1
|
Li D, Zhu J, Zhang M, Shi Q, Guo R, Zhang D, Zheng P, Zhang H, Li G, Wu J, Sun G, Wen Q, Tan J, Liu Z, Liu X, Yang H, Lu H, Cao G, Yin Z, Wang Q. SOSTDC1 downregulation in CD4 + T cells confers protection against obesity-induced insulin resistance. Cell Rep 2025; 44:115496. [PMID: 40173040 DOI: 10.1016/j.celrep.2025.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Adipose-resident T cells play a crucial role in the development of obesity-induced insulin resistance. However, the specific mechanisms, particularly those involving non-immune cytokines, remain unclear. Here, we report significantly elevated levels of sclerostin domain-containing protein 1 (SOSTDC1) in individuals with type 2 diabetes (T2D), showing positive correlations with fasting glucose and HbA1c. T cell-specific Sostdc1-deficient mice exhibit resistance to age-induced adipose lipid accumulation and glucose dysregulation at 12 months and protect against obesity-induced insulin resistance without affecting proinflammatory macrophage infiltration or adipose inflammation. Mechanistically, SOSTDC1 disrupts the lipid balance in adipocytes by promoting lipogenesis and inhibiting lipolysis through the LRP5/6-β-catenin pathway. Furthermore, T cell receptor (TCR) signaling significantly amplifies SOSTDC1 secretion in CD4+ T cells. In summary, our study uncovers an additional mechanism by which T cells contribute to obesity and insulin resistance, suggesting that inhibiting SOSTDC1 could be a promising immunotherapeutic strategy for metabolic disorders.
Collapse
Affiliation(s)
- Dehai Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing Zhu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Mingyue Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Qiping Shi
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Rong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Pei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hua Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Guangqiang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Jie Wu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hengwen Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Hongyun Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Troch KF, Jakob MO, Forster PM, Jarick KJ, Schreiber J, Preusser A, Guerra GM, Durek P, Tizian C, Sterczyk N, Helfrich S, Duerr CU, Voehringer D, Witkowski M, Artis D, Rollenske T, Kruglov AA, Mashreghi MF, Klose CSN. Group 2 innate lymphoid cells are a non-redundant source of interleukin-5 required for development and function of murine B1 cells. Nat Commun 2024; 15:10566. [PMID: 39632879 PMCID: PMC11618303 DOI: 10.1038/s41467-024-54780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Tissue-resident immune cells, such as innate lymphoid cells, mediate protective or detrimental immune responses at barrier surfaces. Upon activation by stromal or epithelial cell-derived alarmins, group 2 innate lymphoid cells (ILC2s) are a rapid source of type 2 cytokines, such as IL-5. However, due to the overlap in effector functions, it remains unresolved whether ILC2s are an essential component of the type 2 response or whether their function can be compensated by other cells, such as T cells. Here we show a non-redundant role of ILC2s in supporting the development and function of B1 cells. We demonstrate that B1 cells fail to develop properly in the absence of ILC2s and identify the IL-33 receptor on ILC2s as an essential cell-intrinsic regulator of IL-5 production. Further, conditional deletion of Il5 in ILC2s results in defective B1 cell development and immunoglobulin production. Consequently, B1 cells with phosphatidylcholine specific B cell receptor rearrangements are diminished in ILC2-deficient mice. Thus, our data establish an essential function of ILC2s in supporting B1 cells and antibody production at barrier surfaces.
Collapse
Affiliation(s)
- Karoline F Troch
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Manuel O Jakob
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Patrycja M Forster
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Katja J Jarick
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Jonathan Schreiber
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Preusser
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Gabriela M Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Caroline Tizian
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Nele Sterczyk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Sofia Helfrich
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Claudia U Duerr
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tim Rollenske
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Andrey A Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Christoph S N Klose
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany.
| |
Collapse
|
3
|
Kania AK, Kokkinou E, Pearce E, Pearce E. Metabolic adaptations of ILC2 and Th2 cells in type 2 immunity. Curr Opin Immunol 2024; 91:102503. [PMID: 39520759 DOI: 10.1016/j.coi.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Type 2 immune responses play a crucial role in host defense against parasitic infections but can also promote the development of allergies and asthma. This response is orchestrated primarily by group 2 innate lymphoid cells (ILC2) and helper type 2 (Th2) cells, both of which undergo substantial metabolic reprogramming as they transition from resting to activated states. Understanding these metabolic adaptations not only provides insights into the fundamental biology of ILC2 and Th2 cells but also opens up potential therapeutic avenues for the identification of novel metabolic targets that can extend the current treatment regimens for diseases in which type 2 immune responses play pivotal roles. By integrating recent findings, this review underscores the significance of cellular metabolism in orchestrating immune functions and highlights future directions for research in this evolving field.
Collapse
Affiliation(s)
- Anna K Kania
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efthymia Kokkinou
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Douhard F, Matthey X, Marcon D, Coffre-Thomain C, Estivalet L, Serreau D, Guégnard F, Sallé G, Drame PM, Elleboudt F, Lecompte F, Adriaensen H. Evidence for a constitutive cost of host resistance on body fat growth in ewe lambs from lines selected for resistance or susceptibility to experimental infections with Haemonchus contortus. Int J Parasitol 2024; 54:767-777. [PMID: 39332660 DOI: 10.1016/j.ijpara.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Although benefits of selection for host resistance to gastro-intestinal nematodes have long been recognized, its costs on production traits remain unclear. A main difficulty when studying those costs is to disentangle genetic effects due to selection from plastic responses induced by infection. Putative costs of host resistance have been extensively investigated in growing sheep. However, while most of those studies have relied on live weight to assess body growth, more comprehensive assessments accounting for body composition are advocated to detect trade-offs. In this study we used 90 female lambs from lines divergently selected on resistance to Haemonchus contortus that we experimentally infected (n = 60) or not (n = 30) under controlled conditions. As those conditions were defined to enable uninfected lambs to fully express their growth potential, we sought to precisely identify the effects of selection for host resistance on health traits and on growth traits. We assessed muscular and fat growth based on repeated measurements with dorsal ultrasonography for all lambs on farm, and with whole-body computed tomography (CT) scans for a subgroup of 18 infected lambs. Lambs achieved a high growth rate, including infected ones despite their high worm burden (confirmed at necropsy in the subgroup). As expected, lambs from the resistant (R) line were less infected than those from the susceptible (S) line. However, the clear pathogenic effects observed on muscular growth and voluntary feed intake were similar between lines. In contrast, a line difference in body fat was supported both by dorsal and volumetric CT measurements. Specifically, lower fat in the R line compared with the S line was observed equally in infected and uninfected groups, thus providing evidence for a constitutive cost of host resistance. Although this cost is not necessarily disadvantageous in nutrient-rich environments exposing animals to excess fat deposition, its consequences in nutrient-scarce environments may be important to promote sustainable breeding strategies for host resistance.
Collapse
Affiliation(s)
- Frédéric Douhard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.
| | - Xavier Matthey
- UMR INRAE/ENVT 1225 IHAP, UMT Santé des Petits Ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse cedex 03, France
| | | | | | | | | | | | | | - Papa Moussa Drame
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Frédéric Elleboudt
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - François Lecompte
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Hans Adriaensen
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| |
Collapse
|
5
|
Szeto AC, Ferreira AC, McKenzie AN. Molecular mechanisms regulating T helper 2 cell differentiation and function. Curr Opin Immunol 2024; 91:102483. [PMID: 39357077 PMCID: PMC7617428 DOI: 10.1016/j.coi.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
T helper 2 (TH2) cells orchestrate type 2 immunity during protective antihelminth immunity and help restore tissue homoeostasis. Their misdirected activities against innocuous substances also underlie atopic diseases, such as asthma and allergy. Recent technological advances are uncovering novel insights into the molecular mechanisms governing TH2 cell differentiation and function.
Collapse
Affiliation(s)
- Aydan Ch Szeto
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Cf Ferreira
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
6
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
7
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
8
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
9
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
10
|
Zaiss DMW, Pearce EJ, Artis D, McKenzie ANJ, Klose CSN. Cooperation of ILC2s and T H2 cells in the expulsion of intestinal helminth parasites. Nat Rev Immunol 2024; 24:294-302. [PMID: 37798539 DOI: 10.1038/s41577-023-00942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Type 2 immune responses form a critical defence against enteric worm infections. In recent years, mouse models have revealed shared and unique functions for group 2 innate lymphoid cells and T helper 2 cells in type 2 immune response to intestinal helminths. Both cell types use similar innate effector functions at the site of infection, whereas each population has distinct roles during different stages of infection. In this Perspective, we review the underlying mechanisms used by group 2 innate lymphoid cells and T helper 2 cells to cooperate with each other and suggest an overarching model of the interplay between these cell types over the course of a helminth infection.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Immune Medicine, University Regensburg, Regensburg, Germany.
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Edward J Pearce
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Han SM, Park ES, Park J, Nahmgoong H, Choi YH, Oh J, Yim KM, Lee WT, Lee YK, Jeon YG, Shin KC, Huh JY, Choi SH, Park J, Kim JK, Kim JB. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun 2023; 14:8512. [PMID: 38129377 PMCID: PMC10739728 DOI: 10.1038/s41467-023-44181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeu Park
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyung Min Yim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Taek Lee
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Yong Geun Jeon
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Cheul Shin
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea.
| | - Jae Bum Kim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Maizels RM, Gause WC. Targeting helminths: The expanding world of type 2 immune effector mechanisms. J Exp Med 2023; 220:e20221381. [PMID: 37638887 PMCID: PMC10460967 DOI: 10.1084/jem.20221381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
In this new review, Rick Maizels and Bill Gause summarize how type 2 immune responses combat helminth parasites through novel mechanisms, coordinating multiple innate and adaptive cell and molecular players that can eliminate infection and repair-resultant tissue damage.
Collapse
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C. Gause
- Center for Immunity and Inflammation, Rutgers Biomedical Health Sciences Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| |
Collapse
|
13
|
Li Y, Liu S, Zhou K, Wang Y, Chen Y, Hu W, Li S, Li H, Wang Y, Wang Q, He D, Xu H. Neuromedin U programs eosinophils to promote mucosal immunity of the small intestine. Science 2023; 381:1189-1196. [PMID: 37708282 DOI: 10.1126/science.ade4177] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Eosinophils are granulocytes that play an essential role in type 2 immunity and regulate multiple homeostatic processes in the small intestine (SI). However, the signals that regulate eosinophil activity in the SI at steady state remain poorly understood. Through transcriptome profiling of eosinophils from various mouse tissues, we found that a subset of SI eosinophils expressed neuromedin U (NMU) receptor 1 (NMUR1). Fate-mapping analyses showed that NMUR1 expression in SI eosinophils was programmed by the local microenvironment and further enhanced by inflammation. Genetic perturbation and eosinophil-organoid coculture experiments revealed that NMU-mediated eosinophil activation promotes goblet cell differentiation. Thus, NMU regulates epithelial cell differentiation and barrier immunity by stimulating NMUR1-expressing eosinophils in the SI, which highlights the importance of neuroimmune-epithelial cross-talk in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Yu Li
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Kewen Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yinsheng Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Wen Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Hui Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Qiuying Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Danyang He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
14
|
Abstract
Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
16
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
17
|
DiToro D, Pillai S. “ILC2 it, but I can’t promise anything”. Sci Immunol 2022; 7:eadf9313. [DOI: 10.1126/sciimmunol.adf9313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A conditional knockout system permitting deletion of ILC2 cells reveals non-redundant roles in eosinophil recruitment and helminth clearance.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
18
|
Minton K. An adipose niche for anti-helminth responses. Nat Rev Immunol 2022; 22:717. [DOI: 10.1038/s41577-022-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|