1
|
Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024; 187:6760-6779.e24. [PMID: 39353436 PMCID: PMC11568911 DOI: 10.1016/j.cell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yadong Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Bai Z, Zhang D, Gao Y, Tao B, Bao S, Enninful A, Zhang D, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579143. [PMID: 38370833 PMCID: PMC10871202 DOI: 10.1101/2024.02.06.579143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|