1
|
Qin K, Tang W, Guo X, Xu H, Zhong Y, Wang Y, Sheng Q, Yang H, Zou J. Accessing pluripotent drones through reprogramming of dynamic soft self-healing chemical growth. Natl Sci Rev 2025; 12:nwaf049. [PMID: 40330049 PMCID: PMC12051850 DOI: 10.1093/nsr/nwaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 05/08/2025] Open
Abstract
The functions of drones that are implemented by existing design paradigms are usually fixed and do not have the possibility of further 'differentiation'. Inspired by the biological concept of pluripotency, here we report a pluripotent drone that can further 'differentiate' into a series of drones with different functions to perform a variety of challenging tasks. To realize this concept, we propose a method of reprogrammable dynamic soft self-healing chemical growth (R-growth), by which the pluripotent drone can grow specific 'organs' to achieve corresponding functions, and after completing the corresponding tasks, these 'organs' can be retracted. Furthermore, these 'organs' are able to respond to possible damage through rapid self-healing (∼3.2 s, >1000 times faster than the self-healing of existing similar membranes). R-growth is large-scale (>1.5 m), fast (0.15 m/s), lightweight (∼5 g, 1/20 the weight of traditional micro air pumps), self-contained and free-wheeling. This method can be applied to various existing drones to significantly extend their functions and to enable an unprecedented range of tasks. This work realizes the growth, retraction, and switching of drone 'organs' with any function, while such ability of macro robots or humans, to date, only exists in science fiction movies.
Collapse
Affiliation(s)
- Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yonghao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qincheng Sheng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Luo Q, Wei F, Liu W. Foldable insect wings: from folding and unfolding mechanisms to inspired applications. J Exp Biol 2025; 228:jeb249706. [PMID: 40421851 DOI: 10.1242/jeb.249706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The unfolding and folding mechanisms of insect wings have always been a research field of concern for scientists. Recently, many engineers have combined these mechanisms with origami to develop innovative foldable structures. This Review discusses the mechanisms of insect hindwing unfolding and folding, particularly in the Coleoptera and Dermaptera, revealing the inherent relationship between folding models and insect wing folding mechanisms, including the construction of bistable systems, the generation of internal elastic forces and the reasons for dual stiffness. In addition, this Review also discusses the effects of hydraulic pressure, thoracic muscles, abdominal movements, wing flapping and other mechanisms on the wings. Finally, we introduce the current applications in aircraft and grippers inspired by these mechanisms. Learning the mechanism of insect wing folding and utilizing mechanical structures and artificial materials to reproduce the delicate folding of insect wings can provide a wide range of inspirations for foldable structure design.
Collapse
Affiliation(s)
- Qinzhou Luo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wei Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
3
|
Peng R, Chirikjian GS. Thick-panel origami structures forming seamless surfaces. Nat Commun 2025; 16:3881. [PMID: 40274848 PMCID: PMC12022054 DOI: 10.1038/s41467-025-59141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Thick-panel origami structures are able to deploy into expansive configurations, making them suitable for industrial applications such as deployable stadium domes, water-tight roof tiling, sun shields, furniture, antennas, solar arrays, space telescopes, etc. Existing methods often introduce structural complexities or fail to ensure seamless surfaces, limiting their practicality. Here our process involves modifying valley-crease panels and extending adjacent panels to eliminate grooves, thus achieving a seamless surface. The paper presents the geometric conditions for ensuring motion compatibility and analyzes the kinematics of the modified structures. Additionally, an approach for minimizing the number of top panels is proposed to simplify fabrication and enhance lightweight design. Prototypes of these designs are 3D-printed to validate the concepts. The methods and results offer valuable insights for developing deployable structures with customizable shapes and enhanced functionality.
Collapse
Affiliation(s)
- Rui Peng
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Gregory S Chirikjian
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
He G, Sparks C, Gravish N. Grasping and rolling in-plane manipulation using deployable tape spring appendages. SCIENCE ADVANCES 2025; 11:eadt5905. [PMID: 40203100 PMCID: PMC11980837 DOI: 10.1126/sciadv.adt5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Rigid robot arms face a tradeoff between their overall reach distance and how compactly they can be collapsed. However, the tradeoff between long reach and small storage volume can be resolved using deployable structures such as tape springs. We developed bidirectional tape spring "fingers" that have large buckling strength compared to single tape springs and that can be spooled into a compact state or unspooled to manipulate objects. We integrate fingers into a robot manipulator that allows for object Grasping and Rolling In Planar configurations (called GRIP-tape). The continuum kinematics of the fingers enables a multitude of manipulation capabilities such as translation, rotation, twisting, and multi-object conveyance. Furthermore, the dual mechanical properties of stiffness and softness in the fingers endow the gripper with inherent safety from collisions and enables soft-contact with objects. Deployable structures such as tape springs offer opportunities for manipulation in cluttered or remote environments.
Collapse
Affiliation(s)
- Gengzhi He
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Curtis Sparks
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Nick Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Shang E, Li A, Islam MS, Zhang L, Cao C(C. Adaptive Deployable Structure Enabled by Actively Controlled Tensegrity for Space Debris Removal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408617. [PMID: 39951386 PMCID: PMC11984902 DOI: 10.1002/advs.202408617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Indexed: 02/16/2025]
Abstract
The Earth's orbital environment is increasingly congested with space debris, posing a substantial risk to space operations and safety. Current mitigation strategies are primarily tailored to either small debris, through protective devices, or large debris, via spacecraft deorbiting methods, leaving medium-sized debris (0.4-10 cm) as a significant unaddressed threat. This study introduces an innovative adaptive deployable structure, utilizing actively controlled tensegrity, designed specifically for the removal of medium debris. The basic configuration and deployment process of the structure is detailed, followed by an analysis of key structural parameters affecting its folding and deployment performance. Additionally, the load-bearing capacity and impact resistance of the structure when integrated with a mesh fabric are evaluated. The optimal parameters and morphology for effective debris removal are identified, culminating in the construction of a 1:20 scale prototype for experimental validation. This structure not only adapts its configuration based on operational needs but also withstands impacts from space debris, thereby playing a crucial role in enhancing orbital safety.
Collapse
Affiliation(s)
- Endong Shang
- School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Ao Li
- School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Md Shariful Islam
- Laboratory for Soft Machines and ElectronicsDepartment of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Li‐Yuan Zhang
- School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijing100083China
- Laboratory for Soft Machines and ElectronicsDepartment of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Changyong (Chase) Cao
- Laboratory for Soft Machines and ElectronicsDepartment of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandOH44106USA
- Advanced Platform Technology (APT) CenterLouis Stokes Cleveland VA Medical CenterClevelandOH44106USA
| |
Collapse
|
6
|
Pasini D. Unfurling packed-flat tubes into self-locked stiff structures. Proc Natl Acad Sci U S A 2024; 121:e2419750121. [PMID: 39527748 PMCID: PMC11588123 DOI: 10.1073/pnas.2419750121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Damiano Pasini
- Department of Mechanical Engineering, McGill Institute for Aerospace Engineering, McGill Institute for Advanced Materials, McGill University, Montreal, QCH3A0C3, Canada
| |
Collapse
|
7
|
Almessabi A, Li X, Jamalimehr A, Pasini D. Reprogramming multi-stable snapping and energy dissipation in origami metamaterials through panel confinement. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20240005. [PMID: 39370794 DOI: 10.1098/rsta.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024]
Abstract
With a focus on a class of origami-inspired metamaterials, this work explores the role of panel confinement in their mechanical response under cyclic loading. The goal is twofold: (i) quantify the magnitude change in snapping force and energy dissipation attained by varying the severity of confinement of selected panels; and (ii) leverage insights to modulate in situ their mechanical response as dictated by a given application, hence propose panel confinement modulation as a practical design route for response reprogrammability. Through computational modelling, proof-of-concept fabrication and cyclic testing, we first identify and characterize the governing factors enabling either the alteration or the preservation of the snapping force magnitude during repeated cycles of forward and backward loading. Then, we demonstrate how the in situ modulation of the constrained distance between selected panels enables reprogramming their snapping sequence and energy dissipation. The results contribute to expanding the versatility and application of this class of origami metamaterial across sectors, from aerospace to protective equipment, requiring precise control of mechanical damping and energy dissipation.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
Collapse
Affiliation(s)
- Abdulrahman Almessabi
- Department of Mechanical Engineering, MGill University, Montreal, Quebec H3A 0G4, Canada
| | - Xuwen Li
- Department of Mechanical Engineering, MGill University, Montreal, Quebec H3A 0G4, Canada
| | - Amin Jamalimehr
- Department of Mechanical Engineering, MGill University, Montreal, Quebec H3A 0G4, Canada
| | - Damiano Pasini
- Department of Mechanical Engineering, MGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
8
|
Lerner E, Chen Z, Zhao J. Reconfigurable origami with variable stiffness joints for adaptive robotic locomotion and grasping. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20240017. [PMID: 39370786 DOI: 10.1098/rsta.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 10/08/2024]
Abstract
With its compactness and foldability, origami has recently been applied to robotic systems to enable versatile robots and mechanisms while maintaining a low weight and compact form. This work investigates how to generate different motions and shapes for origami by tuning its creases' stiffness on the fly. The stiffness tuning is realized by a composite material made by sandwiching a thermoplastic layer between two shape memory polymer layers. This enables the composite to act as a living hinge, whose stiffness can be actively controlled through Joule heating. To demonstrate our concept, we fabricate an origami module with four variable stiffness joints (VSJs), allowing it to have freely controlled crease stiffnesses across its surface. We characterize the origami module's versatile motion when heating different VSJs with different temperatures. We further use two origami modules to build a two-legged robot that can locomote on the ground with different locomotion gaits. The same robot is also used as an adaptive gripper for grasping tasks. Our work can potentially enable more versatile robotic systems made from origami as well as other mechanical systems with programmable properties (e.g. mechanical metamaterials).This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
Collapse
Affiliation(s)
- Elisha Lerner
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA
| | - Zhe Chen
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA
| | - Jianguo Zhao
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Yan W, Jones T, Jawetz CL, Lee RH, Hopkins JB, Mehta A. Self-deployable contracting-cord metamaterials with tunable mechanical properties. MATERIALS HORIZONS 2024; 11:3805-3818. [PMID: 39005193 DOI: 10.1039/d4mh00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent advances in active materials and fabrication techniques have enabled the production of cyclically self-deployable metamaterials with an expanded functionality space. However, designing metamaterials that possess continuously tunable mechanical properties after self-deployment remains a challenge, notwithstanding its importance. Inspired by push puppets, we introduce an efficient design strategy to create reversibly self-deployable metamaterials with continuously tunable post-deployment stiffness and damping. Our metamaterial comprises contracting actuators threaded through beads with matching conical concavo-convex interfaces in networked chains. The slack network conforms to arbitrary shapes, but when actuated, it self-assembles into a preprogrammed configuration with beads gathered together. Further contraction of the actuators can dynamically tune the assembly's mechanical properties through the beads' particle jamming, while maintaining the overall structure with minimal change. We show that, after deployment, such metamaterials exhibit pronounced tunability in bending-dominated configurations: they can become more than 35 times stiffer and change their damping capability by over 50%. Through systematic analysis, we find that the beads' conical angle can introduce geometric nonlinearity, which has a major effect on the self-deployability and tunability of the metamaterial. Our work provides routes towards reversibly self-deployable, lightweight, and tunable metamaterials, with potential applications in soft robotics, reconfigurable architectures, and space engineering.
Collapse
Affiliation(s)
- Wenzhong Yan
- Electrical and Computer Engineering Department, UCLA, USA.
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Talmage Jones
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | - Christopher L Jawetz
- Mechanical and Aerospace Engineering Department, UCLA, USA
- Woodruff School of Mechanical Engineering, Georgia Tech, USA
| | - Ryan H Lee
- Mechanical and Aerospace Engineering Department, UCLA, USA
| | | | - Ankur Mehta
- Electrical and Computer Engineering Department, UCLA, USA.
| |
Collapse
|
10
|
Youn JH, Koh JS, Kyung KU. Soft Polymer-Actuated Compliant Microgripper with Adaptive Vibration-Controlled Grasp and Release. Soft Robot 2024; 11:585-595. [PMID: 38557238 DOI: 10.1089/soro.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Microgrippers that incorporate soft actuators are appropriate for micromanipulation or microsurgery owing to their ability to grasp objects without causing damage. However, developing a microgripper with a large gripping range that can produce a large force with high speed remains challenging in soft actuation mechanisms. Herein, we introduce a compliant microgripper driven by a soft dielectric elastomer actuator (DEA) called a spiral flexure cone DEA (SFCDEA). The submillimeter-scale SFCDEA exhibited a controllable linear displacement over a high bandwidth and the capability of lifting 100.9 g, which was 670 times higher than its mass. Subsequently, we developed a compliant microgripper based on the SFCDEA using smart composite microstructure technology to fabricate three-dimensional gripper linkages. We demonstrated that the microgripper was able to grasp various millimeter-scale objects with different shapes, sizes, and weights without a complex feedback control owing to its compliance. We proved the versatility of our gripper in robotic manipulation by demonstrating adaptive grasping and releasing of small objects using vibrations owing to its high bandwidth.
Collapse
Affiliation(s)
- Jung-Hwan Youn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Suwon, Republic of Korea
| | - Ki-Uk Kyung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Wu S, Zhao T, Zhu Y, Paulino GH. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation. Proc Natl Acad Sci U S A 2024; 121:e2322625121. [PMID: 38709915 PMCID: PMC11098090 DOI: 10.1073/pnas.2322625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Tuo Zhao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
12
|
Guo X, Tang W, Qin K, Zhong Y, Xu H, Qu Y, Li Z, Sheng Q, Gao Y, Yang H, Zou J. Powerful UAV manipulation via bioinspired self-adaptive soft self-contained gripper. SCIENCE ADVANCES 2024; 10:eadn6642. [PMID: 38718123 PMCID: PMC11078182 DOI: 10.1126/sciadv.adn6642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Existing grippers for unmanned aerial vehicle (UAV) manipulation have persistent challenges, highlighting a need for grippers that are soft, self-adaptive, self-contained, easy to control, and lightweight. Inspired by tendril plants, we propose a class of soft grippers that are voltage driven and based on winding deformation for self-adaptive grasping. We design two types of U-shaped soft eccentric circular tube actuators (UCTAs) and propose using the liquid-gas phase-transition mechanism to actuate UCTAs. Two types of UCTAs are separately cross-arranged to construct two types of soft grippers, forming self-contained systems that can be directly driven by voltage. One gripper inspired by tendril climbers can be used for delicate grasping, and the other gripper inspired by hook climbers can be used for strong grasping. These grippers are ideal for deployment in UAVs because of their self-adaptability, ease of control, and light weight, paving the way for UAVs to achieve powerful manipulation with low positioning accuracy, no complex grasping planning, self-adaptability, and multiple environments.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhaoyang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qincheng Sheng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yidan Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Kim J, Bae J. Self-Locking Pneumatic Actuators Formed from Origami Shape-Morphing Sheets. Soft Robot 2024; 11:32-42. [PMID: 37616544 DOI: 10.1089/soro.2022.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
The art of origami has gained traction in various fields such as architecture, the aerospace industry, and soft robotics, owing to the exceptional versatility of flat sheets to exhibit complex shape transformations. Despite the promise that origami robots hold, their use in high-capacity environments has been limited due to the lack of rigidity. This article introduces novel, origami-inspired, self-locking pneumatic modular actuators (SPMAs), enabling them to operate in such environments. Our innovative approach is based on origami patterns that allow for various types of shape morphing, including linear and rotational motion. We have significantly enhanced the stiffness of the actuators by embedding magnets in composite sheets, thus facilitating their application in real-world scenarios. In addition, the embedded self-adjustable valves facilitate the control of sequential origami actuations, making it possible to simplify the pneumatic system for actuating multimodules. With just one actuation source and one solenoid valve, the valves enable efficient control of our SPMAs. The SPMAs can control robotic arms operating in confined spaces, and the entire system can be modularized to accomplish various tasks. Our results demonstrate the potential of origami-inspired designs to achieve more efficient and reliable robotic systems, thus opening up new avenues for the development of robotic systems for various applications.
Collapse
Affiliation(s)
- Juri Kim
- Bio-Robotics and Control Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Joonbum Bae
- Bio-Robotics and Control Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
15
|
Liu F, Terakawa T, Long S, Komori M. Rigid-foldable cylindrical origami with tunable mechanical behaviors. Sci Rep 2024; 14:145. [PMID: 38168539 PMCID: PMC10762141 DOI: 10.1038/s41598-023-50353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rigid-foldable origami shows significant promise in advanced engineering applications including deployable structures, aerospace engineering, and robotics. It undergoes deformation solely at the creases during the folding process while maintaining rigidity throughout all facets. However, most types of cylindrical origami, such as Kresling origami, water-bomb origami, and twisted tower origami, lack rigid-foldability. Although shape transformation can be achieved through elastic folding, their limited rigid foldability constrains their engineering applications. To address this limitation, we proposed a type of cylindrical origami inspired by Kresling origami, named foldable prism origami (FP-ori), in this paper. FP-ori possesses not only rigid-foldability but also several tunable properties, including flat-foldability, self-locking, and bistability. The geometric properties of FP-ori were analyzed and the relationship between different parameters and tunable mechanical behaviors were verified through finite element method simulations, as well as experiments using paper models. Furthermore, we proposed stacked structures composed of multiple cubic FP-ori units, the rotation directions of which could be controlled through the combination arrangement. And drawing inspiration from kirigami, a negative Poisson's ratio tessellation structure was created. These results indicated that FP-ori has substantial potential for broad application in engineering fields.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tatsuro Terakawa
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Siying Long
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Masaharu Komori
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
16
|
Wajahat M, Kim JH, Kim JH, Jung ID, Pyo J, Seol SK. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59582-59591. [PMID: 38100363 DOI: 10.1021/acsami.3c12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Magnetoactive soft materials (MSMs) comprising magnetic particles and soft matrices have emerged as smart materials for realizing soft actuators. 4D printing, which involves fabricating 3D architectures that can transform shapes under external magnetic fields, is an effective way to fabricate MSMs-based soft actuators with complex shapes. The printed MSMs must be flexible, stretchable, and adaptable in their magnetization profiles to maximize the degrees of freedom for shape morphing. This study utilizes a facile 4D printing strategy for producing ultrastretchable (stretchability > 1000%) MSM 3D architectures for soft-actuator applications. The strategy involves two sequential steps: (i) direct ink writing (DIW) of the MSM 3D architectures with ink composed of NdFeB and styrene-isoprene block copolymers (SIS) at room temperature and (ii) programming and reconfiguration of the magnetization profiles of the printed architecture using an origami-inspired magnetization method (magnetization field, Hm = 2.7 T). Various differently shaped MSM 3D architectures, which can be transformed into desired shapes under an actuation magnetic field (Ba = 85 mT), are successfully fabricated. In addition, two different soft-actuator applications are demonstrated: a multifinger magnetic soft gripper and a Kirigami-shaped 3D electrical switch with conductive and magnetic functionalities. Our strategy shows potential for realizing multifunctional, shape-morphing, and reprogrammable magnetoactive devices for advanced soft-actuator applications.
Collapse
Affiliation(s)
- Muhammad Wajahat
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Je Hyeong Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Jung Hyun Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Im Doo Jung
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsangwang-yeogsi, Ulsan 44919, Republic of Korea
| | - Jaeyeon Pyo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| | - Seung Kwon Seol
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
- Electro-Functional Materials Engineering, University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Republic of Korea
| |
Collapse
|
17
|
Liu H, Tian H, Wang D, Yuan T, Zhang J, Liu G, Li X, Chen X, Wang C, Cai S, Shao J. Electrically active smart adhesive for a perching-and-takeoff robot. SCIENCE ADVANCES 2023; 9:eadj3133. [PMID: 37889978 PMCID: PMC10610914 DOI: 10.1126/sciadv.adj3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Perching-and-takeoff robot can effectively economize onboard power and achieve long endurance. However, dynamic perching on moving targets for a perching-and-takeoff robot is still challenging due to less autonomy to dynamically land, tremendous impact during landing, and weak contact adaptability to perching surfaces. Here, a self-sensing, impact-resistant, and contact-adaptable perching-and-takeoff robot based on all-in-one electrically active smart adhesives is proposed to reversibly perch on moving/static dry/wet surfaces and economize onboard energy. Thereinto, attachment structures with discrete pillars have contact adaptability on different dry/wet surfaces, stable adhesion, and anti-rebound; sandwich-like artificial muscles lower weight, enhance damping, simplify control, and achieve fast adhesion switching (on-off ratio approaching ∞ in several seconds); and the flexible pressure (0.204% per kilopascal)-and-deformation (force resolution, <2.5 millinewton) sensor enables the robot's autonomy. Thus, the perching-and-takeoff robot equipped with electrically active smart adhesives exhibits tremendous advantages of soft materials over their rigid counterparts and promising application prospect of dynamic perching on moving targets.
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Tengfei Yuan
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Guifang Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| |
Collapse
|
18
|
Zare S, Spaeth A, Suresh S, Teodorescu M. Three-Dimensionally Printed Self-Lock Origami: Design, Fabrication, and Simulation to Improve Performance of Rotational Joint. MICROMACHINES 2023; 14:1649. [PMID: 37630185 PMCID: PMC10456827 DOI: 10.3390/mi14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Origami structures have made significant contributions to the field of robotics, offering various advantages. One such advantage is their ability to conserve space by transforming the structure into a compact form. Additionally, many origami structures can be fabricated in a flat state to simplify manufacturing, giving them the potential for large-scale and cost-effective production. Rotational joints play a crucial role in the construction of robotic systems, yet origami rotational joints can suffer from a limited range of motion. We previously theoretically proposed the Self-Lock Joint to address this issue, but it is only partially flat-foldable. This paper presents a novel approach to the 3D printing of modular origami joints, such as the Self-Lock Joint, using 3D-printed plates joined with a fabric layer. The compliance of the fabric can improve the joint's semi flat-foldability or even enable it to achieve complete flat-foldability. Furthermore, the rotational motion of the joint is enhanced, allowing for close to 360 degrees of rotational movement. We assess the physical properties of the joint under both loaded and unloaded conditions in order to identify design trade-offs in the physical properties of the joints. Moreover, as a proof of concept, we construct and demonstrate manipulators utilizing these joints. The increase in rotational movement enabled by this fabrication method, coupled with the compliant joint's flat-foldability and modular nature, make it a promising candidate for use in a wide range of applications.
Collapse
Affiliation(s)
- Samira Zare
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Alex Spaeth
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Sandya Suresh
- SIP Program, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
19
|
Nguyen PH, Patnaik K, Mishra S, Polygerinos P, Zhang W. A Soft-Bodied Aerial Robot for Collision Resilience and Contact-Reactive Perching. Soft Robot 2023; 10:838-851. [PMID: 37079376 DOI: 10.1089/soro.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Current aerial robots demonstrate limited interaction capabilities in unstructured environments when compared with their biological counterparts. Some examples include their inability to tolerate collisions and to successfully land or perch on objects of unknown shapes, sizes, and texture. Efforts to include compliance have introduced designs that incorporate external mechanical impact protection at the cost of reduced agility and flight time due to the added weight. In this work, we propose and develop a lightweight, inflatable, soft-bodied aerial robot (SoBAR) that can pneumatically vary its body stiffness to achieve intrinsic collision resilience. Unlike the conventional rigid aerial robots, SoBAR successfully demonstrates its ability to repeatedly endure and recover from collisions in various directions, not only limited to in-plane ones. Furthermore, we exploit its capabilities to demonstrate perching where the three-dimensional collision resilience helps in improving the perching success rates. We also augment SoBAR with a novel hybrid fabric-based bistable (HFB) grasper that can utilize impact energies to perform contact-reactive grasping through rapid shape conforming abilities. We exhaustively study and offer insights into the collision resilience, impact absorption, and manipulation capabilities of SoBAR with the HFB grasper. Finally, we compare the performance of conventional aerial robots with the SoBAR through collision characterizations, grasping identifications, and experimental validations of collision resilience and perching in various scenarios and on differently shaped objects.
Collapse
Affiliation(s)
- Pham H Nguyen
- School of Manufacturing Systems and Networks, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona, USA
| | - Karishma Patnaik
- School of Manufacturing Systems and Networks, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona, USA
| | - Shatadal Mishra
- School of Manufacturing Systems and Networks, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona, USA
| | - Panagiotis Polygerinos
- Control Systems and Robotics Laboratory (CSRL), School of Engineering, Mechanical Engineering Department, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Wenlong Zhang
- School of Manufacturing Systems and Networks, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona, USA
| |
Collapse
|
20
|
Jin T, Wang T, Xiong Q, Tian Y, Li L, Zhang Q, Yeow CH. Modular Soft Robot with Origami Skin for Versatile Applications. Soft Robot 2023; 10:785-796. [PMID: 36951665 DOI: 10.1089/soro.2022.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.
Collapse
Affiliation(s)
- Tao Jin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| | - Tianhong Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
| | - Quan Xiong
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| | - Yingzhong Tian
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Quan Zhang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
| | - Chen-Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Kim DK, Jung GP. A Highly Compact Zip Chain Arm with Origami-Inspired Folding Chain Structures. Biomimetics (Basel) 2023; 8:biomimetics8020176. [PMID: 37218762 DOI: 10.3390/biomimetics8020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
A deployable robotic arm can be a useful tool for mobile systems to widen accessible areas without removing mobility. For practical use, the deployable robotic arm needs to satisfy two requirements: a high extension-compression ratio and robust structural stiffness against the environment. To this end, this paper suggests, for the first time, an origami-inspired zipper chain to achieve a highly compact, one-degree-of-freedom zipper chain arm. The key component is the foldable chain, which innovatively increases the space-saving capability in the stowed state. The foldable chain is fully flattened in the stowed state, allowing for storage of many more chains in the same space. Moreover, a transmission system was designed to transform a 2D flat pattern into a 3D chain shape in order to control the length of the origami zipper. Additionally, an empirical parametric study was performed to choose design parameters to maximize the bending stiffness. For the feasibility test, a prototype was built and performance tests were executed in relation to extension length, speed, and structural robustness.
Collapse
Affiliation(s)
- Dong-Ki Kim
- Department of Mechanical and Automotive Engineering, SeoulTech, Seoul 01811, Republic of Korea
| | - Gwang-Pil Jung
- Department of Mechanical and Automotive Engineering, SeoulTech, Seoul 01811, Republic of Korea
| |
Collapse
|
22
|
Yan W, Li S, Deguchi M, Zheng Z, Rus D, Mehta A. Origami-based integration of robots that sense, decide, and respond. Nat Commun 2023; 14:1553. [PMID: 37012246 PMCID: PMC10070436 DOI: 10.1038/s41467-023-37158-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Origami-inspired engineering has enabled intelligent materials and structures to process and react to environmental stimuli. However, it is challenging to achieve complete sense-decide-act loops in origami materials for autonomous interaction with environments, mainly due to the lack of information processing units that can interface with sensing and actuation. Here, we introduce an integrated origami-based process to create autonomous robots by embedding sensing, computing, and actuating in compliant, conductive materials. By combining flexible bistable mechanisms and conductive thermal artificial muscles, we realize origami multiplexed switches and configure them to generate digital logic gates, memory bits, and thus integrated autonomous origami robots. We demonstrate with a flytrap-inspired robot that captures 'living prey', an untethered crawler that avoids obstacles, and a wheeled vehicle that locomotes with reprogrammable trajectories. Our method provides routes to achieve autonomy for origami robots through tight functional integration in compliant, conductive materials.
Collapse
Affiliation(s)
- Wenzhong Yan
- Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA, USA.
| | - Shuguang Li
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
| | - Mauricio Deguchi
- Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA, USA
| | - Zhaoliang Zheng
- Electrical and Computer Engineering Department, UCLA, Los Angeles, CA, USA
| | - Daniela Rus
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA
| | - Ankur Mehta
- Electrical and Computer Engineering Department, UCLA, Los Angeles, CA, USA
| |
Collapse
|
23
|
Xu M, Huang S, He R, Yu D, Wang H. Aerial Shooting Manipulator for Distant Grasping. IEEE Robot Autom Lett 2023. [DOI: 10.1109/lra.2023.3245399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Mengxin Xu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Siyuan Huang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Ruokun He
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Dafang Yu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Hesheng Wang
- Department of Automation, the Key Laboratory of System Control and Information Processing of Ministry of Education and the Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Zheng P, Xiao F, Nguyen PH, Farinha A, Kovac M. Metamorphic aerial robot capable of mid-air shape morphing for rapid perching. Sci Rep 2023; 13:1297. [PMID: 36690665 PMCID: PMC9870873 DOI: 10.1038/s41598-022-26066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023] Open
Abstract
Aerial robots can perch onto structures at heights to reduce energy use or to remain firmly in place when interacting with their surroundings. Like how birds have wings to fly and legs to perch, these bio-inspired aerial robots use independent perching modules. However, modular design not only increases the weight of the robot but also its size, reducing the areas that the robot can access. To mitigate these problems, we take inspiration from gliding and tree-dwelling mammals such as sugar gliders and sloths. We noted how gliding mammals morph their whole limb to transit between flight and perch, and how sloths optimized their physiology to encourage energy-efficient perching. These insights are applied to design a quadrotor robot that transitions between morphologies to fly and perch with a single-direction tendon drive. The robot's bi-stable arm is rigid in flight but will conform to its target in 0.97 s when perching, holding its grasp with minimal energy use. We achieved a [Formula: see text] overall mass reduction by integrating this capability into a single body. The robot perches by a controlled descent or a free-falling drop to avoid turbulent aerodynamic effects. Our proposed design solution can fulfill the need for small perching robots in cluttered environments.
Collapse
Affiliation(s)
- Peter Zheng
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.
- The Grantham Institute-Climate Change and the Environment, Imperial College London, London, SW7 2AZ, UK.
| | - Feng Xiao
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Pham Huy Nguyen
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Andre Farinha
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Mirko Kovac
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.
- Laboratory of Sustainability Robotics, Swiss Federal Laboratories of Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
25
|
Liu Z, Mucchiani C, Ye K, Karydis K. Safely catching aerial micro-robots in mid-air using an open-source aerial robot with soft gripper. Front Robot AI 2022; 9:1030515. [PMID: 36405070 PMCID: PMC9667070 DOI: 10.3389/frobt.2022.1030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
This work focuses on catching safely an aerial micro-robot in mid-air using another aerial robot that is equipped with a universal soft gripper. To avoid aerodynamic disturbances such as downwash, that would push the target robot away, we follow a horizontal grasping approach. To this end, the article introduces a gripper design based on soft actuators that can stay horizontally straight with a single fixture and maintain sufficiently compliance in order to bend when air pressure is applied. Further, we develop the Soft Aerial Gripper (SoAG), an open-source aerial robot equipped with the developed soft end-effector and that features an onboard pneumatic regulation system. Experimental results show that the developed low-cost soft gripper has fast opening and closing responses despite being powered by lightweight air pumps, responses that are comparable to those of a commercially available end-effector tested we test against. Static grasping tests study the soft gripper's robustness in capturing aerial micro-robots under aerodynamic disturbances. We experimentally demonstrated the feasibility of using the SoAG robot to catch a hovering micro-robot with or without propeller guards. The feasibility of dynamic catching is also shown by capturing a moving aerial micro-robot with a velocity of 0.2 m/s. The free flight performance of the SoAG robot is studied against a conventional quadrotor and in different gripper and payload status.
Collapse
|
26
|
Shi C, Yu Y. Design and Implementation of a Fully-Actuated Integrated Aerial Platform Based on Geometric Model Predictive Control. MICROMACHINES 2022; 13:1822. [PMID: 36363844 PMCID: PMC9698793 DOI: 10.3390/mi13111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Unlike individual unmanned aerial vehicles (UAVs), integrated aerial platforms (IAPs) containing multiple UAVs do not suffer from underactuation and can move omnidirectionally in six dimensions, providing a basis for constructing aerial manipulation platforms. Compared to single UAVs, multi-UAV IAPs are also advantageous in terms of payload and fault-tolerance capacity, making them promising candidates as platforms with integrated-response, observation, and strike capabilities. Herein, an IAP structure design containing three sub-UAVs connected in a star-like configuration is presented. This form of integration enables the IAP, as a whole, to simultaneously adjust its position and attitude in six dimensions. The dynamics of the overall system of the IAP are modeled. On this basis, an overall system controller is designed. To simplify control, based on stability of cascaded system, the rotational motion of the sub-UAVs is treated as a inner-loop subsystem, whereas the overall motion of the IAP is seen as a outer-loop subsystem. Because the configuration space of the sub-UAVs is non-Euclidean, a controller is designed for the outer-loop subsystem based on model predictive control on the manifold. Subsequently, the stability of the closed-loop system is demonstrated. Fieldbus technology is employed to design a real-time, scalable communication architecture for multiple sub-UAVs, followed by the development of a principle prototype of the multi-UAV IAP that consists of hardware and software systems. The effectiveness of the IAP design and control method is validated through simulation and real-world prototype-based tests. In the simulation and real-world tests, the proposed methodology can make the IAP system converge to the desired configuration at the presence of large initial configuration error. The same test scenario cannot be finished by a baseline PID controller. The advantage of the proposed control scheme in dealing with state and input constraints is shown via such tests.
Collapse
Affiliation(s)
- Chuanbeibei Shi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Yushu Yu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Son H, Park Y, Na Y, Yoon C. 4D Multiscale Origami Soft Robots: A Review. Polymers (Basel) 2022; 14:polym14194235. [PMID: 36236182 PMCID: PMC9571758 DOI: 10.3390/polym14194235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
Collapse
Affiliation(s)
- Hyegyo Son
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| |
Collapse
|
28
|
Park Y, Kang J, Na Y. Reconfigurable Shape Morphing With Origami-Inspired Pneumatic Blocks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, South Korea
| | - Joohyeon Kang
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, South Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
29
|
Hong C, Ren Z, Wang C, Li M, Wu Y, Tang D, Hu W, Sitti M. Magnetically actuated gearbox for the wireless control of millimeter-scale robots. Sci Robot 2022; 7:eabo4401. [PMID: 36044558 DOI: 10.1126/scirobotics.abo4401] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The limited force or torque outputs of miniature magnetic actuators constrain the locomotion performances and functionalities of magnetic millimeter-scale robots. Here, we present a magnetically actuated gearbox with a maximum size of 3 millimeters for driving wireless millirobots. The gearbox is assembled using microgears that have reference diameters down to 270 micrometers and are made of aluminum-filled epoxy resins through casting. With a magnetic disk attached to the input shaft, the gearbox can be driven by a rotating external magnetic field, which is not more than 6.8 millitesla, to produce torque of up to 0.182 millinewton meters at 40 hertz. The corresponding torque and power densities are 12.15 micronewton meters per cubic millimeter and 8.93 microwatt per cubic millimeter, respectively. The transmission efficiency of the gearbox in the air is between 25.1 and 29.2% at actuation frequencies ranging from 1 to 40 hertz, and it lowers when the gearbox is actuated in viscous liquids. This miniature gearbox can be accessed wirelessly and integrated with various functional modules to repeatedly generate large actuation forces, strains, and speeds; store energy in elastic components; and lock up mechanical linkages. These characteristics enable us to achieve a peristaltic robot that can crawl on a flat substrate or inside a tube, a jumping robot with a tunable jumping height, a clamping robot that can sample solid objects by grasping, a needle-puncture robot that can take samples from the inside of the target, and a syringe robot that can collect or release liquids.
Collapse
Affiliation(s)
- Chong Hong
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.,State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Che Wang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Dewei Tang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland.,School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
30
|
Discrete symmetries control geometric mechanics in parallelogram-based origami. Proc Natl Acad Sci U S A 2022; 119:e2202777119. [PMID: 35921444 PMCID: PMC9371687 DOI: 10.1073/pnas.2202777119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Geometric compatibility constraints dictate the mechanical response of soft systems that can be utilized for the design of mechanical metamaterials such as the negative Poisson's ratio Miura-ori origami crease pattern. Here, we develop a formalism for linear compatibility that enables explicit investigation of the interplay between geometric symmetries and functionality in origami crease patterns. We apply this formalism to a particular class of periodic crease patterns with unit cells composed of four arbitrary parallelogram faces and establish that their mechanical response is characterized by an anticommuting symmetry. In particular, we show that the modes are eigenstates of this symmetry operator and that these modes are simultaneously diagonalizable with the symmetric strain operator and the antisymmetric curvature operator. This feature reveals that the anticommuting symmetry defines an equivalence class of crease pattern geometries that possess equal and opposite in-plane and out-of-plane Poisson's ratios. Finally, we show that such Poisson's ratios generically change sign as the crease pattern rigidly folds between degenerate ground states and we determine subfamilies that possess strictly negative in-plane or out-of-plane Poisson's ratios throughout all configurations.
Collapse
|
31
|
Jalali A, Janabi-Sharifi F. Aerial Continuum Manipulation: A New Platform for Compliant Aerial Manipulation. Front Robot AI 2022; 9:903877. [PMID: 35991849 PMCID: PMC9388901 DOI: 10.3389/frobt.2022.903877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional aerial manipulation systems were usually composed of rigid-link manipulators attached to an aerial platform, arising several rigidity-related issues such as difficulties of reach, compliant motion, adaptability to object’s shape and pose uncertainties, and safety of human-manipulator interactions, especially in unstructured and confined environments. To address these issues, partially compliant manipulators, composed of rigid links and compliant/flexible joints, were proposed; however, they still suffer from insufficient dexterity and maneuverability. In this article, a new set of compliant aerial manipulators is suggested. For this purpose, the concept of aerial continuum manipulation system (ACMS) is introduced, several conceptual configurations are proposed, and the functionalities of ACMSs for different applications are discussed. Then, the performances of proposed aerial manipulators are compared with conventional aerial manipulators by implementing available benchmarks in the literature. To enhance the comparison, new features with related benchmarks are presented and used for evaluation purposes. In this study, the advantages of ACMSs over their rigid-link counterparts are illustrated and the potential applications of ACMSs are suggested. The open problems such as those related to dynamic coupling and control of ACMSs are also highlighted.
Collapse
|
32
|
Virtual interaction and manipulation control of a hexacopter through hand gesture recognition from a data glove. ROBOTICA 2022. [DOI: 10.1017/s0263574722000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The purpose of this study is to realize virtual interaction and manipulation control of a hexacopter based on hand gesture recognition from a designed data glove, to provide an intuitive and visual real-time simulation system for flight control algorithm verification and external control equipment testing. First, the hand gesture recognition from a designed data glove is studied, which can recognize different actions, such as mobile ready, grab, loosen, landing, take-off, and hover. Then, the design of virtual simulation system for hexacopter capture is completed, with the model design of hexacopter and manipulator, and the simulation software design with
$CoppeliaSim$
. Finally, virtual simulation experiment of hexacopter grasping and virtual flight control experiment based on data glove are tested, respectively, and quantitatively described. The overall recognition rate is 84.3%, indicating that the data glove produced has the ability to recognize gestures, but its recognition performance is not superior. In gesture recognition, the recognition rate of static gestures is relatively higher than that of dynamic gestures. Among the static gestures, the hover gesture has the highest recognition rate. The average correct rate of static gestures can reach 94%. The lowest recognition rate of dynamic gestures is upward movement, and the average recognition rate of dynamic gestures is 76.1%. The research can be used to remotely operate hexacopter using a data glove in the future and improve the control performance through virtual interaction and manipulation simulation before actual application.
Collapse
|
33
|
Evolution of the Hybrid Aerial Underwater Robotic System (HAUCS) for Aquaculture: Sensor Payload and Extension Development. VEHICLES 2022. [DOI: 10.3390/vehicles4020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While robotics have been widely used in many agricultural practices such as harvesting, seeding, cattle monitoring, etc., aquaculture farming is an important, fast-growing sector of agriculture that has not seen significant adoption of advanced technologies such as robotics and the Internet of Things (IoT). In particular, dissolved oxygen (DO) monitoring, a practice in pond aquaculture essential to the health of the fish crops, remains labor-intensive and time-consuming. The Hybrid Aerial Underwater robotiCs System (HAUCS) is an IoT framework that aims to bring transformative changes to pond aquaculture. This paper focuses on the latest development in the HAUCS mobile sensing platform and field deployment. To address some shortcomings with the current implementation, the development of a novel rigid Kirigami-based robotic extension subsystem that can expand the functionality of the HAUCS platform is also being discussed.
Collapse
|
34
|
Fabrication-aware design for furniture with planar pieces. ROBOTICA 2022. [DOI: 10.1017/s0263574722000443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
We propose a computational design tool to enable casual end-users to easily design, fabricate, and assemble flat-pack furniture with guaranteed manufacturability. Using our system, users select parameterized components from a library and constrain their dimensions. Then they abstractly specify connections among components to define the furniture. Once fabrication specifications (e.g., materials) designated, the mechanical implementation of the furniture is automatically handled by leveraging encoded domain expertise. Afterwards, the system outputs three-dimensional models for visualization and mechanical drawings for fabrication. We demonstrate the validity of our approach by designing, fabricating, and assembling a variety of flat-pack (scaled) furniture on demand.
Collapse
|
35
|
Jin T, Li L, Wang T, Wang G, Cai J, Tian Y, Zhang Q. Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3096644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Meng J, Buzzatto J, Liu Y, Liarokapis M. On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review. Front Robot AI 2022; 8:739173. [PMID: 35399745 PMCID: PMC8989736 DOI: 10.3389/frobt.2021.739173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising.
Collapse
Affiliation(s)
- Jiawei Meng
- Department of Mechanical Engineering, University College London, London, United Kingdom
- *Correspondence: Minas Liarokapis, ; Jiawei Meng,
| | - Joao Buzzatto
- New Dexterity Research Group, Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
| | - Yuanchang Liu
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Minas Liarokapis
- New Dexterity Research Group, Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
- *Correspondence: Minas Liarokapis, ; Jiawei Meng,
| |
Collapse
|
37
|
Liu C, Wohlever SJ, Ou MB, Padir T, Felton SM. Shake and Take: Fast Transformation of an Origami Gripper. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3076563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Yoon SJ, Choi M, Jeong B, Park YL. Elongatable Gripper Fingers With Integrated Stretchable Tactile Sensors for Underactuated Grasping and Dexterous Manipulation. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2022.3144949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Roderick WRT, Cutkosky MR, Lentink D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci Robot 2021; 6:eabj7562. [PMID: 34851710 DOI: 10.1126/scirobotics.abj7562] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Birds take off and land on a wide range of complex surfaces. In contrast, current robots are limited in their ability to dynamically grasp irregular objects. Leveraging recent findings on how birds take off, land, and grasp, we developed a biomimetic robot that can dynamically perch on complex surfaces and grasp irregular objects. To accommodate high-speed collisions, the robot’s two legs passively transform impact energy into grasp force, while the underactuated grasping mechanism wraps around irregularly shaped objects in less than 50 milliseconds. To determine the range of hardware design, kinematic, behavior, and perch parameters that are sufficient for perching success, we launched the robot at tree branches. The results corroborate our mathematical model, which shows that larger isometrically scaled animals and robots must accommodate disproportionately larger angular momenta, relative to their mass, to achieve similar landing performance. We find that closed-loop balance control serves an important role in maximizing the range of parameters sufficient for perching. The performance of the robot’s biomimetic features attests to the functionality of their avian counterparts, and the robot enables us to study aspects of bird legs in ways that are infeasible in vivo. Our data show that pronounced differences in modern avian toe arrangements do not yield large changes in perching performance, suggesting that arboreal perching does not represent a strong selection pressure among common bird toe topographies. These findings advance our understanding of the avian perching apparatus and highlight design concepts that enable robots to perch on natural surfaces for environmental monitoring.
Collapse
Affiliation(s)
- W R T Roderick
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - M R Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - D Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.,Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Yan W, Mehta A. A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots. Soft Robot 2021; 9:871-881. [PMID: 34813378 DOI: 10.1089/soro.2021.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Origami-inspired robots are of particular interest due to their potential for rapid and accessible design and fabrication of elegant designs and complex functionalities through cutting and folding of flexible two-dimensional sheets or even strings, that is, printable manufacturing. Yet, origami robots still require bulky rigid components or electronics for actuation and control to accomplish tasks with reliability, programmability, ability to output substantial force, and durability, restricting their full potential. In this study, we present a printable self-sustained compliant oscillator that generates periodic actuation using only constant electrical power, without discrete components or electronic control hardware. This oscillator is robust (9 out of 10 prototypes worked successfully on the first try), configurable (with tunable periods from 3 to 12 s), powerful (can overcome hydrodynamic resistance to consistently propel a swimmer at ∼1.6 body lengths/min or 3.66 mm/s), and long lasting (∼103 cycles); it enables driving macroscale devices with prescribed autonomous behaviors, for example, locomotion and sequencing. This oscillator is also fully functional underwater and in high magnetic fields. Our analytical model characterizes essential parameters of the oscillation period, enabling programmable design of the oscillator. The printable oscillator can be integrated into origami-inspired systems seamlessly and monolithically, allowing rapid design and prototyping; the resulting integrated devices are lightweight, low cost, compliant, electronic free, and nonmagnetic, enabling practical applications in extreme areas. We demonstrate the functionalities of the oscillator with: (1) autonomous gliding of a printable swimmer, (2) LED flashing, and (3) fluid stirring. This work paves the way for realizing fully printable autonomous robots with high integration of actuation and control.
Collapse
Affiliation(s)
- Wenzhong Yan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, USA
| | - Ankur Mehta
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, USA
| |
Collapse
|
41
|
Mete M, Paik J. Closed-Loop Position Control of a Self-Sensing 3-DoF Origami Module With Pneumatic Actuators. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3102952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Abstract
Inspired by the embodied intelligence observed in octopus arms, we introduce magnetically controlled origami robotic arms based on Kresling patterns for multimodal deformations, including stretching, folding, omnidirectional bending, and twisting. The highly integrated motion of the robotic arms is attributed to inherent features of the reconfigurable Kresling unit, whose controllable bistable deploying/folding and omnidirectional bending are achieved through precise magnetic actuation. We investigate single- and multiple-unit robotic systems, the latter exhibiting higher biomimetic resemblance to octopus' arms. We start from the single Kresling unit to delineate the working mechanism of the magnetic actuation for deploying/folding and bending. The two-unit Kresling assembly demonstrates the basic integrated motion that combines omnidirectional bending with deploying. The four-unit Kresling assembly constitutes a robotic arm with a larger omnidirectional bending angle and stretchability. With the foundation of the basic integrated motion, scalability of Kresling assemblies is demonstrated through distributed magnetic actuation of double-digit number of units, which enables robotic arms with sophisticated motions, such as continuous stretching and contracting, reconfigurable bending, and multiaxis twisting. Such complex motions allow for functions mimicking octopus arms that grasp and manipulate objects. The Kresling robotic arm with noncontact actuation provides a distinctive mechanism for applications that require synergistic robotic motions for navigation, sensing, and interaction with objects in environments with limited or constrained access. Based on small-scale Kresling robotic arms, miniaturized medical devices, such as tubes and catheters, can be developed in conjunction with endoscopy, intubation, and catheterization procedures using functionalities of object manipulation and motion under remote control.
Collapse
|
43
|
Suthar B, Jung S. Design and Feasibility Analysis of a Foldable Robot Arm for Drones Using a Twisted String Actuator: FRAD-TSA. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3084890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Abstract
Compliant continuum robots (CCRs) have slender and elastic bodies. Compared with a traditional serial robot, they have more degrees of freedom and can deform their flexible bodies to go through a constrained environment. In this paper, we classify CCRs according to basic transmission units. The merits, materials and potential drawbacks of each type of CCR are described. Drive systems depend on the basic transmission units significantly, and their advantages and disadvantages are reviewed and summarized. Variable stiffness and intrinsic sensing are desired characteristics of CCRs, and the methods of obtaining the two characteristics are discussed. Finally, we discuss the friction, buckling, singularity and twisting problems of CCRs, and emphasise the ways to reduce their effects, followed by several proposing perspectives, such as the collaborative CCRs.
Collapse
|
45
|
Yang Y, Vella K, Holmes DP. Grasping with kirigami shells. Sci Robot 2021; 6:6/54/eabd6426. [PMID: 34043535 DOI: 10.1126/scirobotics.abd6426] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The ability to grab, hold, and manipulate objects is a vital and fundamental operation in biological and engineering systems. Here, we present a soft gripper using a simple material system that enables precise and rapid grasping, and can be miniaturized, modularized, and remotely actuated. This soft gripper is based on kirigami shells-thin, elastic shells patterned with an array of cuts. The kirigami cut pattern is determined by evaluating the shell's mechanics and geometry, using a combination of experiments, finite element simulations, and theoretical modeling, which enables the gripper design to be both scalable and material independent. We demonstrate that the kirigami shell gripper can be readily integrated with an existing robotic platform or remotely actuated using a magnetic field. The kirigami cut pattern results in a simple unit cell that can be connected together in series, and again in parallel, to create kirigami gripper arrays capable of simultaneously grasping multiple delicate and slippery objects. These soft and lightweight grippers will have applications in robotics, haptics, and biomedical device design.
Collapse
Affiliation(s)
- Yi Yang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Katherine Vella
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Douglas P Holmes
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
46
|
Ladig R, Paul H, Miyazaki R, Shimonomura K. Aerial Manipulation Using Multirotor UAV: A Review from the Aspect of Operating Space and Force. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aerial manipulation: physical interaction with the environment by using a robotic manipulator attached to the airframe of an aerial robot. In the future one can expect that aerial manipulation will greatly extend the range of possible applications for mobile robotics, especially multirotor UAVs. This can range from inspection and maintenance of previously hard to reach pieces of infrastructure, to search and rescue applications. What kind of manipulator is attached to what position of the airframe is a key point in accomplishing the aerial robot’s function and in the past, various aerial manipulation solutions have been proposed. This review paper gives an overview of the literature on aerial manipulation that have been proposed so far and classifies them by configuration of the workspace and function.
Collapse
|
47
|
Lee DY, Kim JK, Sohn CY, Heo JM, Cho KJ. High-load capacity origami transformable wheel. Sci Robot 2021; 6:6/53/eabe0201. [PMID: 34043563 DOI: 10.1126/scirobotics.abe0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Composite membrane origami has been an efficient and effective method for constructing transformable mechanisms while considerably simplifying their design, fabrication, and assembly; however, its limited load-bearing capability has restricted its application potential. With respect to wheel design, membrane origami offers unique benefits compared with its conventional counterparts, such as simple fabrication, high weight-to-payload ratio, and large shape variation, enabling softness and flexibility in a kinematic mechanism that neutralizes joint distortion and absorbs shocks from the ground. Here, we report a transformable wheel based on membrane origami capable of bearing more than a 10-kilonewton load. To achieve a high payload, we adopt a thick membrane as an essential element and introduce a wireframe design rule for thick membrane accommodation. An increase in the thickness can cause a geometric conflict for the facet and the membrane, but the excessive strain energy accumulation is unique to the thickness increase of the membrane. Thus, the design rules for accommodating membrane thickness aim to address both geometric and physical characteristics, and these rules are applied to basic origami patterns to obtain the desired wheel shapes and transformation. The capability of the resulting wheel applied to a passenger vehicle and validated through a field test. Our study shows that membrane origami can be used for high-payload applications.
Collapse
Affiliation(s)
- Dae-Young Lee
- Biorobotics Lab, Soft Robotics Research Center, School of Mechanical Engineering/IAMD, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jae-Kyeong Kim
- Biorobotics Lab, Soft Robotics Research Center, School of Mechanical Engineering/IAMD, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| | - Chang-Young Sohn
- R&D Center, Hankook Tire and Technology Co. Ltd., Daejeon, Republic of Korea
| | - Jeong-Mu Heo
- R&D Center, Hankook Tire and Technology Co. Ltd., Daejeon, Republic of Korea
| | - Kyu-Jin Cho
- Biorobotics Lab, Soft Robotics Research Center, School of Mechanical Engineering/IAMD, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Kim SR, Lee DY, Ahn SJ, Koh JS, Cho KJ. Morphing Origami Block for Lightweight Reconfigurable System. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2020.3031248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Mintchev S, Shintake J, Floreano D. Bioinspired dual-stiffness origami. Sci Robot 2021; 3:3/20/eaau0275. [PMID: 33141731 DOI: 10.1126/scirobotics.aau0275] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
Origami manufacturing has led to considerable advances in the field of foldable structures with innovative applications in robotics, aerospace, and metamaterials. However, existing origami are either load-bearing structures that are prone to tear and fail if overloaded or resilient soft structures with limited load capability. In this manuscript, we describe an origami structure that displays both high load bearing and high resilience characteristics. The structure, which is inspired by insect wings, consists of a prestretched elastomeric membrane, akin to the soft resilin joints of insect wings, sandwiched between rigid tiles, akin to the rigid cuticles of insect wings. The dual-stiffness properties of the proposed structure are validated by using the origami as an element of a quadcopter frame that can withstand aerodynamic forces within its flight envelope but softens during collisions to avoid permanent damage. In addition, we demonstrate an origami gripper that can be used for rigid grasping but softens to avoid overloading of the manipulated objects.
Collapse
Affiliation(s)
- Stefano Mintchev
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jun Shintake
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, University of Electro-Communications, Tokyo 182-8585, Japan
| | - Dario Floreano
- Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Sareh P, Chermprayong P, Emmanuelli M, Nadeem H, Kovac M. Rotorigami: A rotary origami protective system for robotic rotorcraft. Sci Robot 2021; 3:3/22/eaah5228. [PMID: 33141756 DOI: 10.1126/scirobotics.aah5228] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Applications of aerial robots are progressively expanding into complex urban and natural environments. Despite remarkable advancements in the field, robotic rotorcraft is still drastically limited by the environment in which they operate. Obstacle detection and avoidance systems have functionality limitations and substantially add to the computational complexity of the onboard equipment of flying vehicles. Furthermore, they often cannot identify difficult-to-detect obstacles such as windows and wires. Robustness to physical contact with the environment is essential to mitigate these limitations and continue mission completion. However, many current mechanical impact protection concepts are either not sufficiently effective or too heavy and cumbersome, severely limiting the flight time and the capability of flying in constrained and narrow spaces. Therefore, novel impact protection systems are needed to enable flying robots to navigate in confined or heavily cluttered environments easily, safely, and efficiently while minimizing the performance penalty caused by the protection method. Here, we report the development of a protection system for robotic rotorcraft consisting of a free-to-spin circular protector that is able to decouple impact yawing moments from the vehicle, combined with a cyclic origami impact cushion capable of reducing the peak impact force experienced by the vehicle. Experimental results using a sensor-equipped miniature quadrotor demonstrated the impact resilience effectiveness of the Rotary Origami Protective System (Rotorigami) for a variety of collision scenarios. We anticipate this work to be a starting point for the exploitation of origami structures in the passive or active impact protection of robotic vehicles.
Collapse
Affiliation(s)
- Pooya Sareh
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, UK. .,Division of Industrial Design, School of Engineering, University of Liverpool, London Campus, EC2A 1AG London, UK
| | - Pisak Chermprayong
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Marc Emmanuelli
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Haris Nadeem
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Mirko Kovac
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| |
Collapse
|