1
|
Park CJ, Oh JE, Lin P, Zhou S, Bunnell M, Bikorimana E, Spinella MJ, Lim HJ, Ko CJ. A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary. Endocrinology 2025; 166:bqaf006. [PMID: 39834231 PMCID: PMC12054734 DOI: 10.1210/endocr/bqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
This study uncovers a dynamic shift in estrogen receptor expression during granulosa cell (GC) differentiation in the ovary, highlighting a transition from estrogen receptor alpha (ESR1) to estrogen receptor beta (ESR2). Using a transgenic mouse model with Esr1-iCre-mediated Esr2 deletion, we demonstrate that ESR2 expression is absent in GCs derived from ESR1-expressing ovarian surface epithelium (OSE) cells. Single-cell analysis of the OSE-GC lineage reveals a developmental trajectory from Esr1-expressing OSE cells to Foxl2-expressing pre-GCs, culminating in GCs exclusively expressing Esr2. Transcriptome analyses identified vasculature-derived TGFβ1 ligands as key regulators of this transition. Supporting this, TGFβ1 treatment of cultured embryonic ovaries reduced Esr1 expression while promoting Esr2 expression. This study underscores the capability of GCs to switch from ESR1 to ESR2 expression as a fundamental aspect of normal differentiation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sherry Zhou
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
2
|
Li J, Wang C, Xu X, Chen J, Guo H. An extensive analysis of the prognostic and immune role of FOXO1 in various types of cancer. Braz J Med Biol Res 2024; 57:e13378. [PMID: 38716982 PMCID: PMC11085032 DOI: 10.1590/1414-431x2024e13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024] Open
Abstract
Forkhead Box O1 (FOXO1) has been reported to play important roles in many tumors. However, FOXO1 has not been studied in pan-cancer. The purpose of this study was to reveal the roles of FOXO1 in pan-cancer (33 cancers in this study). Through multiple public platforms, a pan-cancer analysis of FOXO1 was conducted to obtained FOXO1 expression profiles in various tumors to explore the relationship between FOXO1 expression and prognosis of these tumors and to disclose the potential mechanism of FOXO1 in these tumors. FOXO1 was associated with the prognosis of multiple tumors, especially LGG (low grade glioma), OV (ovarian carcinoma), and KIRC (kidney renal clear cell carcinoma). FOXO1 might play the role of an oncogenic gene in LGG and OV, while playing the role of a cancer suppressor gene in KIRC. FOXO1 expression had a significant correlation with the infiltration of some immune cells in LGG, OV, and KIRC. By combining FOXO1 expression and immune cell infiltration, we found that FOXO1 might influence the overall survival of LGG through the infiltration of myeloid dendritic cells or CD4+ T cells. Functional enrichment analysis and gene set enrichment analysis showed that FOXO1 might play roles in tumors through immunoregulatory interactions between a lymphoid and a non-lymphoid cell, TGF-beta signaling pathway, and transcriptional misregulation in cancer. FOXO1 was associated with the prognosis of multiple tumors, especially LGG, OV, and KIRC. In these tumors, FOXO1 might play its role via the regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Choi Y, Pollack S. Significant Association of Estrogen Receptor-β Isoforms and Coactivators in Breast Cancer Subtypes. Curr Issues Mol Biol 2023; 45:2533-2548. [PMID: 36975536 PMCID: PMC10047005 DOI: 10.3390/cimb45030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Nuclear receptor coregulators are the principal regulators of Estrogen Receptor (ER)-mediated transcription. ERβ, an ER subtype first identified in 1996, is associated with poor outcomes in breast cancer (BCa) subtypes, and the coexpression of the ERβ1 isoform and AIB-1 and TIF-2 coactivators in BCa-associated myofibroblasts is associated with high-grade BCa. We aimed to identify the specific coactivators that are involved in the progression of ERβ-expressing BCa. ERβ isoforms, coactivators, and prognostic markers were tested using standard immunohistochemistry. AIB-1, TIF-2, NF-kB, p-c-Jun, and/or cyclin D1 were differentially correlated with ERβ isoform expression in the BCa subtypes and subgroups. The coexpression of the ERβ5 and/or ERβ1 isoforms and the coactivators were found to be correlated with a high expression of P53, Ki-67, and Her2/neu and large-sized and/or high-grade tumors in BCa. Our study supports the notion that ERβ isoforms and coactivators seemingly coregulate the proliferation and progression of BCa and may provide insight into the potential therapeutic uses of the coactivators in BCa.
Collapse
Affiliation(s)
- Young Choi
- Department of Pathology, Yale School of Medicine, 434 Pine Grove Lane, Hartsdale, NY 10530, USA
- Correspondence:
| | - Simcha Pollack
- Department of Statistics, St. John’s University, New York, NY 11423, USA
| |
Collapse
|
4
|
Biason-Lauber A, Lang-Muritano M. Estrogens: Two nuclear receptors, multiple possibilities. Mol Cell Endocrinol 2022; 554:111710. [PMID: 35787463 DOI: 10.1016/j.mce.2022.111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Much is known about estrogen action in experimental animal models and in human physiology. This article reviews the mechanisms of estrogen activity in animals and humans and the role of its two receptors α and β in terms of structure and mechanisms of action in various tissues in health and in relationship with human pathologies (e.g., osteoporosis). Recently, the spectrum of clinical pictures of estrogen resistance caused by estrogen receptors gene variants has been widened by our description of a woman with β-receptor defect, which could be added to the already known descriptions of α-receptor defect in women and men and β-receptor defect in men. The essential role of the β-receptor in the development of the gonad stands out. We summarize the clinical pictures due to estrogen resistance in men and women and focus on long-term follow-up of two women, one with α- and the other with β-receptor resistance. Some open questions remain on the complex interactions between the two receptors on bone metabolism and hypothalamus-pituitary-gonadal axis, which need further deepening and research.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- University of Fribourg, Division of Endocrinology, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology, Switzerland; Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
5
|
Chauvin S, Cohen-Tannoudji J, Guigon CJ. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int J Mol Sci 2022; 23:ijms23010512. [PMID: 35008938 PMCID: PMC8745567 DOI: 10.3390/ijms23010512] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Estradiol (E2) is a major hormone controlling women fertility, in particular folliculogenesis. This steroid, which is locally produced by granulosa cells (GC) within ovarian follicles, controls the development and selection of dominant preovulatory follicles. E2 effects rely on a complex set of nuclear and extra-nuclear signal transduction pathways principally triggered by its nuclear receptors, ERα and ERβ. These transcription factors are differentially expressed within follicles, with ERβ being the predominant ER in GC. Several ERβ splice isoforms have been identified and display specific structural features, which greatly complicates the nature of ERβ-mediated E2 signaling. This review aims at providing a concise overview of the main actions of E2 during follicular growth, maturation, and selection in human. It also describes the current understanding of the various roles of ERβ splice isoforms, especially their influence on cell fate. We finally discuss how E2 signaling deregulation could participate in two ovarian pathogeneses characterized by either a follicular arrest, as in polycystic ovary syndrome, or an excess of GC survival and proliferation, leading to granulosa cell tumors. This review emphasizes the need for further research to better understand the molecular basis of E2 signaling throughout folliculogenesis and to improve the efficiency of ovarian-related disease therapies.
Collapse
|
6
|
Liu F, Zhu XT, Li Y, Wang CJ, Fu JL, Hui J, Xiao Y, Liu L, Yan R, Li XF, Liu Y. Magnesium demethylcantharidate inhibits hepatocellular carcinoma cell invasion and metastasis via activation transcription factor FOXO1. Eur J Pharmacol 2021; 911:174558. [PMID: 34634308 DOI: 10.1016/j.ejphar.2021.174558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, develops rapidly and has a high mortality rate. Relapsed metastasis is the most important factor affecting prognosis and is also the main cause of death for patients with HCC. Cantharidin is a kind of folk medicine for malignant tumors in China. Because of its cytotoxicity, the application of cantharidin is very limited. Magnesium demethylcantharidate (MDC) is a derivative of cantharidin independently developed by our laboratory. Our results show that MDC has anticancer activity and exhibited lower toxicity than cantharidin. However, whether MDC affects the invasion and metastasis of HCC cells and the underlying molecular mechanisms remain obscure. Transwell and Matrigel assays showed that MDC could effectively inhibit the invasion and metastasis of the HCC cell lines SMMC-7721 and SK-Hep1 in a dose-dependent manner. Moreover, MDC significantly inhibited the expression of invasion and metastasis related proteins MMP-2 and MMP-9. In addition, our study found that MDC inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 by activating transcription factor FOXO1. Interestingly, the combination of MDC and sorafenib significantly inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 compared with the single drug treatment via the activated transcription factor FOXO1. Our work revealed that MDC obviously inhibited the invasion and metastasis of HCC cells, and suggested that MDC could be a potential candidate molecule against the invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xin-Ting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chen-Jing Wang
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Li Fu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Liu Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Rong Yan
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiao-Fei Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yun Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
7
|
Hiramoto K, Orita K, Yamate Y, Kobayashi H. Role of Momordica charantia in preventing the natural aging process of skin and sexual organs in mice. Dermatol Ther 2020; 33:e14243. [PMID: 32860472 DOI: 10.1111/dth.14243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Although various methods for improving the natural aging of skin have been examined, an effective method is currently unavailable. Therefore, in this study, we investigated the effects of Momordica charantia on the natural aging of skin of mice and how sex differences influenced these effects. To this end, we bred female and male hairless mice without ultraviolet ray irradiation and physical stress for 2 years. During the study period, mice were orally administered 50 mg/kg/day Momordica charantia fruit extract, three times per week. The characteristics of naturally aging skin, in terms of moisture retention, hydration, thickness, and reduced wrinkle score, improved after Momordica charantia treatment in both male and female mice. Furthermore, reduced cell apoptosis was observed in the female ovaries and male testes, and the levels of testosterone and 17β-estradiol in blood were maintained. After treatment with Momordica charantia, the expression of matrix metalloprotease (MMP)-1 and hyaluronidase (HAYL)2 decreased in the skin of female mice, whereas the serum levels of interleukin (IL)-33 increased in the male mice. These results indicated that the natural aging of the skin was decelerated by Momordica charantia via regulation of the 17β-estradiol/mast cell/MMP-1/HAYL2 and testosterone/mast cell/IL-33 signaling pathways in female and male mice, respectively.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | |
Collapse
|
8
|
Hiramoto K, Yamate Y, Sugiyama D, Matsuda K, Iizuka Y, Yamaguchi T. Tranexamic acid inhibits the plasma and non-irradiated skin markers of photoaging induced by long-term UVA eye irradiation in female mice. Biomed Pharmacother 2018; 107:54-58. [DOI: 10.1016/j.biopha.2018.07.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
|
9
|
Shi F, Li T, Liu Z, Qu K, Shi C, Li Y, Qin Q, Cheng L, Jin X, Yu T, Di W, Que J, Xia H, She J. FOXO1: Another avenue for treating digestive malignancy? Semin Cancer Biol 2018; 50:124-131. [PMID: 28965871 PMCID: PMC5874167 DOI: 10.1016/j.semcancer.2017.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
Digestive malignancies are the leading cause of mortality among all neoplasms, contributing to estimated 3 million deaths in 2012 worldwide. The mortality rate hassurpassed lung cancer and prostate cancer in recent years. The transcription factor Forkhead Box O1 (FOXO1) is a key member of Forkhead Box family, regulating diverse cellular functions during tumor initiation, progression and metastasis. In this review, we focus on recent studies investigating the antineoplastic role of FOXO1 in digestive malignancy. This review aims to serve as a guide for further research and implicate FOXO1 as a potent therapeutic target in digestive malignancy.
Collapse
Affiliation(s)
- Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, Shaanxi, China
| | - Zhi Liu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Chengxin Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Yaguang Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Qian Qin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Liang Cheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Xin Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Jianwen Que
- Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, 10032, NY, USA
| | - Hongping Xia
- Laboratory of Cancer Genomics, National Cancer Centre, Singapore 169610, Singapore
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
10
|
Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol 2016; 36:144-56. [PMID: 26483416 PMCID: PMC4702593 DOI: 10.1128/mcb.00625-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor β (ERβ) or Krüppel-like zinc finger transcription factor 5 (KLF5). Ιn addition, E2 suppressed KLF5-mediated transcription through ERβ, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ERβ-KLF5 pathway and regulated prostate tumor growth without ERβ transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ERβ and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation.
Collapse
Affiliation(s)
- Yuka Nakajima
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Asami Osakabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kensuke Akaogi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Junn Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Stellato C, Porreca I, Cuomo D, Tarallo R, Nassa G, Ambrosino C. The “busy life” of unliganded estrogen receptors. Proteomics 2015; 16:288-300. [DOI: 10.1002/pmic.201500261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Claudia Stellato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | | | - Danila Cuomo
- Department of Science and Technology; University of Sannio; Benevento Italy
- Biogem scarl; Ariano Irpino (AV); Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | - Concetta Ambrosino
- Department of Science and Technology; University of Sannio; Benevento Italy
- Biogem scarl; Ariano Irpino (AV); Italy
| |
Collapse
|
12
|
Mahmoud AM, Al-Alem U, Ali MM, Bosland MC. Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. J Steroid Biochem Mol Biol 2015; 152:62-75. [PMID: 25931004 PMCID: PMC4501888 DOI: 10.1016/j.jsbmb.2015.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
Genistein has protective effects against prostate cancer (PCa) but whether this protection involves an estrogen receptor (ER) β dependent mechanism has yet to be elucidated. ER-β has a tumor suppressor role in PCa and its levels decline with cancer progression which was linked to ER-β promoter hypermethylation. Genistein has been suggested to have demethylating activities in cancer. However, the ability of genistein to reverse ER-β promoter hypermethylation in PCa has not been studied. In addition, there are great discrepancies among studies that examined the effect of genistein on ER-β gene expression. Therefore, we sought to explore effects of genistein on ER-β promoter methylation as a mechanism of modulating ER-β expression using three PCa cell lines, LNCaP, LAPC-4 and PC-3. We also examined the role of ER-β in mediating the preventive action of genistein. Our data demonstrated that genistein at physiological ranges (0.5-10 μmol/L) reduced ER-β promoter methylation significantly with corresponding dose-dependent increases in ER-β expression in LNCaP and LAPC-4 but not in PC-3 cells, which could be attributed to the low basal levels of ER-β promoter methylation in PC-3 cell line. Genistein induced phosphorylation, nuclear translocation and transcriptional activity of ER-β in all three PCa cell lines. Inhibitory effects of genistein on LAPC-4 and PC-3 cell proliferation were diminished using a specific ER-β antagonist. In conclusion, genistein and ER-β act together to prevent PCa cell proliferation; genistein increases ER-β levels via reducing its promoter methylation and ER-β, in turn, mediates the preventive action of genistein.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Umaima Al-Alem
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohamed M Ali
- School of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Stellato C, Nassa G, Tarallo R, Giurato G, Ravo M, Rizzo F, Marchese G, Alexandrova E, Cordella A, Baumann M, Nyman TA, Weisz A, Ambrosino C. Identification of cytoplasmic proteins interacting with unliganded estrogen receptor α and β in human breast cancer cells. Proteomics 2015; 15:1801-7. [PMID: 25604459 DOI: 10.1002/pmic.201400404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 01/15/2023]
Abstract
Estrogen receptor subtypes (ERα and ERβ) are transcription factors sharing a similar structure but exerting opposite roles in breast cancer cells. Besides the well-characterized genomic actions of nuclear ERs upon ligand binding, specific actions of ligand-free ERs in the cytoplasm also affect cellular functions. The identification of cytoplasmic interaction partners of unliganded ERα and ERβ may help characterize the molecular basis of the extra-nuclear mechanism of action of these receptors, revealing novel mechanisms to explain their role in breast cancer response or resistance to endocrine therapy. To this aim, cytoplasmic extracts from human breast cancer MCF-7 cells stably expressing tandem affinity purification-tagged ERα and ERβ and maintained in estrogen-free medium were subject to affinity-purification and MS analysis, leading to the identification of 84 and 142 proteins associated with unliganded ERα and ERβ, respectively. Functional analyses of ER subtype-specific interactomes revealed significant differences in the molecular pathways targeted by each receptor in the cytoplasm. This work, reporting the first identification of the unliganded ERα and ERβ cytoplasmic interactomes in breast cancer cells, provides novel experimental evidence on the nongenomic effects of ERs in the absence of hormonal stimulus. All MS data have been deposited in the ProteomeXchange with identifier PXD001202 (http://proteomecentral.proteomexchange.org/dataset/PXD001202).
Collapse
Affiliation(s)
- Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Giovanna Marchese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | | | - Marc Baumann
- Protein Chemistry Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | - Concetta Ambrosino
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| |
Collapse
|
14
|
Nassa G, Tarallo R, Giurato G, De Filippo MR, Ravo M, Rizzo F, Stellato C, Ambrosino C, Baumann M, Lietzèn N, Nyman TA, Weisz A. Post-transcriptional regulation of human breast cancer cell proteome by unliganded estrogen receptor β via microRNAs. Mol Cell Proteomics 2014; 13:1076-90. [PMID: 24525454 DOI: 10.1074/mcp.m113.030403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor β (ERβ) is a member of the nuclear receptor family of homeostatic regulators that is frequently lost in breast cancer (BC), where its presence correlates with a better prognosis and a less aggressive clinical outcome of the disease. In contrast to ERα, its closest homolog, ERβ shows significant estrogen-independent activities, including the ability to inhibit cell cycle progression and regulate gene transcription in the absence of the ligand. Investigating the nature and extent of this constitutive activity of ERβ in BC MCF-7 and ZR-75.1 cells by means of microRNA (miRNA) sequencing, we identified 30 miRNAs differentially expressed in ERβ+ versus ERβ- cells in the absence of ligand, including up-regulated oncosuppressor miRs such miR-30a. In addition, a significant fraction of >1,600 unique proteins identified in MCF-7 cells by iTRAQ quantitative proteomics were either increased or decreased by ERβ, revealing regulation of multiple cell pathways by ligand-free receptors. Transcriptome analysis showed that for a large number of proteins regulated by ERβ, the corresponding mRNAs are unaffected, including a large number of putative targets of ERβ-regulated miRNAs, indicating a central role of miRNAs in mediating BC cell proteome regulation by ERβ. Expression of a mimic of miR-30a-5p, a direct target and downstream effector of ERβ in BC, led to the identification of several target transcripts of this miRNA, including 11 encoding proteins whose intracellular concentration was significantly affected by unliganded receptor. These results demonstrate a significant effect of ligand-free ERβ on BC cell functions via modulation of the cell proteome and suggest that miRNA regulation might represent a key event in the control of the biological and clinical phenotype of hormone-responsive BC by this nuclear receptor.
Collapse
Affiliation(s)
- Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, 84081 Baronissi (SA), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chaudhary SC, Singh T, Talwelkar SS, Srivastava RK, Arumugam A, Weng Z, Elmets CA, Afaq F, Kopelovich L, Athar M. Erb-041, an estrogen receptor-β agonist, inhibits skin photocarcinogenesis in SKH-1 hairless mice by downregulating the WNT signaling pathway. Cancer Prev Res (Phila) 2014; 7:186-98. [PMID: 24217507 PMCID: PMC3946228 DOI: 10.1158/1940-6207.capr-13-0276] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen receptors (ER), including ER-α and ER-β, are known to regulate multiple biologic responses in various cell types. The expression of ER-β is lost in various cancers. ER-β agonists were shown to modulate inflammation, cancer cell proliferation, and differentiation. Here, we investigated the cancer chemopreventive properties of Erb-041, an ER-β agonist, using a model of UVB-induced photocarcinogenesis in SKH-1 mice. Erb-041 significantly reduced UVB-induced carcinogenesis. Tumor numbers and volume were reduced by 60% and 84%, respectively, in the Erb-041-treated group as compared with UVB (alone) control. This inhibition in tumorigenesis was accompanied by the decrease in proliferating cell nuclear antigen (PCNA), cyclin D1, VEGF, and CD31, and an increase in apoptosis. The lost ER-β expression in squamous cell carcinomas (SCC) was significantly recovered by Erb-041 treatment. In addition, the UVB-induced inflammatory responses were remarkably reduced. Myeloperoxidase activity, levels of cytokines (interleukin (IL)-1β, IL-6, and IL-10), and expression of p-ERK (extracellular signal-regulated kinase) 1/2, p-p38, p-IκB, iNOS, COX-2, and nuclear NF-κBp65 were diminished. The number of tumor-associated inflammatory cells (GR-1(+)/CD11b(+) and F4/80(+)) was also decreased. Tumors excised from Erb-041-treated animal were less invasive and showed reduced epithelial-mesenchymal transition (EMT). The enhanced expression of E-cadherin with the concomitantly reduced expression of N-cadherin, Snail, Slug, and Twist characterized these lesions. The WNT/β-catenin signaling pathway, which underlies pathogenesis of skin cancer, was found to be downregulated by Erb-041 treatment. Similar but not identical changes in proliferation and EMT regulatory proteins were noticed following treatment of tumor cells with a WNT signaling inhibitor XAV939. Our results show that Erb-041 is a potent skin cancer chemopreventive agent that acts by dampening the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abd Elmageed ZY, Moroz K, Srivastav SK, Fang Z, Crawford BE, Moparty K, Thomas R, Abdel-Mageed AB. High circulating estrogens and selective expression of ERβ in prostate tumors of Americans: implications for racial disparity of prostate cancer. Carcinogenesis 2013; 34:2017-23. [PMID: 23658372 DOI: 10.1093/carcin/bgt156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although estrogen receptor beta (ERβ) has been implicated in prostate cancer (PCa) progression, its potential role in health disparity of PCa remains elusive. The objective of this study was to examine serum estrogens and prostate tumor ERβ expression and examine their correlation with clinical and pathological parameters in African American (AA) versus Caucasian American (CA) men. The circulating 17β-estradiol (E2) was measured by enzyme immunoassay in blood procured from racially stratified normal subjects and PCa patients. Differential expression profile analysis of ERβ was analyzed by quantitative immunohistochemistry using ethnicity-based tissue microarray encompassing 300 PCa tissue cores. In situ ERβ expression was validated by quantitative reverse transcription-PCR in matched microdissected normal prostate epithelium and tumor cells and datasets extracted from independent cohorts. In comparison with normal age-matched subjects, circulating E2 levels were significantly elevated in all PCa patients. Further analysis demonstrates an increase in blood E2 levels in AA men in both normal and PCa in comparison with age- and stage-matched counterparts of CA decent. Histochemical score analysis reveals intense nuclear immunoreactivity for ERβ in tumor cores of AA men than in CA men. Gene expression analysis in microdissected tumors corroborated the biracial differences in ERβ expression. Gene expression analysis from independent cohort datasets revealed correlation between ERβ expression and PCa progression. However, unlike in CA men, adjusted multivariate analysis showed that ERβ expression correlates with age at diagnosis and low prostate-specific antigen recurrence-free survival in AA men. Taken together, our results suggest that E2-ERβ axis may have potential clinical utility in PCa diagnosis and clinical outcome among AA men.
Collapse
|
17
|
Leung YK, Lee MT, Lam HM, Tarapore P, Ho SM. Estrogen receptor-beta and breast cancer: translating biology into clinical practice. Steroids 2012; 77:727-37. [PMID: 22465878 PMCID: PMC3356459 DOI: 10.1016/j.steroids.2012.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptor (ER) β was discovered over a decade ago. The design of most studies on this receptor was based on knowledge of its predecessor, ERα. Although breast cancer (BCa) has been a main focus of ERβ research, its precise roles in breast carcinogenesis remain elusive. Data from in vitro models have not always matched those from observational or clinical studies. Several inherent factors may contribute to these discrepancies: (a) several ERβ spliced variants are expressed at the protein level, and isoform-specific antibodies are unavailable for some variants; (b) post-translational modifications of the receptor regulate receptor functions; (c) the role of the receptor differs significantly depending on the type of ligands, cis-elements, and co-regulators that interact with the receptor; and (d) the diversity of distribution of the receptor among intracellular organelles of BCa cells. This review addresses the gaps in knowledge in ERβ research as it pertains to BCa regarding the following questions: (1) is ERβ a tumor suppressor in BCa?; (2) do ERβ isoforms play differential roles in breast carcinogenesis?; (3) do nuclear signaling and extranuclear ERβ signaling differ in BCa?; (4) what are the consequences of post-translational modifications of ERβ in BCa?; (5) how do co-regulators and interacting proteins increase functional diversity of ERβ?; and (6) how do the types of ligand and regulatory cis-elements affect the action of ERβ in BCa?. Insights gained from these key questions in ERβ research should help in prevention, diagnosis/prognosis, and treatment of BCa.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
18
|
Kawashima H, Nakatani T. Involvement of estrogen receptors in prostatic diseases. Int J Urol 2012; 19:512-22; author reply 522-3. [PMID: 22375605 DOI: 10.1111/j.1442-2042.2012.02987.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accumulating evidence shows that estrogens participate in the pathogenesis and development of benign prostatic hyperplasia and prostate cancer by activating estrogen receptor α. In contrast, estrogen receptor β is involved in the differentiation and maturation of prostatic epithelial cells, and thus possesses antitumor effects in prostate cancer. However, the natural ligands of estrogen receptor β are not fully understood, and its mode of action according to its ligands and the binding sites located in the promoter regions of downstream genes remains to be elucidated. Here, we review recent experimental investigations of estrogen receptors and their urological relevance. Estrogen receptor-mediated signaling in the prostate is essential together with the androgen receptor-mediated pathway, providing a new therapeutic target for prostatic diseases.
Collapse
Affiliation(s)
- Hidenori Kawashima
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | |
Collapse
|
19
|
Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol 2012; 24:236-48. [PMID: 22070562 PMCID: PMC3264398 DOI: 10.1111/j.1365-2826.2011.02251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails can be tailored to improve brain mitochondrial endpoints.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jimmy To
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
- Program in Neuroscience, University of Southern California, Los Angeles, California, 90033
- Address correspondence to: Roberta Diaz Brinton, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, California, 90089, Tel. 323-442-1428; Fax. 323-442-1489;
| |
Collapse
|
20
|
One size fits all in prostate cancer: a story tale whose time has come and gone. Int J Biol Markers 2011; 26:75-81. [PMID: 21623584 DOI: 10.5301/jbm.2011.8368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2011] [Indexed: 12/31/2022]
Abstract
The touchstone to evaluate accurately the aggressiveness and invasiveness of prostate cancer is something of a holy grail in the facet of urologic oncology. Gene expression and sequencing studies have improved our interpretations of the genetic determinants of the disease but are unsuccessful in the establishment of any unified classification to improve the molecular stratification. These questions addressing failure in rational drug design are difficult to answer in the multifaceted and heterogeneous pathogenesis of prostate cancer. In this review, we have developed a roadmap of the "recalcitrant prostate cancer proteome" to recognize the aspects of prostate cancer that may be helpful in effectively translating these findings to the clinic.
Collapse
|