1
|
Liu LR, Ye J. Quantum State-Resolved Structure and Dynamics of C 60 Fullerenes. Annu Rev Phys Chem 2025; 76:303-328. [PMID: 39903862 DOI: 10.1146/annurev-physchem-082423-013137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The C60 fullerene molecule has been the subject of intense study for four decades, starting with its identification in the mass spectra of carbon soot in 1985. In this review, we focus on the achievement of ultra-high-resolution spectroscopy of gas phase neutral C60, heralded by the observation of quantum state-resolved infrared spectra in 2019. C60 is now the largest and most symmetric molecule for which rovibrational quantum state resolution has been achieved, motivating the use of large molecules for studying complex quantum systems with symmetries and degrees of freedom not readily available in other composite systems. We discuss the theory, challenges, and experimental techniques of high-resolution C60 spectroscopy and recent experimental results probing the structure, dynamics, and interactions of C60 enabled by quantum state resolution.
Collapse
Affiliation(s)
- Lee R Liu
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
- Current affiliation: Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Farooq MU, Muneer M, Shahid A, Rehman MA, Ullah K, Murtaza G, Iqbal R, Iqbal J, Rahimi M. Synthesis and characterization of fluorenone derivatives with electrical properties explored using density functional theory (DFT). Sci Rep 2024; 14:29015. [PMID: 39578658 PMCID: PMC11584800 DOI: 10.1038/s41598-024-80477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
This study provides thorough computational and experimental assessments of four types of novel synthesized thiosemicarbazones. The compounds were effectively synthesized using a condensation reaction between thiosemicarbazide and fluorenone, producing a remarkable range of 70-88%. Additional chemical structures were examined utilizing spectroscopic methods, including Fourier-transform infrared spectroscopy (FTIR), NMR spectroscopy, and ultraviolet-visible spectroscopy. The computational analyses utilized DFT using the M06/6-311G (d, p) technique. The electrical characteristics, including the stability of orbitals via energy exchange between a donor and acceptor, can be evaluated by natural bond orbital (NBO) analysis. The nonlinear optical (NLO) properties were analyzed to detect any prohibited energy gaps. FTIR and UV-visible data were computed using the identical M06/6-311G (d, p) level of theory. The NBO test has confirmed the occurrence of charge separation due to the efficient transfer of electrons from the donor to the acceptor unit over the π bridge. The molecular chemical softness and hardness are dependable indications of a molecule's chemical stability. A significant magnitude of the absolute value of polarizability and hyper-polarizability indicates considerable dispersion of electric charge. The outcomes derived from Density Functional Theory (DFT) generally align well with experimental findings.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Physical Chemistry of Metallurgical and Energy Engineering Department, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Malaika Muneer
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ali Shahid
- Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Muhammad Abdul Rehman
- Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Khalil Ullah
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, People's Republic of China.
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Crop Diseases and Pests, Yunnan University, Kunming, 650500, Yunnan, People's Republic of China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Khyber Pakhtunkhwa, 24420, Charsadda, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
3
|
Hermsmeier R, Tscherbul TV. Highly Spin-Polarized Molecules via Collisional Microwave Pumping. PHYSICAL REVIEW LETTERS 2024; 133:173001. [PMID: 39530814 DOI: 10.1103/physrevlett.133.173001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1 K.
Collapse
|
4
|
Hermsmeier R, Rey AM, Tscherbul TV. Magnetically Tunable Electric Dipolar Interactions of Ultracold Polar Molecules in the Quantum Ergodic Regime. PHYSICAL REVIEW LETTERS 2024; 133:143403. [PMID: 39423408 DOI: 10.1103/physrevlett.133.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 10/21/2024]
Abstract
By leveraging the hyperfine interaction between the rotational and nuclear spin degrees of freedom, we demonstrate extensive magnetic control over the electric dipole moments, electric dipolar interactions, and ac Stark shifts of ground-state alkali-dimer molecules such as KRb(X^{1}Σ^{+}). The control is enabled by narrow avoided crossings and the highly ergodic character of molecular eigenstates at low magnetic fields, offering a general and robust way of continuously tuning the intermolecular electric dipolar interaction for applications in quantum simulation, quantum sensing, and dipolar spinor physics.
Collapse
|
5
|
Makhija V, Gupta R, Neville S, Schuurman M, Francisco J, Kais S. Time Resolved Quantum Tomography in Molecular Spectroscopy by the Maximal Entropy Approach. J Phys Chem Lett 2024; 15:9525-9534. [PMID: 39264357 DOI: 10.1021/acs.jpclett.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Attosecond science offers unprecedented precision in probing the initial moments of chemical reactions, revealing the dynamics of molecular electrons that shape reaction pathways. A fundamental question emerges: what role, if any, do quantum coherences between molecular electron states play in photochemical reactions? Answering this question necessitates quantum tomography─the determination of the electronic density matrix from experimental data, where the off-diagonal elements represent these coherences. The Maximal Entropy (MaxEnt) based Quantum State Tomography (QST) approach offers unique advantages in studying molecular dynamics, particularly with partial tomographic data. Here, we explore the application of MaxEnt-based QST on photoexcited ammonia, necessitating the operator form of observables specific to the performed measurements. We present two methodologies for constructing these operators: one leveraging Molecular Angular Distribution Moments (MADMs) which accurately capture the orientation-dependent vibronic dynamics of molecules and another utilizing Angular Momentum Coherence Operators to construct measurement operators for the full rovibronic density matrix in the symmetric top basis. A key revelation of our study is the direct link between Lagrange multipliers in the MaxEnt formalism and the unique set of MADMs. Additionally, we visualize the electron density within the molecular frame, demonstrating charge migration across the molecule. Furthermore, we achieve a groundbreaking milestone by constructing, for the first time, the entanglement entropy of the electronic subsystem─a metric that was previously inaccessible. The entropy vividly reveals and quantifies the effects of coupling between the excited electron and nuclear degrees of freedom. Consequently, our findings open new avenues for research in ultrafast molecular spectroscopy within the broader domain of quantum information science, offering profound implications for the study of molecular systems under excitation using quantum tomographic schemes.
Collapse
Affiliation(s)
- Varun Makhija
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, Virginia 22401, United States
| | - Rishabh Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Simon Neville
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Joseph Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sabre Kais
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
6
|
Liu ZF, Ye XY, Chen L, Niu LY, Jin WJ, Zhang S, Yang QZ. Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence. Angew Chem Int Ed Engl 2024; 63:e202318856. [PMID: 38169084 DOI: 10.1002/anie.202318856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis-conformation and engage in multiple non-covalent interactions along a helical path, they collectively self-assemble into chiral superstructures consisting of single-handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self-assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Yi Ye
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei Jun Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
7
|
Chen XY, Biswas S, Eppelt S, Schindewolf A, Deng F, Shi T, Yi S, Hilker TA, Bloch I, Luo XY. Ultracold field-linked tetratomic molecules. Nature 2024; 626:283-287. [PMID: 38297128 PMCID: PMC10849947 DOI: 10.1038/s41586-023-06986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Ultracold polyatomic molecules offer opportunities1 in cold chemistry2,3, precision measurements4 and quantum information processing5,6, because of their rich internal structure. However, their increased complexity compared with diatomic molecules presents a challenge in using conventional cooling techniques. Here we demonstrate an approach to create weakly bound ultracold polyatomic molecules by electroassociation7 (F.D. et al., manuscript in preparation) in a degenerate Fermi gas of microwave-dressed polar molecules through a field-linked resonance8-11. Starting from ground-state NaK molecules, we create around 1.1 × 103 weakly bound tetratomic (NaK)2 molecules, with a phase space density of 0.040(3) at a temperature of 134(3) nK, more than 3,000 times colder than previously realized tetratomic molecules12. We observe a maximum tetramer lifetime of 8(2) ms in free space without a notable change in the presence of an optical dipole trap, indicating that these tetramers are collisionally stable. Moreover, we directly image the dissociated tetramers through microwave-field modulation to probe the anisotropy of their wavefunction in momentum space. Our result demonstrates a universal tool for assembling weakly bound ultracold polyatomic molecules from smaller polar molecules, which is a crucial step towards Bose-Einstein condensation of polyatomic molecules and towards a new crossover from a dipolar Bardeen-Cooper-Schrieffer superfluid13-15 to a Bose-Einstein condensation of tetramers. Moreover, the long-lived field-linked state provides an ideal starting point for deterministic optical transfer to deeply bound tetramer states16-18.
Collapse
Affiliation(s)
- Xing-Yan Chen
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Shrestha Biswas
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Sebastian Eppelt
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Andreas Schindewolf
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Fulin Deng
- School of Physics and Technology, Wuhan University, Wuhan, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Tao Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
- AS Center for Excellence in Topological Quantum Computation & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Su Yi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- AS Center for Excellence in Topological Quantum Computation & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing, China
| | - Timon A Hilker
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, Garching, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut für Quantenoptik, Garching, Germany.
- Munich Center for Quantum Science and Technology, Munich, Germany.
| |
Collapse
|