sensitivity and quality of proximity labeling. Applying this approach to the PPC, we identified several proteins previously undetectable through bioinformatics and confocal microscopy. Our results demonstrate that inhibiting biotin synthesis improves TurboID-based proximity labeling methods for studying protein interactions and spatial proteomics in diatoms. The case study of the improved proximity labeling system in PPC also increased our understanding of the complex plastids derived from higher-order endosymbiosis.
Collapse
Affiliation(s)
- Jiahuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Tianjun Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Yanyou Jiang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yue Feng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Kangning Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Jin Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Huan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiaobo Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
2
|
Hou Y, Wang W, Liu Z, Yu L, Zhao L. Boosting microalgae-based carbon sequestration with the artificial CO 2 concentration system. Crit Rev Biotechnol 2025:1-19. [PMID: 40374568 DOI: 10.1080/07388551.2025.2498464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025]
Abstract
Global warming caused by CO2 emissions has been considered as one of the major challenges of this century. In an endeavor to control and reduce CO2 emissions, a series of Carbon dioxide Capture, Utilization, and Storage (CCUS) technologies have been developed specifically for the sequestration of CO2 from atmospheric air. Microalgae, as versatile and universal photosynthetic microorganisms, represent a promising avenue for biological CO2 sequestration. Nevertheless, further advancements are necessary to optimize microalgae-based carbon sequestration technology in terms of light reaction and dark reaction. This review discusses the current status of microalgae-based artificial CO2 sequestration technique, with a particular focus on the selection of CO2-resistant species, optimization of cultivation for CO2 sequestration, design of carbon concentration reactor, and the potential of synthetic biology to enhance CO2 solubility and biofixation efficiency. Furthermore, a discussion of Life cycle assessment and Techno-economic analysis regarding microalgae-based carbon capture was performed. The aim of this comprehensive review is to stimulate further research into microalgae-based CO2 sequestration, addressing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Yuyong Hou
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiao Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Longjiang Yu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
3
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
4
|
Wang B, Liao Q, Xia C, Gan F. Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli. Biotechnol Bioeng 2025; 122:710-723. [PMID: 39690792 DOI: 10.1002/bit.28908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli. The production of the starting compound, Mg protoporphyrin monomethylester, was optimized by screening the ribosome binding sites for the expression of each of the five genes. By fusing a maltose-binding protein and apolipoprotein A-I domain with the membrane protein BchF, the yield of 3-hydroxyethyl-Chlide a was increased by five-fold. Anaerobic cultivation of the engineered E. coli strains facilitated the reduction of the C7=C8 double bond by chlorophyllide a oxidoreductase, a critical step in BChl a synthesis. We further enhanced BChl a production by adjusting the isopropyl-β-d-thiogalactopyranoside concentration to optimize enzyme production and introducing an exogenous superoxide dismutase to combat oxidative stress. Additionally, fusing BciC with a RIAD tag resulted in an eight-fold increase in the production of 3-vinyl BChlide d. This study lays the foundation for the reconstitution of BChl-based photosynthetic apparatus in heterotrophic model organisms, offering promising avenues for future research and applications in biotechnology.
Collapse
Affiliation(s)
- Baiyang Wang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qiancheng Liao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chenyang Xia
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Villar E, Zweig N, Vincens P, Cruz de Carvalho H, Duchene C, Liu S, Monteil R, Dorrell RG, Fabris M, Vandepoele K, Bowler C, Falciatore A. DiatOmicBase: a versatile gene-centered platform for mining functional omics data in diatom research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70061. [PMID: 40089834 PMCID: PMC11910669 DOI: 10.1111/tpj.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community.
Collapse
Affiliation(s)
- Emilie Villar
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- EV ConsultingMarseilleFrance
| | - Nathanaël Zweig
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Pierre Vincens
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Faculté des Sciences et TechnologieUniversité Paris Est‐Créteil (UPEC)Créteil94000France
| | - Carole Duchene
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
- Present address:
Department of Algal Development and EvolutionMax Planck Institute for BiologyTuebingen72076Germany
| | - Shun Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Present address:
Guangzhou Marine Geological SurveyGuangzhouChina
| | - Raphael Monteil
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
| | - Richard G. Dorrell
- CNRS, IBPS, CQSB‐ Department of Computational, Quantitative and Synthetic Biology, UMR7238Sorbonne Université4 place JussieuParis75005France
| | - Michele Fabris
- SDU Biotechnology, Department of Green TechnologyUniversity of Southern DenmarkCampusvej 55Odense M5230Denmark
| | - Klaas Vandepoele
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 71Ghent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyTechnologiepark 71Ghent9052Belgium
- VIB Center for AI & Computational Biology, VIBGhentBelgium
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Angela Falciatore
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
| |
Collapse
|
6
|
Tamiaki H, Kichishima S. Chlorophyll Pigments and Their Synthetic Analogs. PLANT & CELL PHYSIOLOGY 2025; 66:153-167. [PMID: 39172630 PMCID: PMC11879082 DOI: 10.1093/pcp/pcae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Oxygenic phototrophs use chlorophylls (Chls) as photosynthetically active pigments. A variety of Chl molecules have been found in photosynthetic organisms, including green plants, algae and cyanobacteria. Here, we review their molecular structures with stereochemistry, occurrence in light-harvesting antennas and reaction centers, biosyntheses in the late stage, chemical stabilities and visible absorption maxima in diethyl ether. The observed maxima are comparable to those of semisynthetic Chl analogs, methyl pyropheophorbides, in dichloromethane. The effects of their peripheral substituents and core π-conjugation on the maxima of the monomeric states are discussed. Notably, the oxidation along the molecular x-axis in Chl-a produces its accessory pigments, Chls-b/c, and introduction of an electron-withdrawing formyl group along the y-axis perpendicular to the x-axis affords far-red light absorbing Chls-d/f.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Saki Kichishima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
7
|
Takaichi S. Distribution, Biosynthesis, and Function of Carotenoids in Oxygenic Phototrophic Algae. Mar Drugs 2025; 23:62. [PMID: 39997186 PMCID: PMC11857680 DOI: 10.3390/md23020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
For photosynthesis, oxygenic phototrophic organisms necessarily contain not only chlorophylls but also carotenoids. Various carotenoids have been identified in algae and taxonomic studies of algae have been conducted. In this review, the relationship between the distribution of chlorophylls and carotenoids and the phylogeny of sea and freshwater oxygenic phototrophs, including cyanobacteria, red algae, brown algae, and green algae, is summarized. These phototrophs contain division- or class-specific chlorophylls and carotenoids, such as fucoxanthin, peridinin, diadinoxanthin, and siphonaxanthin. The distribution of β-carotene and its derivatives, including β-carotene, zeaxanthin, violaxanthin, neoxanthin, diadinoxanthin, fucoxanthin, and peridinin (β-branch carotenoids), are limited to divisions of a part of Rhodophyta, Cryptophyta, Heterokontophyta, Haptophyta, and Dinophyta. Meanwhile, the distribution of α-carotene and its derivatives, such as lutein, loroxanthin, and siphonaxanthin (α-branch carotenoids), are limited to divisions of a part of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta, and Chlorophyta. In addition, carotenogenesis pathways are also discussed based on the chemical structures of carotenoids and the known characteristics of carotenogenesis enzymes in other organisms. The specific genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction centers and light-harvesting complexes. Some carotenoids function in photosynthesis and are briefly summarized. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) have also been characterized. This review is a summary and update from the previous review on the distribution of major carotenoids, primary carotenogenesis pathways, and the characteristics of carotenogenesis enzymes and genes.
Collapse
Affiliation(s)
- Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
8
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Dorrell RG, Zhang Y, Liang Y, Gueguen N, Nonoyama T, Croteau D, Penot-Raquin M, Adiba S, Bailleul B, Gros V, Pierella Karlusich JJ, Zweig N, Fernie AR, Jouhet J, Maréchal E, Bowler C. Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid. THE PLANT CELL 2024; 36:3584-3610. [PMID: 38842420 PMCID: PMC11371179 DOI: 10.1093/plcell/koae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Youjun Zhang
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nolwenn Gueguen
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Tomomi Nonoyama
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dany Croteau
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Mathias Penot-Raquin
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Juan José Pierella Karlusich
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Nathanaël Zweig
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alisdair R Fernie
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| |
Collapse
|
10
|
Zhang F, Li Y, Miao X. Quantum dot-based light conversion strategy for customized cultivation of microalgae. BIORESOURCE TECHNOLOGY 2024; 397:130489. [PMID: 38403170 DOI: 10.1016/j.biortech.2024.130489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Microalgae are photosynthetic microorganisms with the potential to mitigate the atmospheric greenhouse effect by carbon fixation. However, their growth is typically limited by light availability. A wavelength converter utilizing red, blue, and green quantum dots (QDs) was developed to optimize light quality for enhancing microalgal production. The growth, lipid content, and eicosapentaenoic acid titer of Nannochloropsis increased by 11.2%, 9.5%, and 15.5% with red QDs, respectively. The biomass and triacylglycerol content of Phaeodactylum tricornutum increased by 8.6% and 35.0%, respectively. Simultaneously, biodiesel production was accelerated in Nannochloropsis (20.2%) and P. tricornutum (11.6%), and improved with increased cetane number and reduced iodine value. Furthermore, red QDs increased the growth and biomass accumulation of Nannochloropsis under low light, while green QDs shielded Nannochloropsis from photoinhibition under high light. This customizable QD-based methodology overcomes microalgal light limitations, demonstrating a universally applicable approach to improve microalgal cultivation and biochemical component production.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Jinkerson RE, Poveda-Huertes D, Cooney EC, Cho A, Ochoa-Fernandez R, Keeling PJ, Xiang T, Andersen-Ranberg J. Biosynthesis of chlorophyll c in a dinoflagellate and heterologous production in planta. Curr Biol 2024; 34:594-605.e4. [PMID: 38157859 DOI: 10.1016/j.cub.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | - Daniel Poveda-Huertes
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rocio Ochoa-Fernandez
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tingting Xiang
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|