1
|
Herranz D, Bernedo Biriucov S, Arranz A, Avilés Moreno JR, Ocón P. Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts. MATERIALS (BASEL, SWITZERLAND) 2024; 18:105. [PMID: 39795751 PMCID: PMC11722079 DOI: 10.3390/ma18010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Electrochemical reduction of CO2 is an efficient and novel strategy to reduce the amount of this greenhouse-effect pollutant gas in the atmosphere while synthesizing value-added products, all of it with an easy synergy with intermittent renewable energies. This study investigates the influence of different ways of combining electrodeposited Cu and Sn as metallic elements in the electrocatalyst. From there, the use of Sn alone or with a small amount of Cu beneath is investigated, and finally, the best catalyst obtained, which has Sn over a slight Cu layer, is evaluated in consecutive cycles to make an initial exploration of the catalyst durability. As a result of this work, after optimization of the Sn and Cu-based catalysts, it is possible to obtain more than 60% of the organic products of interest, predominantly CO, the main component of syngas. Finally, this great amount of CO is obtained under low cell potential (below 3 V), which is a remarkable result in terms of the cost of the process.
Collapse
Affiliation(s)
- Daniel Herranz
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Santiago Bernedo Biriucov
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Juan Ramón Avilés Moreno
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (D.H.); (S.B.B.); (P.O.)
| |
Collapse
|
2
|
Liu QW, He BL, Zheng DS, Zhou XQ, Zhang X, Huang JM, Wang Y, Lai WC, Gu ZY. Delocalization State-Stabilized Zn δ+ Active Sites for Highly Selective and Durable CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406604. [PMID: 39434483 DOI: 10.1002/smll.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Indexed: 10/23/2024]
Abstract
Zinc (Zn)-based materials are cost-effective and promising single-metal catalysts for CO2 electroreduction to CO but is still challenged by low selectivity and long-term stability. Undercoordinated Zn (Znδ+) sites have been demonstrated to be powerful active centers with appropriate *COOH affinity for efficient CO production However, electrochemical reduction conditions generally cause the inevitable reduction of Znδ+, resulting in the decline of CO efficiency over prolonged operation. Herein, a Zn cyanamide (ZnNCN) catalyst is constructed for highly selective and durable CO2 electroreduction, wherein the delocalized Zn d-electrons and resonant structure of cyanamide ligand prevent the self-reduction of ZnNCN and maintain Znδ+ sites under cathodic conditions. The mechanism studies based on density functional theory and operando spectroscopies indicate that delocalized Znδ+ site can stabilize the key *COOH intermediate through hard-soft acid-base theory, therefore thermodynamically promoting CO2-to-CO conversion. Consequently, ZnNCN delivers a CO Faradaic efficiency (FE) of up to 93.9% and further exhibits a remarkable stability lifespan of 96 h, representing a significant advancement in developing robust Zn-based electrocatalysts. Beyond expanding the variety of CO2 reduction catalysts, this work also offers insights into understanding the structure-function sensitivity and controlling dynamic active sites.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bing-Ling He
- Photoelectric energy catalytic materials and Devices Institute, School of Electronic Engineering, Chaohu University, Hefei, 238000, China
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xue-Qin Zhou
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Chuan Lai
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Hansen C, Zhou W, Brack E, Wang Y, Wang C, Paterson J, Southouse J, Copéret C. Decoding the Promotional Effect of Iron in Bimetallic Pt-Fe-nanoparticles on the Low Temperature Reverse Water-Gas Shift Reaction. J Am Chem Soc 2024; 146:27555-27562. [PMID: 39347826 DOI: 10.1021/jacs.4c08517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The reverse water-gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) toward CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.
Collapse
Affiliation(s)
- Colin Hansen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Wei Zhou
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Enzo Brack
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Yuhao Wang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
| | - Chunliang Wang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
| | - James Paterson
- bp Technology, Applied Sciences bp plc Saltend, Hull HU12 8DS, United Kingdom
| | - Jamie Southouse
- bp Technology, Applied Sciences bp plc Saltend, Hull HU12 8DS, United Kingdom
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| |
Collapse
|
4
|
Voeten RC, Hendriks F, Bezemer GL. Fischer-Tropsch Synthesis for the Production of Sustainable Aviation Fuel: Formation of Tertiary Amines from Ammonia Contaminants. ACS OMEGA 2024; 9:31974-31985. [PMID: 39072076 PMCID: PMC11270693 DOI: 10.1021/acsomega.4c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Fischer-Tropsch synthesis combined with product workup is a promising route toward synthetic aviation fuel from renewable hydrogen and carbon sources like biomass, CO2, and waste. Cost savings can be achieved by reducing the number of gas treatment steps in new plants, but the consequence of contaminants in the feed needs investigation. While feeding 2.6 ppmV ammonia to a Fischer-Tropsch reactor, it was shown that ammonia was predominantly chemically converted into organic amines, with most nitrogen found in the water phase (89%), followed by heavy wax (7%) and light wax (1%). The concentration difference between water and light wax was shown to be due to the post-condensation separation of amines on polarity. Amines up to a chain length of 120 were detected in the heavy wax with MALDI-FT-ICR-MS, which, in combination with the high nitrogen content, suggests that amines have a similar chain growth probability compared to the main hydrocarbon products. Detailed product analysis with three independent analytical techniques showed that tertiary N,N-dimethylalkylamines were by far the most abundant amine class. This suggests that ammonia is decomposed on the cobalt surface and, potentially as a dimethylamine fragment, incorporated in the growing chain. Further evidence was obtained from the abundance of trimethylamine and from the reconciled nitrogen product analysis up to C100, which showed that the amine product distribution followed from naphtha onward the same ASF kinetics as alkanes and oxygenates while being distinctively different from the alkene distribution. The presented findings provide further avenues for studies of the Fischer-Tropsch reaction mechanism and indicate the opportunity of cost saving on gas treatment, while further validation is required to assess the impact on hydrocracking and product quality.
Collapse
Affiliation(s)
| | | | - G. Leendert Bezemer
- Energy Transition Campus
Amsterdam, Shell Global Solutions International
B.V., Grasweg 31, 1031 HW Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yu H, Wang C, Xin X, Wei Y, Li S, An Y, Sun F, Lin T, Zhong L. Engineering ZrO 2-Ru interface to boost Fischer-Tropsch synthesis to olefins. Nat Commun 2024; 15:5143. [PMID: 38886352 PMCID: PMC11183094 DOI: 10.1038/s41467-024-49392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Understanding the structures and reaction mechanisms of interfacial active sites in the Fisher-Tropsch synthesis reaction is highly desirable but challenging. Herein, we show that the ZrO2-Ru interface could be engineered by loading the ZrO2 promoter onto silica-supported Ru nanoparticles (ZrRu/SiO2), achieving 7.6 times higher intrinsic activity and ~45% reduction in the apparent activation energy compared with the unpromoted Ru/SiO2 catalyst. Various characterizations and theoretical calculations reveal that the highly dispersed ZrO2 promoter strongly binds the Ru nanoparticles to form the Zr-O-Ru interfacial structure, which strengthens the hydrogen spillover effect and serves as a reservoir for active H species by forming Zr-OH* species. In particular, the formation of the Zr-O-Ru interface and presence of the hydroxyl species alter the H-assisted CO dissociation route from the formyl (HCO*) pathway to the hydroxy-methylidyne (COH*) pathway, significantly lowering the energy barrier of rate-limiting CO dissociation step and greatly increasing the reactivity. This investigation deepens our understanding of the metal-promoter interaction, and provides an effective strategy to design efficient industrial Fisher-Tropsch synthesis catalysts.
Collapse
Affiliation(s)
- Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
| | - Xin Xin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yao Wei
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, PR China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
| | - Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China.
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| |
Collapse
|
6
|
Han N, Wang Y, Su BL. Unveiling oscillatory nature for sustainable fuel production. Natl Sci Rev 2024; 11:nwae068. [PMID: 38577665 PMCID: PMC10989655 DOI: 10.1093/nsr/nwae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, Belgium
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, China
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China
| |
Collapse
|
7
|
Xin H, Li R, Lin L, Mu R, Li M, Li D, Fu Q, Bao X. Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface. Nat Commun 2024; 15:3100. [PMID: 38600159 PMCID: PMC11271606 DOI: 10.1038/s41467-024-47550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
8
|
Niemantsverdriet H, Weststrate KJ. An oscillating reaction to produce clean fuels. Science 2023; 382:35-36. [PMID: 37797001 DOI: 10.1126/science.adk5831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Understanding chemical reaction mechanisms could help synthesize sustainable fuels.
Collapse
|